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This study investigates the geographically weighted multivariate logistic regression (GWMLR) model, parameter estimation, and
hypothesis testing procedures. The GWMLR model is an extension to the multivariate logistic regression (MLR) model, which
has dependent variables that follow a multinomial distribution along with parameters associated with the spatial weighting at
each location in the study area. The parameter estimation was done using the maximum likelihood estimation and Newton-
Raphson methods, and the maximum likelihood ratio test was used for hypothesis testing of the parameters. The performance
of the GWMLR model was evaluated using a real dataset and it was found to perform better than the MLR model.

1. Introduction

Over the past decade, most research on geographically
weighted regression (GWR) models has been focused on
applications that contain two or more correlated responses
(multivariate). Harini et al. [1, 2] introduced the multivariate
GWR (MGWR) model and demonstrated the parameter esti-
mation and hypothesis test procedures using the restricted
maximum likelihood estimation (RMLE) and maximum
likelihood ratio test (MLRT) methods, respectively. The form
and properties of the estimated errors variance-covariance
parameters of the MGWR model using the MLE and
weighted least squares methods were investigated [3].
Triyanto et al. [4, 5] introduced the geographically weighted
multivariate Poisson regression (GWMPR) model. The esti-
mator of the GWMPR model parameters was obtained
through the MLE with the Newton-Raphson iterative
method, and the test statistic for hypothesis tests was deter-
mined by the MLRT method. Suyitno et al. [6] discussed
the estimation of the geographically weighted trivariate Wei-
bull regression (GWTWR) model using the MLE and
Newton-Raphson methods. The geographically weighted
multivariate t regression (GWMtR) model was introduced

by Sugiarti et al. [7]. The MLE method and the expectation-
maximization algorithm were applied to estimate the
GWMIR model parameters. In [8], a new method to deter-
mine model conformity between the multivariate nonpara-
metric truncated spline GWR model and the multivariate
nonparametric truncated spline (global regression) was
employed.

The responses of the multivariate GWR models in previ-
ous research were in the form of quantitative data. However,
in many applications within various fields of research, the
responses include not only quantitative data but also qualita-
tive (categorical) data. Therefore, in this study, we propose
the geographically weighted multivariate logistic regression
(GWMLR) model. The GWMLR model is the extension of
the geographically weighted bivariate logistic regression
(GWBLR) proposed by Fathurahman et al. [9]. The GWMLR
model has been developed from the geographically weighted
logistic regression (GWLR) model proposed by Atkinson
et al. [10]. The GWLR model is a combination of the GWR
model [11] and the binary logistic regression model. The
GWMLR model in this study is used to explain the spatial
associations between two correlated categorical dependent
variables with one or more independent variables, where
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each of the dependent variables has two categories. Similar to
the methods in the works of Harini et al. [2], Triyanto et al.
[4, 5], Suyitno et al. [6], and Sifriyani et al. [8], the MLE
and MLRT methods were used in the modeling and applying
of the GWMLR model. The MLE method was used to esti-
mate the parameters, and the statistical test for the signifi-
cance of the parameters was determined by the MLRT
method. The GWMLR model performance was evaluated
using the factors that influence the public health develop-
ment index and human development index of districts and
cities in Kalimantan Island, Indonesia.

2. Materials and Methods

2.1. Multivariate Logistic Regression Model. A multivariate
logistic regression (MLR) explains the relationship between
two or more correlated categorical dependent variables with
one or more independent variables. In this study, the MLR
model had two correlated categorical dependent variables,
and each dependent variable had two categories. Let Y, and
Y, be the two dependent variables. Y, and Y, each can have
one of the two values (0 or 1). Lety =[Y,, Y}, Yy, YOO]T bea
vector of dependent variables of the MLR model. The ele-
ments of y have the probabilities of #,,, #,0, #,;> and 7y,
respectively, which are presented in Table 1.

Following Dale [12] and Palmgren [13], y follows a
multinomial distribution with the joint probability mass
function:

1 1

P(Y1 =y Y10 =210 Yor = Yo Yoo = Yoo) = HH’ﬁs"’

(1)

where 0<7,,<1, 1,5=0,1, y,,=0,1, yoo=1-y,; =y~
Yor» and 1o =1-#, —#, +n,;. v and s are the values of
the dependent variables. y,, is the value of Y, which rep-
resents the elements of the vector of dependent variables.
1,,=P(Y,=rY,=s) is the joint probability of the depen-
dent variables. #, =P(Y,=1) and #,=P(Y,=1) are the
marginal probabilities of Y, and Y,, respectively.

