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Abstract 

Modeling rainfall data is critical as one of the steps to mitigate natural disasters due to weather changes. This 

research compares the goodness of traditional and machine learning models for predicting rainfall in Samarinda City. 

Monthly rainfall data was recapitulated by the Meteorology, Climatology, and Geophysics Agency from 2000 to 2020. 

The traditional models used are Exponential Smoothing and ARIMA, while the machine learning model is a Neural 

Network. Data is divided into training and testing with a proportion of 90:10. Evaluation of goodness-of-fit using Root 

Mean Squared Error Prediction (RMSEP). The research results show that the Neural Network has better accuracy in 

predicting rainfall in Samarinda. Forecasting results indicate that monthly rainfall trends suggest that the months 

with the highest rainfall occur around November to March. This research provides important implications for 

developing a warning system for hydrometeorological disasters in Samarinda. The superior points in this research are: 

●​ Modeling rainfall data in Samarinda City using several forecasting methods: Exponential Smoothing, ARIMA, 

and Neural Network. 

●​ The Neural-Network algorithm used is Backpropagation with data standardization. 



 
 

●​ Information about predicted high rainfall can be used to issue early warnings of floods or landslides. Disaster 

mitigation through policies to regulate water discharge based on rainfall predictions to prevent floods and 

drought.  

 

Graphical abstract 

 

The research design used was ex post facto, meaning data was collected after all the events. The stages of data 

analysis modeling rainfall data in Samarinda City are visualized in the Graphical Abstract. The researchers chose the 

three methods based on their advantages and flexibility in the modeling process. The modeling process uses R 

software. 
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Resource availability  

The data used is the rainfall data of Samarinda City from 2000 to 2020, 
monthly. The data collection technique used is secondary data collection, 
which is obtained directly from related agencies, in this case the Meteorology, 
Climatology and Geophysics Agency (BMKG) of Samarinda City 

 

Background 

Rainfall is the height of rainwater collected in a flat place in a certain period, usually measured in millimeters (mm) 

per unit of time (BMKG) [1]. Rainfall is a natural phenomenon that plays a vital role in various aspects of life, 

including the agricultural sector and water resources, and can also be information for natural disaster mitigation. 

Rainfall is one of the most essential elements in climate patterns [2]. An accurate understanding and prediction of 

rainfall is needed in policy-making and early warning systems. Rainfall prediction can use time series models[3], [4]. 

The time series model is a mathematical representation of data collected sequentially over time[5], [6]. With the 

advancement of information technology today, the development of time series models is massive in obtaining the 

best accuracy, from traditional to machine learning models[7]. Researchers will use conventional and 

machine-learning models to model rainfall data in this study [8], [9]. The forecasting models that will be used in this 

study are Exponential Smoothing (ES), Autoregressive Integrated Moving Average (ARIMA), and neural network (NN). 

Exponential Smoothing (ES) is one of the simple smoothing methods, but it has a pretty good performance and can be 

used to forecast future time series[10]. The working principle of ES is to provide further weight to the latest 

observation time series data compared to older observation time series data. The advantage of the ES method is that 

it is simple and easy to implement in its application[11]. Several time series data studies that use ES include [10], [11], 

[12], Autoregressive Integrated Moving Average (ARIMA) is a time series model with solid assumptions that require 

stationary data, so it is necessary to transform the data[13], [14]. In addition, the residuals of the ARIMA model must 

be White Noise and Normally Distributed. Several studies of time series data using ARIMA include [15], [16], [17], 

[18], [19].  

Neural Network (NN), a time series model inspired by Artificial Neural Networks, is known for its adaptability to data 

change patterns [8]. It adjusts the weight of connections between neurons based on the difference between the 

actual output and the output to be predicted, a process done iteratively [20]. This adaptability allows NN to identify 

complex data patterns that traditional models may miss. Several time series data studies have successfully utilized NN 

are [16], [21], [22], [23], [24], [25]. 

The primary goal of this study is to forecast rainfall data for the next 12 periods using the best time series model. This 

model, once identified, can serve as a valuable tool for obtaining future insights. Its potential benefits extend beyond 

the academic realm, as it can help the general public mitigate the negative impacts of extreme weather, making it a 

crucial step in disaster management. 

