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This study investigates the geographically weighted multivariate logistic regression (GWMLR) model, parameter estimation, and
hypothesis testing procedures. The GWMLR model is an extension to the multivariate logistic regression (MLR) model, which
has dependent variables that follow a multinomial distribution along with parameters associated with the spatial weighting at
each location in the study area. The parameter estimation was done using the maximum likelihood estimation and Newton-
Raphson methods, and the maximum likelihood ratio test was used for hypothesis testing of the parameters. The performance
of the GWMLR model was evaluated using a real dataset and it was found to perform better than the MLR model.

1. Introduction

Over the past decade, most research on geographically
weighted regression (GWR) models has been focused on
applications that contain two or more correlated responses
(multivariate). Harini et al. [1, 2] introduced the multivariate
GWR (MGWR) model and demonstrated the parameter esti-
mation and hypothesis test procedures using the restricted
maximum likelihood estimation (RMLE) and maximum
likelihood ratio test (MLRT) methods, respectively. The form
and properties of the estimated errors variance-covariance
parameters of the MGWR model using the MLE and
weighted least squares methods were investigated [3].
Triyanto et al. [4, 5] introduced the geographically weighted
multivariate Poisson regression (GWMPR) model. The esti-
mator of the GWMPR model parameters was obtained
through the MLE with the Newton-Raphson iterative
method, and the test statistic for hypothesis tests was deter-
mined by the MLRT method. Suyitno et al. [6] discussed
the estimation of the geographically weighted trivariate Wei-
bull regression (GWTWR) model using the MLE and
Newton-Raphson methods. The geographically weighted
multivariate t regression (GWMtR) model was introduced

by Sugiarti et al. [7]. The MLE method and the expectation-
maximization algorithm were applied to estimate the
GWMtR model parameters. In [8], a new method to deter-
mine model conformity between the multivariate nonpara-
metric truncated spline GWR model and the multivariate
nonparametric truncated spline (global regression) was
employed.

The responses of the multivariate GWR models in previ-
ous research were in the form of quantitative data. However,
in many applications within various fields of research, the
responses include not only quantitative data but also qualita-
tive (categorical) data. Therefore, in this study, we propose
the geographically weighted multivariate logistic regression
(GWMLR) model. The GWMLR model is the extension of
the geographically weighted bivariate logistic regression
(GWBLR) proposed by Fathurahman et al. [9]. The GWMLR
model has been developed from the geographically weighted
logistic regression (GWLR) model proposed by Atkinson
et al. [10]. The GWLR model is a combination of the GWR
model [11] and the binary logistic regression model. The
GWMLR model in this study is used to explain the spatial
associations between two correlated categorical dependent
variables with one or more independent variables, where
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each of the dependent variables has two categories. Similar to
the methods in the works of Harini et al. [2], Triyanto et al.
[4, 5], Suyitno et al. [6], and Sifriyani et al. [8], the MLE
and MLRT methods were used in the modeling and applying
of the GWMLR model. The MLE method was used to esti-
mate the parameters, and the statistical test for the signifi-
cance of the parameters was determined by the MLRT
method. The GWMLR model performance was evaluated
using the factors that influence the public health develop-
ment index and human development index of districts and
cities in Kalimantan Island, Indonesia.

2. Materials and Methods

2.1. Multivariate Logistic Regression Model. A multivariate
logistic regression (MLR) explains the relationship between
two or more correlated categorical dependent variables with
one or more independent variables. In this study, the MLR
model had two correlated categorical dependent variables,
and each dependent variable had two categories. Let Y1 and
Y2 be the two dependent variables. Y1 and Y2 each can have
one of the two values (0 or 1). Let y = ½Y11 Y10 Y01 Y00�T be a
vector of dependent variables of the MLR model. The ele-
ments of y have the probabilities of η11, η10, η01, and η00,
respectively, which are presented in Table 1.

Following Dale [12] and Palmgren [13], y follows a
multinomial distribution with the joint probability mass
function:

P Y11 = y11, Y10 = y10, Y01 = y01, Y00 = y00ð Þ =
Y1
r=0

Y1
s=0

ηyrsrs ,

ð1Þ

where 0 < ηrs < 1, r, s = 0, 1, yrs = 0, 1, y00 = 1 − y11 − y10 −
y01, and η00 = 1 − η1 − η2 + η11. r and s are the values of
the dependent variables. yrs is the value of Yrs, which rep-
resents the elements of the vector of dependent variables.
ηrs = PðY1 = r, Y2 = sÞ is the joint probability of the depen-
dent variables. η1 = PðY1 = 1Þ and η2 = PðY2 = 1Þ are the
marginal probabilities of Y1 and Y2, respectively.

Suppose X1, X2,…,Xk are k independent variables, then
the MLR model can be expressed as follows:

ζ1 xið Þ = logit η1 xið Þð Þ = γT1 xi,
ζ2 xið Þ = logit η2 xið Þð Þ = γT2 xi,
ζ3 xið Þ = log ψ1 xið Þð Þ = γT3 xi,

ð2Þ

where xi = 1 X1i X2i ⋯ Xki½ �T is a vector of indepen-
dent variables for i = 1, 2,⋯, n; γT1 = γ01 γ11½ γ21 ⋯ γk1�,
γT2 = γ02 γ12 γ22 ⋯ γk2½ �, and γT3 = γ03 γ13 γ23½
⋯ γk3� are the vectors of regression parameters; η1ðxiÞ is
the marginal probability of Y1i, and η2ðxiÞ is the marginal
probability of Y2i, which are defined as follows [14]:

η1 xið Þ = P Y1i = 1jxið Þ = exp γT1 xi
� �

1 + exp γT1 xi
� � ,

η2 xið Þ = P Y2i = 1jxið Þ = exp γT2xi
� �

1 + exp γT2xi
� � : ð3Þ

ψ1ðxiÞ is called the odds ratio of Y1i and Y2i depends on
xi, which shows that Y1i and Y2i are correlated. The variables
Y1i and Y2i are independent if ψ1ðxiÞ = 1, negatively corre-
lated if ψ1ðxiÞ < 1, and positively correlated if ψ1ðxiÞ > 1
[15, 16].