Suppose X, X,,..., X} are k independent variables, then
the MLR model can be expressed as follows:

£, (x) = logit
(5 (x;) =logit
(53(x;) =log (v, (x;)) = Y;FXi’

m(x;) = Y?Xv
(

(
(n,(x)) = Yng (2)

wherex;=[1 X, X, X, ]" is a vector of indepen-
dent variables for i=1,2,,m ¥{ = [y, Y11 Y21 = Yiib
:=[Ve Yo Y2 Vel and y3=[ye s ¥
-+ 5] are the vectors of regression parameters; 7, (X;) is
the marginal probability of Y ;, and #,(x;) is the marginal
probability of Y,,, which are defined as follows [14]:
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TaBLE 1: Probabilities for the dependent variables of the MLR
model.

Y, Y,=1 Y2 Y,=0 Total
Y, = oW Mo M
Y, = No oo L=
Total 1, 1-1, 1

_ exp (Y?Xi)

m (%) =P(Yy;=1]x;) = 1+exp (yix;)’
1
N 3)
exp (szi)

le(xz) ( 2i |Xz) 1+eXp (Y"zfxi)

v, (x;) is called the odds ratio of Y; and Y,; depends on
x;, which shows that Y; and Y, are correlated. The variables
Y,; and Y,; are independent if y, (x;) = 1, negatively corre-
lated if v, (x;) <1, and positively correlated if y,(x;)>1
[15, 16].

According to Dale [12] and Palmgren [13], y,(x;) is
obtained by
_ 111 (%i)Mo (%)

’710(’(-)1101(:.) ¥ (%) 20, (4)

v (x;)

where

My (%) =P(Yy; =1, Yy = 1]x;) = %’T@’%(XO ? 17
M (X)), (%), vy (x;) = 1
ay =1+ (v, (x) = 1) (1, (x;) +1m,(x:)5
ay = 4y, (x;) (W (x;) = 1), (%), (%),
M10(Xi) = 1y (%;) = 1131 (%)
Moy (Xi) = 11,(%;) = 1111 (X3)>
Moo (Xi) = 1 =11y (X;) = 1, (X;) + 71y (X))

3. Geographically Weighted Multivariate
Logistic Regression Model

The GWMLR model is an extension of the MLR model, used
when the regression parameter depends on the spatial weight
of all locations in the study area. The spatial weight, com-
monly used by the kernel functions [11, 17], depends on both
the Euclidean distance and an optimal bandwidth. The
GWMLR model in this study is expressed as follows:

&, (x;) = logit (75 (x;)) = vy (4 v)%;» (6)
&, (x;) =logit (15 (x;)) = ¥; (13> v;)X;s (7)
&(x;) =log (v, (%)) = v3 (4 v;)X;» (8)
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where x; is a vector of independent variables at location i
for i=1,2,---,n and y, (u;, v;), y,(u; v;), and y;(u;, v;) are
the vectors of the GWMLR model parameters at location i.
The vectors of independent variables and parameters at

location i are x;=[1 X, X, - in]T, Yi(u,v,) =
[Vor (i Vi) Viy (i i) Yoy (s vi) = ypq (3 v) ) Y;(”i’ V)=
(Yoo (upvi)  yi(upvi) vyp(upv) -+ Yio(upv;)], and
YE(”D Vi) = [Vos (i Vi) Vis(uivi) Yos (i vi) o yis(up vi)s
respectively.

ni(x;) and #;(x;) are the marginal probabilities of
dependent variables at location i and are formulated as
follows:

exp (YT(”# Vi)xi) 9)

(%) = 1 +exp (Y?(”i) Vi)xi) ’

exp (Y, (4 v;)x;) (10)

05 = T exp (v (g )

¥, (x;) is called the odds ratio of dependent variables at
location i and can be determined by

()
V(%) ﬂTO(Xz‘)nSl(xi)’ an
where
a; —+/a:+a,
oz =1’ v, (x;) #1
’,Iikl(xi): 2(1//2( z) 1) ,
1y (%) (%,)> 5 (i) =
=1+ (s - D) ), ()
ay = =4y, (x;) (v, (x;) = D)y ()15 (%3)
Mo (X:) =1y (X;) = 117, (%)
Moy (X;) = ’72( i) =1 (%)

oo (Xi) = 1 =171 (x;) -

4. Model Selection

1, (%:) + 11 (X3)-

In this study, the best model was selected using the three
most common information criteria, which are Akaike’s infor-
mation criterion (AIC), the corrected AIC (AICC), and the
Bayesian information criterion (BIC). All three information
criteria formulas are as follows:

AIC:—ZS(?(L{# vi)xi: 1’2‘)"’”) +K’ (13)

2nK

AICC=-2Z(Y(upv,),i=1,2,.n) + ———
(¥ (v Ry g (14)

2K(K+1)
n-K-1’

BIC = 22( (u;,

=AIC+

v;),i=1,2,.,n) +log (n)K,  (15)

where £ (Y(u;,v;),i=1,2,.,n) is the log-likelihood func-
tion of an estimated model, evaluated at the maximum likeli-
hood estimator of the parameters at all locations (n); K is the
number of effective parameters in the model at all locations,
defined as K = trace(H) with H=X(X"W(u,, v)X) " (XTW
(u;,v,)), where X and W(u;, v;) are the matrix of indepen-
dent variables and spatial weighting, respectively. The best
model has the lowest values of AIC, AICC, and BIC.

5. Results and Discussion

5.1. Estimation of the GWMLR Model Parameters. The
parameters of the GWMLR model can be obtained using
the maximum likelihood method. The likelihood function
is as follows:

L(y(upvi),i=1,2, 0, m)

n
= HP(Ylli = Y11 Y10i = Y100 Yo1i = Yoo Yooi = Yoor)
i=1

= H 1 (%)) (M30;(%0) )™ (o33 (%:)) " X (Mg0i (1))

(16)

where y(u,v,) = [y (u,v) Yi(upv) Vi(upv)]' s
vector of the GWMLR model parameters. Let (qm( x;))r =
(n2;) forr,s=0,15i=1,2, -, n; then, the likelihood func-
tion in Equation (16) is formulated by

n

n)= H((’?Tli)y“‘(’ﬁo,‘)ym‘ (M61:)"" (M50:)™)-
(17)

The maximum likelihood estimator of the GWMLR
model parameters can be determined by maximizing the like-
lihood function in Equation (17) or by maximizing the natu-
ral logarithm of the likelihood function (log-likelihood). The
log-likelihood function is given by

L(y(u;v;),i=1,2, -,

e(y(upv;),i=1,2,---,n) =log (L(y(u; v;),i=1,2,---, 1))
n
= Z()’ni log 7171; + Y101 108 110 + Yo1; 108 o1 + Yooi 108 M0V 00i 108 Hoo:)-
i=1
(18)

Based on the GWR method, the spatial weighting func-
tion is presented as a log-likelihood. Let w;; be the spatial

weighting function for each location (u;,v;), where w;; = Ww;

ij = Wi
(u;,v;) and i,j=1,2,---,n. The log-likelihood function is
defined as follows:

L*(y(up vi)) = (8(y(u Vi))wij
= z (ynj 1og 1771 + Y107 108 #15; + Yo1; 108 710y + Yoo; 108 ’7301') Wij»

7 (19)



where w;; is a fixed kernel bi-square [16] and formulated by

1
d.\*
1- <”> ,d;<b
’ b : (20)

0,d;>b

where d;; is the Euclidean distance from i to j, and b is called
an optimal bandwidth for the parameter estimation of the
model at location i. In this study, the optimal bandwidth is
determined by the cross-validation (CV) method [18, 19].
The formula of the CV method in this study is as follows:

VD)= Y Y Y (a-muu®)s @D

where y,; is the observation of the dependent variables
with category values of Y, =r and Y, =s at location i, and
71,.4i() is the estimated value of the joint probabilities of
the dependent variables that have category values of Y, =1,
Y, =5, and bandwidth b with location i omitted from the esti-
mation process. The optimal bandwidth has the lowest value
of CV.

Theorem 1 obtains the maximum likelihood estimator of
the GWMLR model parameters.

Theorem 1. The parameter estimator of y(u;v;) in the
GWMLR model can be obtained by using the maximum like-
lihood method and iterative procedure with the Newton-
Raphson method, where the gradient vector is g(y(u;,v;))
and the Hessian matrix is H(y(u;, v;)).