 

Method details  

A.​ Exponential Smoothing 

In the world of forecasting, the exponential smoothing method is divided into three parts, namely Single 

Exponential Smoothing, which is a development of the Single Moving Average; Double Exponential Smoothing, 

which is a development of the Double Moving Average method, and Triple Exponential Smoothing which is a 

method used to analyze data that has a trend or seasonal pattern. One of the Double Exponential Smoothing 

methods that is often used in forecasting is Double Exponential Smoothing Holt [10], [11]. Double Exponential 



 
 

Smoothing (DES) Holt is an exponential smoothing method with two parameters, and its analysis uses trends and 

actual data patterns. DES Holt forecast uses the following formula in Eq. (1)- Eq. (3). 

Level smoothing 

 
(1) 

Trend smoothing 

 
(2) 

With 

 
(3) 

The Holt DES method estimates two smoothing values, which can be done using the following Eq. (4). 

 and  
(4) 

Where: 

​ : level smoothing parameter, 0 < < 1 

​ : trend smoothing parameter, 0 < < 1 

​ : actual data at time t 

​ : level smoothing at time t 

​ : trend smoothing at time t 

​ : forecasting at time (t+m) 

 

B.​ ARIMA 

the ARIMA model was introduced in 1970 by George EP Box and Gwilym M. Jenkins through their book 

entitled Time Series Analysis [5], [26]. ARIMA is also often called the Box-Jenkins time series method. ARIMA is very 

accurate for both short-term and long-term forecasting. ARIMA can be interpreted as combining two models, 

namely the Autoregressive (AR) model integrated with the Moving Average (MA) model[27]. The ARIMA model is 

generally written with the notation ARIMA (p,d,q) where p is the degree of the AR process, d is the differencing 

order, and I is the degree of the MA process. 

According to Box and Jenkins, the ARIMA (p,d,q) can be expressed in Eq. (5). 

 
(5) 

With: 

​ : backshift operator(B) AR process 



 
 

​ : backshift operator(B) MA process 

​ ​ ​ ​ ​ : backshift operator 

​ ​ ​ ​ : differentiating operator 

​ ​ ​ ​ ​ : order of differencing 

Eq. (5) can be expressed in another form, namely: 

 
(5) 

The ARIMA (p,d,q) model is a combination of the AR (p) and MA (q) models with non-stationary data patterns, 

then differencing is performed with order d. Several time series models for stationary data are as follows: 

1.​ Autoregressive (AR) Model 

Autoregressive is a form of regression but not one that connects dependent variables, but rather connects 

them with previous values at a time lag, so that an autoregressive model will state a forecast as a 

function of previous values of the time series data. The autoregressive model with the order AR (p) or 

ARIMA model (p,0,0) is stated as follows in Eq. (7). 

 
(7) 

Eq. (7) can be written using the backshift operator (B) as: 

 
(8) 

With  is called AR(p) operator. 

 

2.​ Moving Average (MA) Model 

Another model of the ARIMA model is the moving average which is denoted as MA (q) or ARIMA (0,0,q) 

which is written in Eq. (9). 

 
(9) 

Eq. (9) can be written using the backshift operator (B), as: 

 
(10) 

With  is called MA(q) operator. 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) that have been calculated are 

then used to identify the ARIMA model [15], [28]. The identification stage is a stage used to find or determine 

other orders of p and q with the help of the autocorrelation function (ACF) and partial autocorrelation function 

(PACF) as follows: 

Table 1. General ACF and PACF Patterns for AR and MA Models 



 
 

Process ACF PACF 

AR (p) 
Dies down (rapidly decreasing 

exponentially/sinusoidal) 
Cuts off after lag p 

MA (q) Cuts off after lag q 
Dies down (rapidly decreasing 

exponentially/sinusoidal) 

ARMA (p,q) 
Dies down (rapidly decreasing 

exponentially/sinusoidally) 

Dies down (rapidly decreasing 

exponentially/sinusoidally) 

AR (p) or MA (q) Cuts off after lag q Cuts off after lag p 

White Noise 

(Random) 
Nothing is out of bounds Nothings is out of bounds 

 

C.​ Neural Network 

Neural Network (NN) is an information processing method that imitates how the human brain works[29]. NN 

has several simple processing units that are interconnected and work in parallel to complete complex tasks. The 

learning process in NN is carried out by adjusting the weight of the synapses that connect between units so that 

they can generalize patterns in data and make predictions [30], [31]. NN consists of neurons that have information 

flow. The NN structure consists of three layers of neural units, namely the input layer, the hidden layer, and the 

output laye[32]r. As an illustration, it can be seen in Figure 1. 