According to Dale [12] and Palmgren [13], ψ1ðxiÞ is
obtained by

ψ1 xið Þ = η11 xið Þη00 xið Þ
η10 xið Þη01 xið Þ , ψ1 xið Þ ≥ 0, ð4Þ

where

η11 xið Þ = P Y1i = 1, Y2i = 1jxið Þ =
a1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 + a2

p
2 ψ1 xið Þ − 1ð Þ , ψ1 xið Þ ≠ 1

η1 xið Þη2 xið Þ, ψ1 xið Þ = 1

8><>: ,

a1 = 1 + ψ1 xið Þ − 1ð Þ η1 xið Þ + η2 xið Þð Þ,
a2 = −4ψ1 xið Þ ψ1 xið Þ − 1ð Þη1 xið Þη2 xið Þ,

η10 xið Þ = η1 xið Þ − η11 xið Þ,
η01 xið Þ = η2 xið Þ − η11 xið Þ,
η00 xið Þ = 1 − η1 xið Þ − η2 xið Þ + η11 xið Þ:

ð5Þ

3. Geographically Weighted Multivariate
Logistic Regression Model

The GWMLR model is an extension of the MLR model, used
when the regression parameter depends on the spatial weight
of all locations in the study area. The spatial weight, com-
monly used by the kernel functions [11, 17], depends on both
the Euclidean distance and an optimal bandwidth. The
GWMLR model in this study is expressed as follows:

ξ1 xið Þ = logit η∗1 xið Þð Þ = γT1 ui, við Þxi, ð6Þ

ξ2 xið Þ = logit η∗2 xið Þð Þ = γT2 ui, við Þxi, ð7Þ

ξ3 xið Þ = log ψ2 xið Þð Þ = γT3 ui, við Þxi, ð8Þ

Table 1: Probabilities for the dependent variables of the MLR
model.

Y1
Y2 Total

Y2 = 1 Y2 = 0
Y1 = 1 η11 η10 η1

Y1 = 0 η01 η00 1 − η1

Total η2 1 − η2 1
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where xi is a vector of independent variables at location i
for i = 1, 2,⋯, n and γ1ðui, viÞ, γ2ðui, viÞ, and γ3ðui, viÞ are
the vectors of the GWMLR model parameters at location i.
The vectors of independent variables and parameters at
location i are xi = 1 X1i X2i ⋯ Xki½ �T, γT1 ðui, viÞ =
γ01ðui, viÞ γ11ðui, viÞ γ21ðui, viÞ ⋯ γk1ðui, viÞ½ �, γT2 ðui, viÞ =
γ02ðui, viÞ γ12ðui, viÞ γ22ðui, viÞ ⋯ γk2ðui, viÞ½ �, and
γT3 ðui, viÞ = γ03ðui, viÞ γ13ðui, viÞ γ23ðui, viÞ½ ⋯ γk3ðui, viÞ�,
respectively.

η∗1 ðxiÞ and η∗2 ðxiÞ are the marginal probabilities of
dependent variables at location i and are formulated as
follows:

η∗1 xið Þ = exp γT1 ui, við Þxi
� �

1 + exp γT1 ui, við Þxi
� � , ð9Þ

η∗2 xið Þ = exp γT2 ui, við Þxi
� �

1 + exp γT2 ui, við Þxi
� � : ð10Þ

ψ2ðxiÞ is called the odds ratio of dependent variables at
location i and can be determined by

ψ2 xið Þ = η∗11 xið Þη∗00 xið Þ
η∗10 xið Þη∗01 xið Þ , ð11Þ

where

η∗11 xið Þ =
a3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 + a4

p
2 ψ2 xið Þ − 1ð Þ , ψ2 xið Þ ≠ 1

η∗1 xið Þη∗2 xið Þ, ψ2 xið Þ = 1

8>>><>>>: ,

a3 = 1 + ψ2 xið Þ − 1ð Þ η∗1 xið Þ + η∗2 xið Þð Þ,
a4 = −4ψ2 xið Þ ψ2 xið Þ − 1ð Þη∗1 xið Þη∗2 xið Þ,

η∗10 xið Þ = η∗1 xið Þ − η∗11 xið Þ,
η∗01 xið Þ = η∗2 xið Þ − η∗11 xið Þ,
η∗00 xið Þ = 1 − η∗1 xið Þ − η∗2 xið Þ + η∗11 xið Þ:

ð12Þ

4. Model Selection

In this study, the best model was selected using the three
most common information criteria, which are Akaike’s infor-
mation criterion (AIC), the corrected AIC (AICC), and the
Bayesian information criterion (BIC). All three information
criteria formulas are as follows:

AIC = −2L bγ ui, við Þ, i = 1, 2, ::, nð Þ + K , ð13Þ

AICC = −2L bγ ui, við Þ, i = 1, 2, ::, nð Þ + 2nK
n − K − 1

= AIC +
2K K + 1ð Þ
n − K − 1

,
ð14Þ

BIC = −2L bγ ui, við Þ, i = 1, 2, ::, nð Þ + log nð ÞK , ð15Þ

where Lðbγðui, viÞ, i = 1, 2, ::, nÞ is the log-likelihood func-
tion of an estimated model, evaluated at the maximum likeli-
hood estimator of the parameters at all locations ðnÞ; K is the
number of effective parameters in the model at all locations,

defined as K = traceðHÞ with H =XðXTWðui, viÞXÞ−1ðXTW
ðui, viÞÞ, where X and Wðui, viÞ are the matrix of indepen-
dent variables and spatial weighting, respectively. The best
model has the lowest values of AIC, AICC, and BIC.

5. Results and Discussion

5.1. Estimation of the GWMLR Model Parameters. The
parameters of the GWMLR model can be obtained using
the maximum likelihood method. The likelihood function
is as follows:

L γ ui, við Þ, i = 1, 2,⋯, nð Þ

=
Yn
i=1

P Y11i = y11i, Y10i = y10i, Y01i = y01i, Y00i = y00ið Þ

=
Yn
i=1

η∗11i xið Þð Þy11i η∗10i xið Þð Þy10i η∗01i xið Þð Þy01i × η∗00i xið Þð Þy00ið Þ,

ð16Þ

where γðui, viÞ = γT1 ðui, viÞ γT2 ðui, viÞ γT3 ðui, viÞ
� �T is a

vector of the GWMLR model parameters. Let ðη∗rsiðxiÞÞyrsi =
ðη∗rsiÞyrsi for r, s = 0, 1 ; i = 1, 2,⋯, n; then, the likelihood func-
tion in Equation (16) is formulated by

L γ ui, við Þ, i = 1, 2,⋯, nð Þ =
Yn
i=1

η∗11ið Þy11i η∗10ið Þy10i η∗01ið Þy01i η∗00ið Þy00ið Þ:

ð17Þ

The maximum likelihood estimator of the GWMLR
model parameters can be determined bymaximizing the like-
lihood function in Equation (17) or by maximizing the natu-
ral logarithm of the likelihood function (log-likelihood). The
log-likelihood function is given by

ℓ γ ui, við Þ, i = 1, 2,⋯, nð Þ = log L γ ui, við Þ, i = 1, 2,⋯, nð Þð Þ

= 〠
n

i=1
y11i log η

∗
11i + y10i log η

∗
10i + y01i log η

∗
01i + y00i log η

∗
00iy00i log η

∗
00ið Þ:

ð18Þ

Based on the GWR method, the spatial weighting func-
tion is presented as a log-likelihood. Let wij be the spatial
weighting function for each location ðui, viÞ, where wij =wj

ðui, viÞ and i, j = 1, 2,⋯, n. The log-likelihood function is
defined as follows:

L∗ γ ui, við Þð Þ = ℓ γ ui, við Þðð Þwij

= 〠
n

j=1
y11j log η

∗
11j + y10j log η

∗
10j + y01j log η

∗
01j + y00j log η

∗
00j

� �
wij,

ð19Þ
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where wij is a fixed kernel bi-square [16] and formulated by

wij =
1 −

dij
b

	 
2" #2
, dij ≤ b

0, dij > b

8>><>>: , ð20Þ

where dij is the Euclidean distance from i to j, and b is called
an optimal bandwidth for the parameter estimation of the
model at location i. In this study, the optimal bandwidth is
determined by the cross-validation (CV) method [18, 19].
The formula of the CV method in this study is as follows:

CV bð Þ = 〠
n

i=1
〠
1

r=0
〠
1

s=0
yrsi − η∧∗

rs,≠i bð Þ� �2, ð21Þ

where yrsi is the observation of the dependent variables
with category values of Y1 = r and Y2 = s at location i, andbη∗
rs,≠iðbÞ is the estimated value of the joint probabilities of

the dependent variables that have category values of Y1 = r,
Y2 = s, and bandwidth bwith location i omitted from the esti-
mation process. The optimal bandwidth has the lowest value
of CV.

Theorem 1 obtains the maximum likelihood estimator of
the GWMLR model parameters.

Theorem 1. The parameter estimator of γðui, viÞ in the
GWMLR model can be obtained by using the maximum like-
lihood method and iterative procedure with the Newton-
Raphson method, where the gradient vector is gðγðui, viÞÞ
and the Hessian matrix is Hðγðui, viÞÞ.