Proof. Based on the GWMLR model in Equations (6)-(8), let
§=8(x), &=&(x), and & =& (x;). Then, &=
* * * * * T

(& & &' andn"=[n;, njy n5 1G] are formed.
We then determine the derivative of 0§/0n*. The vector of
n* has four elements, whereas the vector of § only has three
elements. To obtain a symmetrical matrix of 0&/dn*, let &,
=In#n;, with 117, =5}, + 1], + 1o, + Hoo- Thus, the vector of
EisE=[& & & & . Let D=0E0n"; then, the matrix
of D and the inverse matrix of D are given by

[0&, 0& 0& 0&,
oy ony,  Ong Oy
o0&, o0& 0 0¢
ony O, Ong  ongg
o0&, o0& 0&, &,
oy oMy oM O
0&, 0&, o0&, 0&,

L oMy Omyy  Ongr Ongo
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1 1 1 17
1 1 1 1
1 "y (I-%7)  (1-77)
=11 1 1 R , (22)
o (1-n3) n (1-13)
1 1 1 1
L75 o o1 1160 d
[ . M Mo1 Mo « |
A
i 74 nA
% M1oM0o Mo *
1110 * - * _A
1-15)A A
D! = ( *’722 *”11* ’ (23)
% M1t Mo1Moo *
- “A
T TTpa -gpa
. 1Moo Ho1Moo .
- - A
o Ta-ma Ta-na 7
where A= 15,5y Moo/ 13 (1= ) (1= 15) A" and A" =
((Umiy) + (Unio) + (Ungy) + (Ung,))

The log-likelihood function in Equation (9) is maximized
by determining the first-order partial derivative of the likeli-
hood function, then equating to zero. The first-order partial
derivative of the log-likelihood function with respect to the
parameters of y(u;, v;) is as follows:

oL™( Zn:i Yoy~ YoiMj + Y10i1100j ~ Yooi"Tioj _—
aYI( ) 4 M3 1 =15 Y
(24)
oL™( i 1 (Y] = Y10y, . YoiM00; = Yooi'lorj .
ay2 (“vV) = 4, i 1-7;; Wij»
(25)
oL*( iA )’11;_@_@+)’00] _—
* >
aYa( =1 My Mo Moy Mooj T

(26)

where A]- and A]’-‘ forj=1,2,--,

The details of the first-order partial derivative of the log-
likelihood function with respect to the parameters of y(u;, v;)
in Equations (24)—(26) are presented in the appendix.

The first-order partial derivative of the log-likelihood
with respect to the parameters of y(u;,v;) in Equations
(24)-(26) produces an implicit form. This result shows that
the estimator of the GWMLR model parameters cannot be
obtained analytically and requires a numerical approach.
The numerical approach by the Newton-Raphson method
was used to obtain the maximum likelihood estimator of
the GWMLR model parameters. The Newton-Raphson
method requires the gradient vector and the Hessian matrix,
which are formulated as follows:

n in Equation (23).
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o= | T s )] L (vl )] O () T
vl v) H ay?(ui,vi>} {av;f(u,-,m] {aﬁ(ui,v,-)} ’
(27)

1
H(y(u,v;)) = u [g(\'(“i’ Vi))gT(Y(ui’ Vi))]' (28)

After obtaining the gradient vector and Hessian matrix,
the Newton-Raphson iteration process is carried out with
the following formula:

yArHy (upvy) = YA (wy, v;) —

=12,

H! (y/\(t) (1,

sn3t=0,1,2, -,

Vz‘))g<Y/\(t)(”i’ Vi)>’i

(29)

v;) and yA® (u;, v;) are the parameter esti-
mators of y(u;,v;) on (t+1) and ¢ iterations, respectively.
H ' (yAY(u;, ;) is the inverse of the Hessian matrix of
yA® (u;, v;) on t iteration and g(yA" (u;, v,)) is the gradient
vector of y/\m(ui, v;) on t iteration. The iteration process in
Equation (29) started from an initial value of yA(® (u;, v,)
and stopped at (¢ + 1) iteration when [|[yA!+) (u;, v;) — yA®)
(u;,v;)|| < & where ¥ (u;, v;) = yA®¥ (u;, v;) and € is a low pos-
itive number.

where yAt+D) (u,

5.2. Hypothesis Test. Hypothesis testing on the GWMLR
model parameters was performed and included the similarity
test, simultaneous test, and partial test. The similarity test
was used to find the differences between the MLR and
GWMLR models. The simultaneous test was used to simulta-
neously obtain the significant influence of the independent
variables on the dependent variables. The simultaneous test
was also used to obtain at least one of the independent vari-
ables that have a significant influence on the dependent var-
iables. The partial test was used to obtain the partially
significant influence of the independent variables on the
dependent variables.
The similarity test was conducted using the hypotheses:

H,: ypq(u,-,vi) :ypq,i: L2, n;p=1,2,---,k;q=1,2,3,
(30)
H, : atleastoneof y,, (1, v;) #V,,- (31)
The statistical test is as follows:
1 "o,
V: \/ﬁ(( /n)zl=lm ) , (32)

V WUm)EL (m, = n)?

where

m; = Z()’nl log ( 111) + Y10 10g <11101)
o1 11 M 10i
+ Yo1; log <%) + Yoo 10g <%>>’
o1i 00
— 33
=L ym, (33)

The statistical test in Equation (32) followed an asymp-
totically standard normal distribution. Therefore, the null
hypothesis (H,) in Equation (30) is rejected at the level of
significance («) when the value of the V statistic in Equation
(32) falls into the rejection region (i.e., |V| > Z,,).