 

 

Fig. 1. Neural Network Structure 

Backpropagation is a core algorithm in NN learning that works by adjusting the connection weights between 

neurons to minimize prediction errors[33]. This process allows NN to learn complex patterns in data. The 

activation function, an essential component in neurons, plays a role in determining whether a neuron will be 

active. A good activation function must have continuous, differentiable, and non-monotonic properties for the 

gradient calculation during the backpropagation process. The derivative of this activation function is crucial in 

measuring how much each neuron contributes to the total error, allowing for more precise weight 

adjustments[34]. The activation function used in this study is the bipolar sigmoid function. The bipolar sigmoid 

activation function has a value range of -1 to 1 with the formula in Eq. (11). 



 
 

 

(11) 

With the derivative of Eq. (11) shown in Eq. (12). 

 

(12) 

D.​ Root Mean Square Error Prediction 

In this study, to find the forecast accuracy value, the Root Mean Square Error Prediction (RMSEP) method is 

used. RMSEP can be interpreted as a measure of error based on the difference between two-value, actual and 

prediction. The RMSEP formula shown in Eq. (13). 

 
(13) 

 

E.​ Data and Data Sources  

The data used is the rainfall data of Samarinda City from 2000 to 2020, monthly. The data collection 

technique used is secondary data collection, which is obtained directly from related agencies, in this case the 

Meteorology, Climatology and Geophysics Agency (BMKG) of Samarinda City. Time series plot of the rainfall data 

in Samarinda for 2000 – 2020 can be seen in Figure 2. 

 

 

Fig. 2. Time series plot of rainfall data in Samarinda 

Based on Figure 2, there is a significant fluctuation in rainfall in Samarinda in the period from January 2000 to 
December 2020. This indicates that rainfall in Samarinda has experienced quite significant changes over time 
during this period. This fluctuation can be caused by various factors, such as global climate change, human 
activities, and other natural phenomena 

 

Method validation 



 
 

a.​ Modeling with Double Exponential Smoothing 
Double Exponential Smoothing (DES) Holt is an exponential smoothing method that has two parameters, 

namely  and  . In this study, the data was divided into training data and testing data with a division of 

90:10. The first step that must be taken is to find the combination value for  and  optimal by looking at the 

Root Mean Square Error Prediction (RMSEP) value on the training data, where the smaller the RMSEP value, the 
better the model's ability to predict accurately. The following is a table of combination results. 

 

Table 2. Combination  and  Optimal 

Alpha (

) 
Beta ( ) 

RMSEP 
Alpha (

) 
Beta ( ) 

RMSEP 
Alpha (

) 
Beta ( ) 

RMSEP 

0.1 0.1 209.57 0.4 0.1 115.28 0.7 0.1 114.66 
0.1 0.2 168.88 0.4 0.2 114.72 0.7 0.2 117.53 
0.1 0.3 151.35 0.4 0.3 117.14 0.7 0.3 121.28 
0.1 0.4 142.15 0.4 0.4 120.05 0.7 0.4 125.22 
0.1 0.5 138.57 0.4 0.5 122.79 0.7 0.5 129.28 
0.1 0.6 138.89 0.4 0.6 125.13 0.7 0.6 133.49 
0.1 0.7 140.94 0.4 0.7 127.14 0.7 0.7 137.81 
0.1 0.8 143.61 0.4 0.8 129.14 0.7 0.8 142.23 
0.1 0.9 146.54 0.4 0.9 131.40 0.7 0.9 146.69 
0.2 0.1 138.03 0.5 0.1 113.38 0.8 0.1 116.90 
0.2 0.2 125.13 0.5 0.2 114.43 0.8 0.2 120.51 
0.2 0.3 123.20 0.5 0.3 117.25 0.8 0.3 124.84 
0.2 0.4 124.69 0.5 0.4 120.25 0.8 0.4 129.38 
0.2 0.5 127.24 0.5 0.5 123.15 0.8 0.5 134.08 
0.2 0.6 130.18 0.5 0.6 126.01 0.8 0.6 138.95 
0.2 0.7 133.68 0.5 0.7 129.02 0.8 0.7 143.98 
0.2 0.8 138.00 0.5 0.8 132.29 0.8 0.8 149.15 
0.2 0.9 142.86 0.5 0.9 135.84 0.8 0.9 154.50 
0.3 0.1 121.04 0.6 0.1 113.40 0.9 0.1 120.05 
0.3 0.2 117.09 0.6 0.2 115.47 0.9 0.2 124.44 
0.3 0.3 118.59 0.6 0.3 118.72 0.9 0.3 129.47 
0.3 0.4 121.41 0.6 0.4 122.12 0.9 0.4 134.78 
0.3 0.5 124.67 0.6 0.5 125.59 0.9 0.5 140.34 
0.3 0.6 127.90 0.6 0.6 129.19 0.9 0.6 146.16 
0.3 0.7 130.56 0.6 0.7 132.97 0.9 0.7 152.29 
0.3 0.8 132.27 0.6 0.8 136.90 0.9 0.8 158.77 
0.3 0.9 133.12 0.6 0.9 140.91 0.9 0.9 165.67 

