Please use this identifier to cite or link to this item: http://repository.unmul.ac.id/handle/123456789/3253
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPurnawansyah, Purnawansyah-
dc.contributor.authorHaviluddin, Haviluddin-
dc.contributor.authorAlfred, Rayner-
dc.contributor.authorGaffar, Achmad Fanany Onnlita-
dc.date.accessioned2019-12-13T00:26:00Z-
dc.date.available2019-12-13T00:26:00Z-
dc.date.issued2018-01-02-
dc.identifier.issn2597-4602-
dc.identifier.urihttp://repository.unmul.ac.id/handle/123456789/3253-
dc.description.abstractThis paper presents an approach for a network traffic characterization by using statistical techniques. These techniques are obtained using the decomposition, winter’s exponential smoothing and autoregressive integrated moving average (ARIMA). In this paper, decomposition and winter’s exponential smoothing techniques were used additive and multiplicative model. Then, ARIMA based-on Box-Jenkins methodology. The results of ARIMA (1,0,2) was shown the best model that can be used to the internet network traffic forecasting.en_US
dc.language.isoenen_US
dc.publisherKnowledge Engineering and Data Science (KEDS)en_US
dc.subjectDecomposition, Winter’s exponential smoothing, ARIMA, Additive, Multiplicativeen_US
dc.titleNetwork Traffic Time Series Performance Analysis using Statistical Methodsen_US
dc.typeArticleen_US
Appears in Collections:J - Computer Sciences and Information Technology

Files in This Item:
File Description SizeFormat 
9. KEDS2018_Network traffic prediction.pdf591.66 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.