Proof. Based on the GWMLR model in Equations (6)–(8), let
ξ1 = ξ1ðxiÞ, ξ2 = ξ2ðxiÞ, and ξ3 = ξ3ðxiÞ. Then, ξ =
ξ1 ξ2 ξ3½ �T and η∗ = η∗11 η∗10 η∗01 η∗00½ �T are formed.
We then determine the derivative of ∂ξ/∂η∗. The vector of
η∗ has four elements, whereas the vector of ξ only has three
elements. To obtain a symmetrical matrix of ∂ξ/∂η∗, let ξ0
= ln η∗++ with η∗++ = η∗11 + η∗10 + η∗01 + η∗00. Thus, the vector of
ξ is ξ = ξ0 ξ1 ξ2 ξ3½ �T. Let D = ∂ξ/∂η∗; then, the matrix
of D and the inverse matrix of D are given by

D =

∂ξ0
∂η∗11

∂ξ0
∂η∗10

∂ξ0
∂η∗01

∂ξ0
∂η∗00

∂ξ1
∂η∗11

∂ξ1
∂η∗10

∂ξ1
∂η∗01

∂ξ1
∂η∗00

∂ξ2
∂η∗11

∂ξ2
∂η∗10

∂ξ2
∂η∗01

∂ξ2
∂η∗00

∂ξ3
∂η∗11

∂ξ3
∂η∗10

∂ξ3
∂η∗01

∂ξ3
∂η∗00

26666666666666664

37777777777777775

=

1 1 1 1
1
η∗1

1
η∗1

−
1

1 − η∗1ð Þ −
1

1 − η∗1ð Þ
1
η∗2

−
1

1 − η∗2ð Þ
1
η∗2

−
1

1 − η∗2ð Þ
1
η∗11

−
1
η∗10

−
1
η∗01

1
η∗00

266666666664

377777777775
, ð22Þ

D−1 =

η∗11
η∗11η

∗
01

η∗2Δ

η∗11η
∗
10

η∗1Δ
Δ∗

η∗10
η∗10η

∗
00

1 − η∗2ð ÞΔ −
η∗11η

∗
10

η∗1Δ
−Δ∗

η∗01 −
η∗11η

∗
01

η∗2Δ

η∗01η
∗
00

1 − η∗1ð ÞΔ −Δ∗

η∗00 −
η∗10η

∗
00

1 − η∗2ð ÞΔ −
η∗01η

∗
00

1 − η∗1ð ÞΔ Δ∗

266666666666664

377777777777775
, ð23Þ

where Δ = η∗11η
∗
10η

∗
01η

∗
00/η∗1 ð1 − η∗1 Þη∗2 ð1 − η∗2 ÞΔ∗ and Δ∗ =

ðð1/η∗11Þ + ð1/η∗10Þ + ð1/η∗01Þ + ð1/η∗00ÞÞ−1.

The log-likelihood function in Equation (9) is maximized
by determining the first-order partial derivative of the likeli-
hood function, then equating to zero. The first-order partial
derivative of the log-likelihood function with respect to the
parameters of γðui, viÞ is as follows:

∂L∗ γ ui, við Þð Þ
∂γT1 ui, við Þ = 〠

n

j=1

1
Δ j

y11jη
∗
01j − y01jη

∗
11j

η∗2j
+
y10jη

∗
00j − y00jη

∗
10j

1 − η∗2 j

 !
x jwij,

ð24Þ

∂L∗ γ ui, við Þð Þ
∂γT2 ui, við Þ = 〠

n

j=1

1
Δ j

y11jη
∗
10j − y10jη

∗
11j

η∗1j
+
y01jη

∗
00j − y00jη

∗
01j

1 − η∗1 j

 !
x jwij,

ð25Þ

∂L∗ γ ui, við Þð Þ
∂γT3 ui, við Þ = 〠

n

j=1
Δ∗
j

y11j
η∗11j

−
y10j
η∗10j

−
y01j
η∗01j

+
y00j
η∗00j

 !
x jwij,

ð26Þ
where Δj and Δ∗

j for j = 1, 2,⋯, n in Equation (23).
The details of the first-order partial derivative of the log-

likelihood function with respect to the parameters of γðui, viÞ
in Equations (24)–(26) are presented in the appendix.

The first-order partial derivative of the log-likelihood
with respect to the parameters of γðui, viÞ in Equations
(24)–(26) produces an implicit form. This result shows that
the estimator of the GWMLR model parameters cannot be
obtained analytically and requires a numerical approach.
The numerical approach by the Newton-Raphson method
was used to obtain the maximum likelihood estimator of
the GWMLR model parameters. The Newton-Raphson
method requires the gradient vector and the Hessian matrix,
which are formulated as follows:
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g γ ui, við Þð Þ = ∂L∗ γ ui, við Þð Þ
∂γT1 ui, við Þ

� �T ∂L∗ γ ui, við Þð Þ
∂γT2 ui, við Þ

� �T ∂L∗ γ ui, við Þð Þ
∂γT3 ui, við Þ

� �T" #T
,

ð27Þ

H γ ui, við Þð Þ = −
1
n

g γ ui, við Þð ÞgT γ ui, við Þð Þ� �
: ð28Þ

After obtaining the gradient vector and Hessian matrix,
the Newton-Raphson iteration process is carried out with
the following formula:

γ∧ t+1ð Þ ui, við Þ = γ∧ tð Þ ui, við Þ −H−1 γ∧ tð Þ ui, við Þ
� �

g γ∧ tð Þ ui, við Þ
� �

, i

= 1, 2,⋯, n ; t = 0, 1, 2,⋯,

ð29Þ

where γ∧ðt+1Þðui, viÞ and γ∧ðtÞðui, viÞ are the parameter esti-
mators of bγðui, viÞ on ðt + 1Þ and t iterations, respectively.
H−1ðγ∧ðtÞðui, viÞÞ is the inverse of the Hessian matrix of
γ∧ðtÞðui, viÞ on t iteration and gðγ∧ðtÞðui, viÞÞ is the gradient
vector of γ∧ðtÞðui, viÞ on t iteration. The iteration process in
Equation (29) started from an initial value of γ∧ð0Þðui, viÞ
and stopped at ðt + 1Þ iteration when kγ∧ðt+1Þðui, viÞ − γ∧ðtÞ

ðui, viÞk < ε, where bγðui, viÞ = γ∧ðtÞðui, viÞ and ε is a low pos-
itive number.