 

Based on Table 2, it can be seen that there are 4 combinations that have the smallest RMSE values, namely the 
following combinations: 

 

Table 3. Optimal Combination Value of Training and Testing Data 

Parameter Value 
RMSEP 
Training 

RMSEP  
Testing 



 
 

= 0.4 and = 

0.2 

114.72 122.92 

= 0.5 and = 

0.1 

113.38 127.50 

= 0.6 and = 

0.1 

113.40 121.13 

= 0.7 and = 

0.1 

114.66 118.03 

 
b.​ Modeling with ARIMA 

The rainfall data to be modeled with ARIMA is first transformed and differencing to make it stationary in 
mean and variance. The ACF and PACF plots of the transformed and differencing data of order 1 can be seen in 
Figures 3 and 4. 

 
Fig. 3. ACF Plot of Rainfall Data Results of Differencing 

 
Fig. 4. PACF Plot of Rainfall Data Results of Differencing 

 
Based on the ACF plot, it can be seen that the cut-off after lag 1, so the q order used is 0 and 1. Meanwhile, 

based on the PACF plot, it can be seen that there is a cut-off after lag 3 so that the p order used is 0, 1, 2, and 3. So 



 
 

that the temporary ARIMA models that can be formed are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), ARIMA 
(0,1,1), ARIMA (1,1,1), ARIMA (2,1,1), and ARIMA (3,1,1). 

Table 5. Temporary ARIMA Model Parameter Estimation 

Model Parameter Estimate p-value Conclusion 

ARIMA(1,1,0)  -0.380766 5.579e-10 Significant 

ARIMA(2,1,0) 
 -0.455156 2.982e-12 

Significant 

 -0.193967 0.002867 

ARIMA(3,1,0) 

 -0.507994 1,760e-15 

Significant  -0.320263 3.421e-06 

 -0.275761 1.507e-05 

ARIMA(0,1,1)  -1,000000 < 2.2e-16 Significant 

ARIMA(1,1,1) 
 0.273909 2.071e-05 

Significant 

 -1,000000 < 2.2e-16 

ARIMA(2,1,1,) 

 0.266500 6.351e-05 

Not Significant  0.028447 0.6701 

 -1,000000 < 2.2e-16 

ARIMA(3,1,1) 

 0.268049 5.375e-05 

Not Significant 
 0.048998 0.475 

 -0.081457 0.220 

 -1,000000 < 2.2e-16 
 

The temporary ARIMA models that have significant parameters are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), 
ARIMA (0,1,1) and ARIMA (1,1,1). The following figures are visualizations of the residual independence and 
residual normality assumptions of the temporary ARIMA models that are formed. 

 



 
 

Fig. 5. Independence and Normality of ARIMA Residuals (1,1,0) 

 
Fig. 6. Independence and Normality of ARIMA Residuals (2,1,0) 

 
Fig. 7. Independence and Normality of ARIMA Residuals (3,1,0) 

 
Fig. 8. Independence and Normality of ARIMA Residuals (0,1,1) 

 
Fig. 9. Independence and Normality of ARIMA Residuals (1,1,1) 

Based on the figures above, it can be seen that all temporary ARIMA models meet the residual normality 
assumption because they form a bell curve, meaning that the models have normally distributed residuals. 
However, all of these models can be indicated that there is autocorrelation or violation of the residual 
independence assumption because there are several lags that are outside the upper and lower limits of the ACF 



 
 

plot. The selection of the best temporary ARIMA model can be determined by looking at the smallest RMSEP 
value in the transformed data. Thus, the ARIMA model (1,1,1) is the best temporary ARIMA model.  

Table 6. Accuracy of Training and Testing Data for ARIMA Model (1,1,1) 
Proportion RMSEP 

Data Training 92.75 
Data Testing 80.82 

 
c.​ Modeling with Neural Network (NN) 

●​ Determination of Input Variables 
The determination of network input variables is done based on significant lags on the ACF graph or PACF 

graph. The ACF graph and PACF graph of rainfall data in Samarinda can be seen in Figure 10. 