The next test presented is the simultaneous test. The
hypothesis of this test is formulated as follows:

Ho : pyq(is vi) = Yo (i vi) = - = qu(“i) v)=0,i=1,2,--,n;9=1,2,3,
(34)
H,: atleastoneofypq(ui, v)#0,i=1,2,--,n;p=1,2,--,k;9=1,2,3.
(35)

Theorem 2 is presented next for the simultaneous test.

Theorem 2. The statistical test of the hypothesis in the simul-
taneous test is as follows:

ZZ |:y111 log (/ﬁ**) +y101 lOg (in@)

11i 10i
+Y;; log (gﬂ: ) +Ygo; 10g (ggefﬂ -
01i 00i

Proof. The G? statistic can be obtained by the maximum like-
lihood ratio test method. The initial step of this method
determines the parameters set under the population.

vi),i:1,2,-~-,n;p:1,2,~--,k;q:1,2,3}.

(37)

Q= {qu(”zv

Analogously, in Equations (17) and (18), the likelihood
function under the population is as follows:

n

L(Q) = H((’ﬁu)ym (300 (Mo1)™™ (M60:)™™)- (38)

i=1

However, the maximum likelihood estimator of the
GWMLR model parameters was obtained in Theorem 1.
Therefore, the maximum log-likelihood function under the



population is as follows:

log L(f))

=max log L(Q),

M=b

()’111 log 777,; + Y10 log 71g;

]
—_

+ Yo1; 108 Ty + Yoo; 108 Tog;)-
The parameters set under the null hypothesis are

@ = {Yg; (Up> Vi)> Yoo (> Vi)> Yos (o vi) 51 =1,2, -+, ). (40)

Analogously, in Equations (38) and (39), the likelihood
function under the null hypothesis is

n

L(w) = [T(Cm)™ (o) (o)™ (mai)™)- (41)

i=1

The maximum log-likelihood function under the null
hypothesis is as follows:

log L(@) = max log L(w)

Mxe

(ylll log ’1111+y101 lOg 77101+y011 lOg ’7011

I
—_

+ Yooi 10g ﬁ;@i)’
(42)

where the joint probabilities of 7}, 7 1o» o1 and 7g,; are
obtained by

as —+/at + ag

> #1

o) 2y Y
i = »

/\**/\**

21 ’I//l (43)

ANk ok Ak ok Ak ok
M10i = i M
AN K Ak ok ANk K
Hovi = M M
ANk ok Ak ok Ak ok Ak ok
Mooi = 1=M1; =M 110

kk o~k ko koK

)(/’7\11 +}721*)’ g = _41//1(1//1 )1111 2i°
(Y() (upv;))/(1+exp (Ym(
vi))/(1+exp (Yo, (4 1))

with a; =1+ (y,-
sk o~k Nk

1// 7111171001/’7101’7311’ ’711 =
Uj Vz)))’ and ’721 =exp ()}02( U

Based on the maximum likelihood ratio test method, the
statistical test of the hypothesis in Equation (34) is formu-
lated as follows:
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G*=-2log A=-2log |:L((z)):| [logL< >—logL( )]

@
t

(}’111 10g 711, + ¥10; 108 T10; + Yo1: 108 Tgy; + Yooi 10g ’7001)
=2

M= s

()’111 log 77 ’711;"’)’101 log 77 '710;‘*)’01; log 77 ’701{*)’00; log ’700;)}

el
M:.l

Ui
—_

()’111(108 1y~ log ’711;) *+ Y 10i (log 110 log ’1101)

+)’01i(1°g 7o~ log ﬁ;;) * Yooi (108 T~ log ﬁ;&))}
=2 Z {)’111 log <Ail*t) +y10; log (z**) +Yo1; log (221*1)
i=1 M1 M10i Moui

o (3]
00i

The likelihood ratio statistic (G?) in Equation (44) has an
asymptotic chi-square distribution, where the degree of free-
dom is the difference between the number of model parame-
ters under the population and the number of model
parameters under the null hypothesis is v = 3kn. Therefore,
at an « significance level, we reject the null hypothesis when
the G? value falls into the rejection region (i.e., G* > X%zx,v))'

The last hypothesis test of the GWMLR model parame-
ters is the partial test. The hypothesis is

(44)

HO : qu(ui’ vi) =0, (45)

Hy oy (upvi) #0,i=1,2,--,n5p=1,2,--,k;9=1,2,3.