5.2. Hypothesis Test. Hypothesis testing on the GWMLR
model parameters was performed and included the similarity
test, simultaneous test, and partial test. The similarity test
was used to find the differences between the MLR and
GWMLRmodels. The simultaneous test was used to simulta-
neously obtain the significant influence of the independent
variables on the dependent variables. The simultaneous test
was also used to obtain at least one of the independent vari-
ables that have a significant influence on the dependent var-
iables. The partial test was used to obtain the partially
significant influence of the independent variables on the
dependent variables.

The similarity test was conducted using the hypotheses:

H0 : γpq ui, við Þ = γpq, i = 1, 2,⋯, n ; p = 1, 2,⋯, k ; q = 1, 2, 3,

ð30Þ

H1 : at least one of γpq ui, við Þ ≠ γpq: ð31Þ

The statistical test is as follows:

V =
ffiffiffi
n

p
1/nð Þ∑n

i=1mið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑n

i=1 mi − �mð Þ2
q , ð32Þ

where

mi = 〠
n

i=1
y11i log

bη∗
11ibη11i

	 

+ y10i log

bη∗
10ibη10i

	 
	
+ y01i log

bη∗01ibη01i
	 


+ y00i log
bη∗
00ibη00i

	 


,

�m =
1
n
〠
n

i=1
mi: ð33Þ

The statistical test in Equation (32) followed an asymp-
totically standard normal distribution. Therefore, the null
hypothesis ðH0Þ in Equation (30) is rejected at the level of
significance ðαÞ when the value of the V statistic in Equation
(32) falls into the rejection region (i.e., jV j > Zα/2).

The next test presented is the simultaneous test. The
hypothesis of this test is formulated as follows:

H0 : γ1q ui, við Þ = γ2q ui, við Þ =⋯ = γkq ui, við Þ = 0, i = 1, 2,⋯, n ; q = 1, 2, 3,

ð34Þ

H1 : at least one of γpq ui, við Þ ≠ 0, i = 1, 2,⋯, n ; p = 1, 2,⋯, k ; q = 1, 2, 3:

ð35Þ

Theorem 2 is presented next for the simultaneous test.

Theorem 2. The statistical test of the hypothesis in the simul-
taneous test is as follows:

G2 = 2〠
n

i=1
y11i log

bη∗
11ibη∗∗
11i

	 

+y10i log

bη∗
10ibη∗∗
10i

	 
�
+y01i log

bη∗
01ibη∗∗
01i

	 

+y00i log

bη∗
00ibη∗∗
00i

	 
�
:

ð36Þ

Proof. The G2 statistic can be obtained by the maximum like-
lihood ratio test method. The initial step of this method
determines the parameters set under the population.

Ω = γpq ui, við Þ, i = 1, 2,⋯, n ; p = 1, 2,⋯, k ; q = 1, 2, 3
n o

:

ð37Þ

Analogously, in Equations (17) and (18), the likelihood
function under the population is as follows:

L Ωð Þ =
Yn
i=1

η∗11ið Þy11i η∗10ið Þy10i η∗01ið Þy01i η∗00ið Þy00ið Þ: ð38Þ

However, the maximum likelihood estimator of the
GWMLR model parameters was obtained in Theorem 1.
Therefore, the maximum log-likelihood function under the
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population is as follows:

log L bΩ� �
=max

Ω
log L Ωð Þ,

= 〠
n

i=1
y11i log bη∗11i + y10i log bη∗10i�

+ y01i log bη∗01i + y00i log bη∗
00iÞ:

ð39Þ

The parameters set under the null hypothesis are

ω = γ01 ui, við Þ, γ02 ui, við Þ, γ03 ui, við Þ ; i = 1, 2,⋯, nf g: ð40Þ

Analogously, in Equations (38) and (39), the likelihood
function under the null hypothesis is

L ωð Þ =
Yn
i=1

η∗∗11ið Þy11i η∗∗10ið Þy10i η∗∗01ið Þy01i η∗∗00ið Þy00ið Þ: ð41Þ

The maximum log-likelihood function under the null
hypothesis is as follows:

log L bωð Þ =max
ω

log L ωð Þ

= 〠
n

i=1
y11i log bη∗∗

11i+y10i log bη∗∗10i+y01i log bη∗∗
01i

�
+ y00i log bη∗

00iÞ,
ð42Þ

where the joint probabilities of bη∗∗11i, bη∗∗10i, bη∗∗
01i, and bη∗∗00i are

obtained by

bη∗∗11i =
a5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a25 + a6

p
2 ψi − 1ð Þ , ψi ≠ 1

bη∗∗1i bη∗∗
2i , ψi = 1

8>>><>>>: ,

bη∗∗10i = bη∗∗1i −bη∗∗11i,bη∗∗01i = bη∗∗2i −bη∗∗11i,bη∗∗00i = 1−bη∗∗
1i −bη∗∗

2i +bη∗∗
11i,

ð43Þ

with a5 = 1 + ðψi−1Þðbη∗∗
1i +bη∗∗

2i Þ, a6 = −4ψiðψi−1Þbη∗∗1i bη∗∗2i ,
ψi = bη∗∗

11ibη∗∗00i/bη∗∗
10ibη∗∗01i, bη∗∗1i = exp ðbγ01ðui, viÞÞ/ð1 + exp ðbγ01ð

ui, viÞÞÞ, and bη∗∗
2i = exp ðbγ02ðui, viÞÞ/ð1 + exp ðbγ02ðui, viÞÞÞ.