 

(a)​ ACF graph 

 

(b)​ PACF graph 

Fig. 10. ACF and PACF graphs of rainfall data in Samarinda 
 

Based on Figure 10, it can be seen that there are several significant lags. In the ACF graph, there are significant 

lags at lag 1, lag 9, lag 12, and lag 13, while in the PACF graph, significant lags are at lag 1, lag 9, lag 11, and lag 

12. This indicates a dependency between the value of an observation and the value of the previous observation 

up to 12 or 13 time periods. Therefore, this study uses 6 time lags as input variables, namely lag 1, lag 2, lag 3, 

lag 9, lag 11, and lag 12. 

●​ Data Standarization 
Standardization of research data is done to change the range of data values into a more uniform scale, 

thus facilitating comparison and analysis. In this study, the z-score standardization method is used to change the 
data into a standard score with an average of 0 and a standard deviation of 1. 

●​ Best Model Selection in NN 
The backpropagation training process is carried out by adjusting the NN architecture. In this study, two 

types of architectures are used, namely networks with one hidden layer and networks with two hidden layers 
where each architecture will try various combinations of the number of neurons in each layer. The criterion for 
stopping training is when it reaches a maximum iteration of 50,000,000 using a learning rate of 0.001. This 
training aims to minimize the error value and obtain a model with good generalization. After getting the results 
of the NN architecture, the next step is to perform a back transformation or destandardization. This process aims 
to change the predicted values that have been normalized back to their original scale, so that the predicted 



 
 

results can be interpreted in the context of the original data and can compare the predicted values with the actual 
values of the data. 

Determination of the best NN architecture model to be used in predicting rainfall in Samarinda is done 
based on the RMSE of training data. Based on the calculation results, the RMSEP value of each model is obtained 
which can be seen in Table 7. 

Table 7. RMSE Calculation Rsults 
Hidden Layer RMSEP Difference between Training 

and Testing RMSEP Hidden Layer1 Hidden Layer2 Training Testing 

1 neuron  88.988 86.595 2.393 

2 neurons  85.018 90.197 5.180 

3 neurons  78.101 110.632 32.531 

4 neurons  75.907 100.158 24.251 

5 neurons  66.340 97.531 31.192 

6 neurons  68.059 96.647 28.589 

7 neurons  69.542 103.764 34.222 

8 neurons  58.299 102.938 44.639 

9 neurons  57.471 114.915 57.444 

10 neurons  46.560 110.919 64.359 

2 neurons 1 neuron 83.746 82.969 0.777 

3 neurons 2 neurons 77.546 100.939 23.393 

4 neurons 3 neurons 70.852 97.184 26.332 

5 neurons 4 neurons 61.167 131.724 70.557 

6 neurons 5 neurons 52.473 89.749 37.276 

7 neurons 6 neurons 49.585 121.518 71.933 

8 neurons 7 neurons 29.696 135.889 106.194 

9 neurons 8 neurons 27.501 116.387 88.886 

10 neurons 9 neurons 17.891 181.869 163.978 

 
By considering various considerations such as choosing the smallest RMSEP value and the difference between the 
RMSEP values of the training data and testing data is not very significant, then based on Table 7, it is found that 
the NN model with a 2 hidden layer architecture model (6-5 neurons) is the best NN model to be used in 
predicting rainfall in Samarinda for the next 12 periods. In this model, the RMSEP of the training data is 52.473 
and the RMSE of the testing data is 89.749. Some of the architectural results of the NN modeling can be seen in 
Figure 11.  



 
 

 

(a)​ NN model 1 hidden layer (8 neurons) 

 

(b)​ NN model 1 hidden layer (9 neurons) 

 

(c)​ NN model 2 hidden layers (6-5 neurons) 

 

(d)​ NN model 2 hidden layers (10-9 neurons) 

Fig. 11. Some architectures of NN modeling 
 

d.​ Best Model Selection 
Based on the results of rainfall data modeling using DES Holt, ARIMA, and NN above, the next step is to 

determine the best model that can be used for forecasting. Table 8 displays the RMSEP values of the best models. 
The model with the smallest RMSE value will be selected as the best method. 