(46)

The statistical test for the hypothesis in Equation (45) is
given by

v U, V;
Z — yf)\q( 1 l) , (47>
SE(T (14
where SE(?pq(ui’ v;)) = V‘?’(?pq(”i’ v;))- \//a\r@pqwzﬁ Vi)

is the diagonal elements of —[H(yA(u;, v;))]”" and H(y(u,,
v;)) is derived in Equation (28). The Z statistic in Equation
(47) has an asymptotic standard normal distribution. There-
fore, the null hypothesis in Equation (45) is rejected when
the value of the Z statistic falls into the rejection region
(ie. |Z]>Z,).

5.3. Application. The GWMLR model was applied to real
data, which included the public health development index
(PHDI) and the human development index (HDI) for the
districts/cities in Kalimantan Island, Indonesia, in 2013.
The PHDI describes the quality of health and the progress
of health development of the districts/cities and provinces
in Indonesia. The PHDI is used to prioritize districts/cities
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TaBLE 2: The observed frequencies and proportion of the dependent
variables.

Y,

TaBLE 3: The descriptive statistics of the maximum likelihood
estimator values for the 55 geographically weighted multivariate
logistic regression models.

Y, Y,=1 Y,=0 Total Parameter Minimum Maximum Mean Standard deviation
Y, = 13 (0.236) 3 (0.055) 16 (0.291) Yo -0.1016 0.1741 -0.0003 0.0441
Y, = 13 (0.236) 26 (0.473) 39 (0.709) Y1 1.1851 0.1153 -0.0958 0.1697
Total 26 (0.472) 29 (0.528) 55 (1) Y2 -0.5212 0.0000  -0.1244 0.0997
Yo2 -0.1413 0.0011 -0.0143 0.0322
Y12 -0.7111 0.1190 0.0056 0.1045
tha.t need assistance in health flevglopmgnt [20]. The HDI is Voo 0.2609 00034  -0.0413 0.0753
an index that measures the basic dimensions of human devel-
opment in the districts/cities [21]. Yo3 -0.0018 0.3616  0.0400 0.1004
The PHDI data were provided by the Ministry of Health, Y13 -0.0067 1.7864  0.1959 0.4863
Indonesia. The National Bureau of Statistics Indonesia pro- Pas -0.0099 17867  0.1874 0.4701

vided the HDI data and independent variables. The variables
in this study consist of two dependent variables and two
independent variables. PHDI (Y,) and HDI (Y,) are depen-
dent variables. The PHDI has two categories: 0 if the PHDI
value of districts/cities is less than the PHDI value of Indone-
sia, and 1 if the PHDI value of districts/cities is greater than
or equal to the PHDI value of Indonesia. The HDI has two
categories: 0 if the HDI value of districts/cities is less than
the HDI value of Indonesia, and 1 if the HDI value of dis-
tricts/cities is greater than or equal to the HDI value of Indo-
nesia. The poverty rate (X;) and economic growth (X,) are
the independent variables. The unit observation is the dis-
tricts/cities in Kalimantan Island, Indonesia, in 2013. The
sample size is 55, consisting of 46 districts and 9 cities. The
computation in this study is performed using MATLAB
and the econometrics toolbox [22].

The implementation of the GWMLR model for the PHDI
and HDI of districts/cities in Kalimantan Island began by
creating a 2 x 2 contingency table for the observed frequen-
cies of the dependent variables and for determining their pro-
portion and correlation. The observed frequencies of the
dependent variables are reported in Table 2.

Table 2 shows that 13 districts/cities had PHDI and HDI
values greater than or equal to the PHDI and HDI values of
Indonesia, and 26 districts/cities had PHDI and HDI values
less than the PHDI and HDI values of Indonesia. We also
see that three districts/cities had a PHDI value greater than
or equal to the PHDI value of Indonesia and an HDI value
less than the HDI value of Indonesia. Finally, 13 districts/ci-
ties had a PHDI value less than the PHDI value of Indonesia
and an HDI value greater than or equal to the HDI value of
Indonesia. The odds ratio value of the dependent variables
was 8.6667, which shows that the dependent variables were
positively correlated. Therefore, the dependent variables of
PHDI and HDI were appropriate for the MLR and GWMLR
models.