Based on the maximum likelihood ratio test method, the
statistical test of the hypothesis in Equation (34) is formu-
lated as follows:

G2 = −2 log λ = −2 log
L bωð Þ
L bΩ� �
24 35 = 2 log L bΩ� �

− log L bωð Þ
h i

= 2 〠
n

i=1
y11i log bη∗11i + y10i log bη∗10i + y01i log bη∗

01i + y00i log bη∗
00i

� �"

−〠
n

i=1
y11i log bη∗∗

11i+y10i log bη∗∗10i+y01i log bη∗∗
01i+y00i log bη∗∗

00i
� �#

= 2 〠
n

i=1
y11i log bη∗

11i− log bη∗∗
11i

� �
+ y10i log bη∗

10i− log bη∗∗10i� ��"

+ y01i log bη∗01i− log bη∗∗
01i

� �
+ y00i log bη∗00i− log bη∗∗

00i
� ���

= 2〠
n

i=1
y11i log

bη∗11ibη∗∗11i
	 


+y10i log
bη∗
10ibη∗∗
10i

	 

+y01i log

bη∗
01ibη∗∗
01i

	 
�
+y00i log

bη∗00ibη∗∗00i
	 
�

:

ð44Þ

The likelihood ratio statistic ðG2Þ in Equation (44) has an
asymptotic chi-square distribution, where the degree of free-
dom is the difference between the number of model parame-
ters under the population and the number of model
parameters under the null hypothesis is v = 3kn. Therefore,
at an α significance level, we reject the null hypothesis when
the G2 value falls into the rejection region (i.e., G2 > χ2

ðα,vÞ).
The last hypothesis test of the GWMLR model parame-

ters is the partial test. The hypothesis is

H0 : γpq ui, við Þ = 0, ð45Þ

H1 : γpq ui, við Þ ≠ 0, i = 1, 2,⋯, n ; p = 1, 2,⋯, k ; q = 1, 2, 3:

ð46Þ
The statistical test for the hypothesis in Equation (45) is

given by

Z =
bγpq ui, við Þ

SE bγpq ui, við Þ
� � , ð47Þ

where SEðbγpqðui, viÞÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðbγpqðui, viÞÞ

q
. dVarðbγpqðui, viÞÞ

is the diagonal elements of −½Hðγ∧ðui, viÞÞ�−1 and Hðbγðui,
viÞÞ is derived in Equation (28). The Z statistic in Equation
(47) has an asymptotic standard normal distribution. There-
fore, the null hypothesis in Equation (45) is rejected when
the value of the Z statistic falls into the rejection region
(i.e., jZj > Zα/2).

5.3. Application. The GWMLR model was applied to real
data, which included the public health development index
(PHDI) and the human development index (HDI) for the
districts/cities in Kalimantan Island, Indonesia, in 2013.
The PHDI describes the quality of health and the progress
of health development of the districts/cities and provinces
in Indonesia. The PHDI is used to prioritize districts/cities

6 Abstract and Applied Analysis



that need assistance in health development [20]. The HDI is
an index that measures the basic dimensions of human devel-
opment in the districts/cities [21].

The PHDI data were provided by the Ministry of Health,
Indonesia. The National Bureau of Statistics Indonesia pro-
vided the HDI data and independent variables. The variables
in this study consist of two dependent variables and two
independent variables. PHDI ðY1Þ and HDI ðY2Þ are depen-
dent variables. The PHDI has two categories: 0 if the PHDI
value of districts/cities is less than the PHDI value of Indone-
sia, and 1 if the PHDI value of districts/cities is greater than
or equal to the PHDI value of Indonesia. The HDI has two
categories: 0 if the HDI value of districts/cities is less than
the HDI value of Indonesia, and 1 if the HDI value of dis-
tricts/cities is greater than or equal to the HDI value of Indo-
nesia. The poverty rate ðX1Þ and economic growth ðX2Þ are
the independent variables. The unit observation is the dis-
tricts/cities in Kalimantan Island, Indonesia, in 2013. The
sample size is 55, consisting of 46 districts and 9 cities. The
computation in this study is performed using MATLAB
and the econometrics toolbox [22].

The implementation of the GWMLRmodel for the PHDI
and HDI of districts/cities in Kalimantan Island began by
creating a 2 × 2 contingency table for the observed frequen-
cies of the dependent variables and for determining their pro-
portion and correlation. The observed frequencies of the
dependent variables are reported in Table 2.

Table 2 shows that 13 districts/cities had PHDI and HDI
values greater than or equal to the PHDI and HDI values of
Indonesia, and 26 districts/cities had PHDI and HDI values
less than the PHDI and HDI values of Indonesia. We also
see that three districts/cities had a PHDI value greater than
or equal to the PHDI value of Indonesia and an HDI value
less than the HDI value of Indonesia. Finally, 13 districts/ci-
ties had a PHDI value less than the PHDI value of Indonesia
and an HDI value greater than or equal to the HDI value of
Indonesia. The odds ratio value of the dependent variables
was 8.6667, which shows that the dependent variables were
positively correlated. Therefore, the dependent variables of
PHDI and HDI were appropriate for the MLR and GWMLR
models.