 
Table 8. Model Goodness of Fit Measure 

Method 
RMSEP 

Training Testing 
DES Holt 

( = 0.7 and = 0.1) 
114.66 118.03 

ARIMA (1,1,1) 92.75 80.82 
NN 2 HL (6-5 neurons) 52.473 89.749 

In Table 8, it can be seen that the NN 2 HL (6-5 neurons) has a smaller RMSEP value for training data compared to 
other models, so the NN 2 HL (6-5 neurons) model will be used for forecasting the next 12 periods of rainfall data. 

 

 
e.​ Forecasting and Discussion 

Forecasting rainfall data for the next 12 periods using the NN 2 HL (6-5 neurons) model can be seen in Table. 

Table 9. Forecasting Results of 12 Periods of NN 2 HL (6-5 neurons) 



 
 

 

Month Prediction Results 
January 301.935 

February 245.819 
March 168.822 
April 82.964 
May 173.226 
June 209.721 
July 107.147 

August 204.006 
September 201.430 

October 133.406 
November 207.887 
December 206,919 

 

 
Fig. 12. Comparison plot of actual and predicted data 

Figure 12 shows that in the time series graph for training and testing data, the predicted values ​​almost follow 
the actual data pattern with a forecast accuracy level using RMSEP for training data of 52,473. Forecasting results 
for the following 12 periods show fluctuations in specific periods. Monthly rainfall trends indicate that the months 
with the highest rainfall occur around November to March. Based on the prediction results, it is known that the 
month with the highest rainfall is January. Rainfall patterns also tend to be seasonal, with peak rainfall at the 
beginning of the year and decreasing drastically in the middle of the year.  

Samarinda, as one of the cities supporting the archipelago's capital, certainly faces challenges due to 
significant fluctuations in rainfall. It is hoped that the results of this prediction can become a mitigation strategy 
for the City of Samarinda in spatial management, an early warning system through weather monitoring, which 
monitors weather conditions in real time. Water resource management is critical to collect and absorb rainwater 
into the soil. 
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Abstract 

Modeling rainfall data is critical as one of the steps to mitigate natural disasters due to weather changes. This 

research compares the goodness of traditional and machine learning models for predicting rainfall in Samarinda City. 

Monthly rainfall data was recapitulated by the Meteorology, Climatology, and Geophysics Agency from 2000 to 2020. 

The traditional models used are Exponential Smoothing and ARIMA, while the machine learning model is a Neural 

Network. Data is divided into training and testing with a proportion of 90:10. Evaluation of goodness-of-fit using Root 

Mean Squared Error Prediction (RMSEP). The research results show that the Neural Network has better accuracy in 

predicting rainfall in Samarinda. Forecasting results indicate that monthly rainfall trends suggest that the months 

with the highest rainfall occur around November to March. This research provides important implications for 

developing a warning system for hydrometeorological disasters in Samarinda. The superior points in this research are: 

●​ Modeling rainfall data in Samarinda City using several forecasting methods: Exponential Smoothing, ARIMA, 

and Neural Network.  

●​ The Neural-Network algorithm used is Backpropagation with data standardization. 

●​ Information about predicted high rainfall can be used to issue early warnings of floods or landslides. Disaster 

mitigation through policies to regulate water discharge based on rainfall predictions to prevent floods and 

drought.  

 

Graphical abstract 



 
 

 

The research design used was ex post facto, meaning data was collected after all the events. The stages of data 

analysis modeling rainfall data in Samarinda City are visualized in the Graphical Abstract. The researchers chose the 

three methods based on their advantages and flexibility in the modeling process. The modeling process uses R 

software. 
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Resource availability  

The data used is the rainfall data of Samarinda City from 2000 to 2020, 
monthly. The data collection technique used is secondary data collection, 
which is obtained directly from related agencies, in this case the Meteorology, 
Climatology and Geophysics Agency (BMKG) of Samarinda City 



 
 

 

Background 

Rainfall is the height of rainwater collected in a flat place in a certain period, usually measured in millimeters (mm) 

per unit of time (BMKG) [1]. Rainfall is a natural phenomenon that plays a vital role in various aspects of life, 

including the agricultural sector and water resources, and can also be information for natural disaster mitigation. 

Rainfall is one of the most essential elements in climate patterns [2]. An accurate understanding and prediction of 

rainfall is needed in policy-making and early warning systems. Rainfall prediction can use time series models[3], [4]. 

The time series model is a mathematical representation of data collected sequentially over time[5], [6]. With the 

advancement of information technology today, the development of time series models is massive in obtaining the 

best accuracy, from traditional to machine learning models[7]. Researchers will use conventional and 

machine-learning models to model rainfall data in this study [8], [9]. The forecasting models that will be used in this 

study are Exponential Smoothing (ES), Autoregressive Integrated Moving Average (ARIMA), and neural network (NN). 