The parameter estimation obtained a total of 55 GWMLR
models. The optimal bandwidth value of the fixed kernel bi-
square weighting function was 4.8572, with a CV value of
90.3673. The descriptive statistics of the maximum likelihood
estimator values of the 55 GWMLR models for modeling the
PHDI and HDI of districts/cities in Kalimantan Island are
given in Table 3.

TABLE 4: Parameter estimates, standard errors, and statistical test
values of the partial test for the GWMLR model of Lamandau
District.

Parameter Estimate Standard error Z
Yo1 -0.0184 0.0080 -2.3017%
Y11 -0.1368 0.0596 -2.2963%
Y21 -0.1185 0.0506 -2.3424"
Yoz -0.0023 0.0010 -2.3167*
Y12 0.0052 0.0026 2.0172*
Y22 -0.0114 0.0057 -2.0089*
Yo3 0.0013 0.0008 1.7245*
Y13 0.0132 0.0076 1.7281*
Y23 0.0078 0.0048 1.6245

*Indicates significance at a 10% level.

The similarity evaluation between the MLR and GWMLR
models was carried out using the statistical test in Equation
(32). The hypothesis was formulated as follows:

HO : ypq(ui’vi)z)}pq’iz 1’2)"')55;17: 1)2;q= 1,2,3,
H, : atleast one of qu(“i> Vi) # V-
(48)

The statistical test value was 376.0917, and the Z,, value
at a 10% significance level was 1.6449. Therefore, the null
hypothesis was rejected, and we concluded that the MLR
and GWMLR models were significantly different.

The next test was the simultaneous test, and the hypoth-
esis was formulated as follows:

H,: qu(ui,vi) :yzq(u,-, v;)=0,i=1,2,---,55;9=1,2,3,
H, :atleastoneofypq(ui,v,-) #0,i=1,2,---,55;p=1,2;9=1,2,3.
(49)
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TaBLE 5: Grouping of the districts/cities based on the significant variables.

Districts/cities Total Variable

Lamandau, Banjarmasin City, and Banjarbaru City 3 Poverty rate

Barito Timur, Kotabaru, Tapin, Hulu Sungai Selatan, Hulu Sungai Utara, Tabalong, Balangan, Paser, and 9 Economic growth

Kutai Barat

Sambas, Kapuas Hulu, Sekadau, Melawi, Kayong Utara, Kubu Raya, Pontianak City, Singkawang City,
Kotawaringin Barat, Kotawaringin Timur, Kapuas, Barito Selatan, Barito Utara, Sukamara, Tanah Laut, 17

Hulu Sungai Selatan, and Tanah Bumbu

Poverty rate and
economic growth

Bengkayang, Landak, Pontianak, Sanggau, Ketapang, Sintang, Seruyan, Katingan, Pulang Pisau, Gunung

Mas, Murung Raya, Palangkaraya City, Banjar, Barito Kuala, Kutai Kartanegara, Kutai Timur, Berau,
Malinau, Bulungan, Nunukan, Penajam Paser Utara, Tana Tidung, Balikpapan City, Samarinda City,

Tarakan City, and Bontang City

26 None

The likelihood ratio statistic value was 401.6335, and the
X%o.1;33o) value was 363.3222. This result indicated that the

likelihood ratio was statistically significant at a 10% signifi-
cance level. Therefore, the null hypothesis was rejected, and
we concluded that the poverty rate and economic growth
were simultaneously significantly influencing the PHDI and
HDI of the districts/cities in Kalimantan Island.

The partial test was used to obtain the independent vari-
ables that significantly influence the PHDI and HDI of the
districts/cities in Kalimantan Island. We show the results of
the parameter estimation, standard errors, and statistical test
values of the partial test for the GWMLR model of Lamandau
District in Table 4.

The hypothesis of the partial test for the Lamandau
District GWMLR model parameters was as follows:

H,: qu(uzl’ vy) =0,

(50)
H,: qu(”zv vy)#0,p=1,2;9=1,2,3.

The statistical test value of the estimated parameter value
of 9,5 (1451, v, ) in Table 4 was not statistically significant at a
10% significance level. Therefore, we concluded that the
economic growth was not a partially significant influence
on the PHDI and HDI of Lamandau District.

The GWMLR model of Lamandau District is expressed
as follows:

£,(x) = -0.0184 - 0.1368X, — 0.1185X,,
£, (x) = -0.0023 + 0.0052X, — 0.0114X,, (51)

£,(x) =0.0013 +0.0132X, +0.0078X,.