The parameter estimation obtained a total of 55 GWMLR
models. The optimal bandwidth value of the fixed kernel bi-
square weighting function was 4.8572, with a CV value of
90.3673. The descriptive statistics of the maximum likelihood
estimator values of the 55 GWMLR models for modeling the
PHDI and HDI of districts/cities in Kalimantan Island are
given in Table 3.

The similarity evaluation between theMLR and GWMLR
models was carried out using the statistical test in Equation
(32). The hypothesis was formulated as follows:

H0 : γpq ui, við Þ = γpq, i = 1, 2,⋯, 55 ; p = 1, 2 ; q = 1, 2, 3,

H1 : at least one of γpq ui, við Þ ≠ γpq:

ð48Þ

The statistical test value was 376.0917, and the Zα/2 value
at a 10% significance level was 1.6449. Therefore, the null
hypothesis was rejected, and we concluded that the MLR
and GWMLR models were significantly different.

The next test was the simultaneous test, and the hypoth-
esis was formulated as follows:

H0 : γ1q ui, við Þ = γ2q ui, við Þ = 0, i = 1, 2,⋯, 55 ; q = 1, 2, 3,

H1 : at least one of γpq ui, við Þ ≠ 0, i = 1, 2,⋯, 55 ; p = 1, 2 ; q = 1, 2, 3:

ð49Þ

Table 2: The observed frequencies and proportion of the dependent
variables.

Y1
Y2 Total

Y2 = 1 Y2 = 0
Y1 = 1 13 (0.236) 3 (0.055) 16 (0.291)

Y1 = 0 13 (0.236) 26 (0.473) 39 (0.709)

Total 26 (0.472) 29 (0.528) 55 (1)

Table 3: The descriptive statistics of the maximum likelihood
estimator values for the 55 geographically weighted multivariate
logistic regression models.

Parameter Minimum Maximum Mean Standard deviation

γ01 -0.1016 0.1741 -0.0003 0.0441

γ11 1.1851 0.1153 -0.0958 0.1697

γ21 -0.5212 0.0000 -0.1244 0.0997

γ02 -0.1413 0.0011 -0.0143 0.0322

γ12 -0.7111 0.1190 0.0056 0.1045

γ22 -0.2609 0.0034 -0.0413 0.0753

γ03 -0.0018 0.3616 0.0400 0.1004

γ13 -0.0067 1.7864 0.1959 0.4863

γ23 -0.0099 1.7867 0.1874 0.4701

Table 4: Parameter estimates, standard errors, and statistical test
values of the partial test for the GWMLR model of Lamandau
District.

Parameter Estimate Standard error Z

γ01 -0.0184 0.0080 -2.3017∗

γ11 -0.1368 0.0596 -2.2963∗

γ21 -0.1185 0.0506 -2.3424∗

γ02 -0.0023 0.0010 -2.3167∗

γ12 0.0052 0.0026 2.0172∗

γ22 -0.0114 0.0057 -2.0089∗

γ03 0.0013 0.0008 1.7245∗

γ13 0.0132 0.0076 1.7281∗

γ23 0.0078 0.0048 1.6245
∗Indicates significance at a 10% level.

7Abstract and Applied Analysis



The likelihood ratio statistic value was 401.6335, and the
χ2
ð0:1;330Þ value was 363.3222. This result indicated that the

likelihood ratio was statistically significant at a 10% signifi-
cance level. Therefore, the null hypothesis was rejected, and
we concluded that the poverty rate and economic growth
were simultaneously significantly influencing the PHDI and
HDI of the districts/cities in Kalimantan Island.

The partial test was used to obtain the independent vari-
ables that significantly influence the PHDI and HDI of the
districts/cities in Kalimantan Island. We show the results of
the parameter estimation, standard errors, and statistical test
values of the partial test for the GWMLRmodel of Lamandau
District in Table 4.

The hypothesis of the partial test for the Lamandau
District GWMLR model parameters was as follows:

H0 : γpq u21, v21ð Þ = 0,

H1 : γpq u21, v21ð Þ ≠ 0, p = 1, 2 ; q = 1, 2, 3:
ð50Þ

The statistical test value of the estimated parameter value
of γ23ðu21, v21Þ in Table 4 was not statistically significant at a
10% significance level. Therefore, we concluded that the
economic growth was not a partially significant influence
on the PHDI and HDI of Lamandau District.

The GWMLR model of Lamandau District is expressed
as follows:

bξ1 xð Þ = −0:0184 − 0:1368X1 − 0:1185X2,bξ2 xð Þ = −0:0023 + 0:0052X1 − 0:0114X2,bξ3 xð Þ = 0:0013 + 0:0132X1 + 0:0078X2:

ð51Þ

The results of the estimating and hypothesis testing of the
GWMLRmodel parameters show that not all of the indepen-
dent variables had a significant influence on the PHDI and
HDI of the districts/cities in Kalimantan Island. Therefore,
a significant number of parameters differed for each district/-
city. The groupings of the independent variables that had a
significant influence on the PHDI and HDI of districts/cities
are presented in Table 5.

The performance of the GWMLR model was evaluated
using the AIC, AICC, and BIC in Equations (13)–(15). The

values of the AIC, AICC, and BIC for the MLR and GWMLR
models are presented in Table 6.

The AIC, AICC, and BIC values of the GWMLRmodel in
Table 6 are lower compared with the MLR model. This result
shows that the GWMLR model is more accurate than the
MLR model. Therefore, the GWMLR model is best for
modeling relationships between the dependent variables
(the PHDI and HDI) and the independent variables (poverty
rate and the economic growth) of districts/cities in Kaliman-
tan Island, Indonesia, in 2013.

