View Item 
  •   Unmul Repository Home
  • Others
  • Peer Review
  • View Item
  •   Unmul Repository Home
  • Others
  • Peer Review
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Peer Review: Jurnal Nasional Terakreditasi_Widians_Segmentasi pelanggan menggunakan algoritme bisecting k-means berdasarkan model recency, frequency, dan monetary (RFM)

Thumbnail
View/Open
Peer Review Segmentasi (190.9Kb)
Date
2020-04-30
Author
Puspitasari, Novianti
Widians, Joan Angelina
Setiawan, Noval Bayu
Metadata
Show full item record
Abstract
Information on customer loyalty characteristics in a company is needed to improve service to customers. A customer segmentation model based on transaction data can provide this information. This study used parameters from the recency, frequency, and monetary (RFM) model in determining customer segmentation and bisecting k-means algorithm to determine the number of clusters. The dataset used 588 sales transactions for PT Dinar Energi Utama in 2017. The clusters formed by the bisecting k-means and k-means algorithm were tested using the silhouette coefficient method. The bisecting k-means algorithm can form the best customer segmentation into three groups, namely Occasional, Typical, and Gold, with a silhouette coefficient of 0.58132.
URI
http://repository.unmul.ac.id/handle/123456789/7432
Collections
  • Peer Review [1031]

Repository Universitas Mulawarman copyright ©   LP3M Universitas Mulawarman
Jalan Kuaro Kotak Pos 1068
Telp. (0541) 741118
Fax. (0541) 747479 - 732870
Samarinda 75119, Kalimantan Timur, Indonesia
Contact Us | Send Feedback
 

 

Browse

All of Unmul RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Repository Universitas Mulawarman copyright ©   LP3M Universitas Mulawarman
Jalan Kuaro Kotak Pos 1068
Telp. (0541) 741118
Fax. (0541) 747479 - 732870
Samarinda 75119, Kalimantan Timur, Indonesia
Contact Us | Send Feedback