The results of the estimating and hypothesis testing of the
GWMLR model parameters show that not all of the indepen-
dent variables had a significant influence on the PHDI and
HDI of the districts/cities in Kalimantan Island. Therefore,
a significant number of parameters differed for each district/-
city. The groupings of the independent variables that had a
significant influence on the PHDI and HDI of districts/cities
are presented in Table 5.

The performance of the GWMLR model was evaluated
using the AIC, AICC, and BIC in Equations (13)-(15). The

TaBLE 6: The Akaike’s information criterion (AIC), corrected AIC
(AICC), and Bayesian information criterion (BIC) values of the
multivariate logistic regression (MLR) and geographically
weighted MLR (GWMLR) models.

Model AIC AICC BIC
MLR 525.6258 529.6258 543.6918
GWMLR 137.8512 134.2875 143.8732

values of the AIC, AICC, and BIC for the MLR and GWMLR
models are presented in Table 6.

The AIC, AICC, and BIC values of the GWMLR model in
Table 6 are lower compared with the MLR model. This result
shows that the GWMLR model is more accurate than the
MLR model. Therefore, the GWMLR model is best for
modeling relationships between the dependent variables
(the PHDI and HDI) and the independent variables (poverty
rate and the economic growth) of districts/cities in Kaliman-
tan Island, Indonesia, in 2013.

6. Conclusions

The GWMLR model is capable of evaluating the relation-
ships between two correlated categorical dependent variables
with one or more independent variables that depend on the
spatial weighting function at each location in the study area.
The spatial weighting function is an essential tool for param-
eter estimation and hypothesis testing in the modeling of
GWMLR. Therefore, the fixed kernel bi-square was used, as
it relates to the Euclidean distance and optimal bandwidth.
The cross-validation method was applied to obtain the
optimal bandwidth. The GWMLR model parameters were
estimated using the maximum likelihood method. The max-
imum likelihood estimators have an implicit form and were
obtained by the Newton-Raphson method. Hypothesis test-
ing of the GWMLR model included a similarity test, simulta-
neous test, and partial test. The similarity test was used to
obtain a significant difference between the MLR and
GWMLR models. The statistical test of the similarity test
had an asymptotic standard normal distribution. The
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simultaneous test was used to obtain the simultaneously sig-
nificant influence of the independent variables on the depen-
dent variables. The statistical test of the simultaneous test had
an asymptotic chi-square distribution. The partial test was
used to obtain the partially significant influence of the inde-
pendent variables on the dependent variables. The statistical
test of the partial test had an asymptotic standard normal dis-
tribution. The performance of the GWMLR model was eval-
uated with the factors influencing the public health
development index and the human development index of
districts/cities in Kalimantan Island, Indonesia, in 2013.
The GWMLR model was found to be better than the MLR
model in this context.

Some improvements and future work on modeling of
GWMLR are possible. Firstly, the spatial weighting function
used in this study involves only kernel bi-square. Other spa-
tial weighting functions of kernel functions could be used to
further the GWMLR model performance, such as the Gauss-
ian, exponential, or tri-cube functions. Secondly, this study is
limited to two dependent variables that only have two catego-
ries. Having more dependent variables with more than two
categories, which could be either multinomial or ordinal,
should also be considered for future work.

Appendix

The first-order partial derivative of the log-likelihood
function with respect to the parameters of y(u;,v;) is as
follows:

OL" (y(u; i Yy a'hl; N Y10j a’ﬁoj'
oy1 (”n Vi = M) O (up> v;) Mioj 0y1 (u;, v;)
Yoij a’701j Yooj a’700j IRy a’ﬁlj
o N ) e v (v wif_z 0t 0&
Mo1 OY1 (4 Vi) Mooj OY1 (43> v;) =1 \Mj 961
&, + Y10j a’ﬁo]‘ 9§,

. Y10j Yoi; Moy 08,
oyi (u;, v;) Mo 08, oyf (u; v;) o1 08, oy{ (u;v;)
Yooj Mooj  0&,

- (V11 Mo,
+ = pov el LAl ey
Moo 081 aY?(”v"i)) ] ;<n11j M4
)ﬂﬂu]‘rloljxj

Y10j ’ITOJ‘"ISOJ‘ .
Thoj (1 —n;j)A]
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where A;,j=1,2,--+,n in Equation (23).
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Data Availability

The dataset of this study supported by the Ministry of Health,
Indonesia, https://www.kemkes.go.id/ and the National
Bureau of Statistics Indonesia, https://www.bps.go.id/.
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