6. Conclusions

The GWMLR model is capable of evaluating the relation-
ships between two correlated categorical dependent variables
with one or more independent variables that depend on the
spatial weighting function at each location in the study area.
The spatial weighting function is an essential tool for param-
eter estimation and hypothesis testing in the modeling of
GWMLR. Therefore, the fixed kernel bi-square was used, as
it relates to the Euclidean distance and optimal bandwidth.
The cross-validation method was applied to obtain the
optimal bandwidth. The GWMLR model parameters were
estimated using the maximum likelihood method. The max-
imum likelihood estimators have an implicit form and were
obtained by the Newton-Raphson method. Hypothesis test-
ing of the GWMLR model included a similarity test, simulta-
neous test, and partial test. The similarity test was used to
obtain a significant difference between the MLR and
GWMLR models. The statistical test of the similarity test
had an asymptotic standard normal distribution. The

Table 5: Grouping of the districts/cities based on the significant variables.

Districts/cities Total Variable

Lamandau, Banjarmasin City, and Banjarbaru City 3 Poverty rate

Barito Timur, Kotabaru, Tapin, Hulu Sungai Selatan, Hulu Sungai Utara, Tabalong, Balangan, Paser, and
Kutai Barat

9 Economic growth

Sambas, Kapuas Hulu, Sekadau, Melawi, Kayong Utara, Kubu Raya, Pontianak City, Singkawang City,
Kotawaringin Barat, Kotawaringin Timur, Kapuas, Barito Selatan, Barito Utara, Sukamara, Tanah Laut,
Hulu Sungai Selatan, and Tanah Bumbu

17
Poverty rate and
economic growth

Bengkayang, Landak, Pontianak, Sanggau, Ketapang, Sintang, Seruyan, Katingan, Pulang Pisau, Gunung
Mas, Murung Raya, Palangkaraya City, Banjar, Barito Kuala, Kutai Kartanegara, Kutai Timur, Berau,
Malinau, Bulungan, Nunukan, Penajam Paser Utara, Tana Tidung, Balikpapan City, Samarinda City,
Tarakan City, and Bontang City

26 None

Table 6: The Akaike’s information criterion (AIC), corrected AIC
(AICC), and Bayesian information criterion (BIC) values of the
multivariate logistic regression (MLR) and geographically
weighted MLR (GWMLR) models.

Model AIC AICC BIC

MLR 525.6258 529.6258 543.6918

GWMLR 137.8512 134.2875 143.8732
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simultaneous test was used to obtain the simultaneously sig-
nificant influence of the independent variables on the depen-
dent variables. The statistical test of the simultaneous test had
an asymptotic chi-square distribution. The partial test was
used to obtain the partially significant influence of the inde-
pendent variables on the dependent variables. The statistical
test of the partial test had an asymptotic standard normal dis-
tribution. The performance of the GWMLR model was eval-
uated with the factors influencing the public health
development index and the human development index of
districts/cities in Kalimantan Island, Indonesia, in 2013.
The GWMLR model was found to be better than the MLR
model in this context.

Some improvements and future work on modeling of
GWMLR are possible. Firstly, the spatial weighting function
used in this study involves only kernel bi-square. Other spa-
tial weighting functions of kernel functions could be used to
further the GWMLR model performance, such as the Gauss-
ian, exponential, or tri-cube functions. Secondly, this study is
limited to two dependent variables that only have two catego-
ries. Having more dependent variables with more than two
categories, which could be either multinomial or ordinal,
should also be considered for future work.

Appendix

The first-order partial derivative of the log-likelihood
function with respect to the parameters of γðui, viÞ is as
follows:

∂L∗ γ ui, við Þð Þ
∂γT1 ui, við Þ = 〠

n

j=1

y11j
η∗11j

∂η∗11j
∂γT1 ui, við Þ +

y10j
η∗10j

∂η∗10j
∂γT1 ui, við Þ

 

+
y01j
η∗01j

∂η∗01j
∂γT1 ui, við Þ +

y00j
η∗00j

∂η∗00j
∂γT1 ui, við Þ

!
wij = 〠

n

j=1

y11j
η∗11j

∂η∗11j
∂ξ1

 

� ∂ξ1
∂γT1 ui, við Þ +

y10j
η∗10j

∂η∗10j
∂ξ1

∂ξ1
∂γT1 ui, við Þ +

y01j
η∗01j

∂η∗01j
∂ξ1

∂ξ1
∂γT1 ui, við Þ

+
y00j
η∗00j

∂η∗00j
∂ξ1

∂ξ1
∂γT1 ui, við Þ

!
wij = 〠
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j=1

y11j
η∗11j

η∗11jη
∗
01j

η∗2jΔj
x j

 

+
y10j
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∗
00j
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Δ j

x j −
y01j
η∗01j

η∗11jη
∗
01j

η∗2jΔ j
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+ −
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Δ j
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1Awij = 〠
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1
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1
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x jwij

ðA:1Þ

where Δj, j = 1, 2,⋯, n in Equation (23).

∂L∗ γ ui, við Þð Þ
∂γT2 ui, við Þ = 〠
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where Δj, j = 1, 2,⋯, n in Equation (23).
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where Δ∗
j , j = 1, 2,⋯, n in Equation (23).
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