Exponential Smoothing (ES) is one of the simple smoothing methods, but it has a pretty good performance and can be 

used to forecast future time series[10]. The working principle of ES is to provide further weight to the latest 

observation time series data compared to older observation time series data. The advantage of the ES method is that 

it is simple and easy to implement in its application[11]. Several time series data studies that use ES include [10], [11], 

[12], Autoregressive Integrated Moving Average (ARIMA) is a time series model with solid assumptions that require 

stationary data, so it is necessary to transform the data[13], [14]. In addition, the residuals of the ARIMA model must 

be White Noise and Normally Distributed. Several studies of time series data using ARIMA include [15], [16], [17], 

[18], [19].  

Neural Network (NN), a time series model inspired by Artificial Neural Networks, is known for its adaptability to data 

change patterns [8]. It adjusts the weight of connections between neurons based on the difference between the 

actual output and the output to be predicted, a process done iteratively [20]. This adaptability allows NN to identify 

complex data patterns that traditional models may miss. Several time series data studies have successfully utilized NN 

are [16], [21], [22], [23], [24], [25]. 

The primary goal of this study is to forecast rainfall data for the next 12 periods using the best time series model. This 

model, once identified, can serve as a valuable tool for obtaining future insights. Its potential benefits extend beyond 

the academic realm, as it can help the general public mitigate the negative impacts of extreme weather, making it a 

crucial step in disaster management. 

 

Method details  

A.​ Exponential Smoothing 

In the world of forecasting, the exponential smoothing method is divided into three parts, namely Single 

Exponential Smoothing, which is a development of the Single Moving Average; Double Exponential Smoothing, 

which is a development of the Double Moving Average method, and Triple Exponential Smoothing which is a 

method used to analyze data that has a trend or seasonal pattern. One of the Double Exponential Smoothing 

methods that is often used in forecasting is Double Exponential Smoothing Holt [10], [11]. Double Exponential 

Smoothing (DES) Holt is an exponential smoothing method with two parameters, and its analysis uses trends and 

actual data patterns. DES Holt forecast uses the following formula in Eq. (1)- Eq. (3). 

Level smoothing 



 
 

 
(1) 

Trend smoothing 

 
(2) 

With 

 
(3) 

The Holt DES method estimates two smoothing values, which can be done using the following Eq. (4). 

 and  
(4) 

Where: 

​ : level smoothing parameter, 0 < < 1 

​ : trend smoothing parameter, 0 < < 1 

​ : actual data at time t 

​ : level smoothing at time t 

​ : trend smoothing at time t 

​ : forecasting at time (t+m) 

 

B.​ ARIMA 

the ARIMA model was introduced in 1970 by George EP Box and Gwilym M. Jenkins through their book 

entitled Time Series Analysis [5], [26]. ARIMA is also often called the Box-Jenkins time series method. ARIMA is very 

accurate for both short-term and long-term forecasting. ARIMA can be interpreted as combining two models, 

namely the Autoregressive (AR) model integrated with the Moving Average (MA) model[27]. The ARIMA model is 

generally written with the notation ARIMA (p,d,q) where p is the degree of the AR process, d is the differencing 

order, and I is the degree of the MA process. 

According to Box and Jenkins, the ARIMA (p,d,q) can be expressed in Eq. (5). 

 
(5) 

With: 

​ : backshift operator(B) AR process 

​ : backshift operator(B) MA process 

​ ​ ​ ​ ​ : backshift operator 



 
 

​ ​ ​ ​ : differentiating operator 

​ ​ ​ ​ ​ : order of differencing 

Eq. (5) can be expressed in another form, namely: 

 
(6) 

The ARIMA (p,d,q) model is a combination of the AR (p) and MA (q) models with non-stationary data patterns, 

then differencing is performed with order d. Several time series models for stationary data are as follows: 

1.​ Autoregressive (AR) Model 

Autoregressive is a form of regression but not one that connects dependent variables, but rather connects 

them with previous values at a time lag, so that an autoregressive model will state a forecast as a 

function of previous values of the time series data. The autoregressive model with the order AR (p) or 

ARIMA model (p,0,0) is stated as follows in Eq. (7). 

 
(7) 

Eq. (7) can be written using the backshift operator (B) as: 

 
(8) 

With  is called AR(p) operator. 

 

2.​ Moving Average (MA) Model 

Another model of the ARIMA model is the moving average which is denoted as MA (q) or ARIMA (0,0,q) 

which is written in Eq. (9). 

 
(9) 

Eq. (9) can be written using the backshift operator (B), as: 

 
(10) 

With  is called MA(q) operator. 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) that have been calculated are 

then used to identify the ARIMA model [15], [28]. The identification stage is a stage used to find or determine 

other orders of p and q with the help of the autocorrelation function (ACF) and partial autocorrelation function 

(PACF) as follows: 

Table 1. General ACF and PACF Patterns for AR and MA Models 

Process ACF PACF 

AR (p) 
Dies down (rapidly decreasing 

exponentially/sinusoidal) 
Cuts off after lag p 

MA (q) Cuts off after lag q 
Dies down (rapidly decreasing 

exponentially/sinusoidal) 



 
 

Process ACF PACF 

ARMA (p,q) 
Dies down (rapidly decreasing 

exponentially/sinusoidally) 

Dies down (rapidly decreasing 

exponentially/sinusoidally) 

AR (p) or MA (q) Cuts off after lag q Cuts off after lag p 

White Noise 

(Random) 
Nothing is out of bounds Nothings is out of bounds 

 

C.​ Neural Network 

Neural Network (NN) is an information processing method that imitates how the human brain works[29]. NN 

has several simple processing units that are interconnected and work in parallel to complete complex tasks. The 

learning process in NN is carried out by adjusting the weight of the synapses that connect between units so that 

they can generalize patterns in data and make predictions [30], [31]. NN consists of neurons that have information 

flow. The NN structure consists of three layers of neural units, namely the input layer, the hidden layer, and the 

output layer[32]. As an illustration, it can be seen in Figure 1. 

 

 

Fig. 1. Neural Network Structure 

Backpropagation is a core algorithm in NN learning that works by adjusting the connection weights between 

neurons to minimize prediction errors[33]. This process allows NN to learn complex patterns in data. The 

activation function, an essential component in neurons, plays a role in determining whether a neuron will be 

active. A good activation function must have continuous, differentiable, and non-monotonic properties for the 

gradient calculation during the backpropagation process. The derivative of this activation function is crucial in 

measuring how much each neuron contributes to the total error, allowing for more precise weight 

adjustments[34]. The activation function used in this study is the bipolar sigmoid function. The bipolar sigmoid 

activation function has a value range of -1 to 1 with the formula in Eq. (11). 

 

(11) 

With the derivative of Eq. (11) shown in Eq. (12). 

 

(12) 



 
 

D.​ Root Mean Square Error Prediction 

In this study, to find the forecast accuracy value, the Root Mean Square Error Prediction (RMSEP) method is 

used. RMSEP can be interpreted as a measure of error based on the difference between two-value, actual and 

prediction. The RMSEP formula shown in Eq. (13). 

 
(13) 

 

E.​ Data and Data Sources  

The data used is the rainfall data of Samarinda City from 2000 to 2020, monthly. The data collection 

technique used is secondary data collection, which is obtained directly from related agencies, in this case the 

Meteorology, Climatology and Geophysics Agency (BMKG) of Samarinda City. Time series plot of the rainfall data 

in Samarinda for 2000 – 2020 can be seen in Figure 2. 

 

 

Fig. 2. Time series plot of rainfall data in Samarinda 

Based on Figure 2, there is a significant fluctuation in rainfall in Samarinda in the period from January 2000 to 
December 2020. This indicates that rainfall in Samarinda has experienced quite significant changes over time 
during this period. This fluctuation can be caused by various factors, such as global climate change, human 
activities, and other natural phenomena 

 

Method validation 
a.​ Modeling with Double Exponential Smoothing 

Double Exponential Smoothing (DES) Holt is an exponential smoothing method that has two parameters, 

namely  and  . In this study, the data was divided into training data and testing data with a division of 

90:10. The first step that must be taken is to find the combination value for  and  optimal by looking at the 

Root Mean Square Error Prediction (RMSEP) value on the training data, where the smaller the RMSEP value, the 
better the model's ability to predict accurately. The following is a table of combination results. 



 
 

 

Table 2. Combination  and  Optimal 

Alpha (

) 
Beta ( ) 

RMSEP 
Alpha (

) 
Beta ( ) 

RMSEP 
Alpha (

) 
Beta ( ) 

RMSEP 

0.1 0.1 209.57 0.4 0.1 115.28 0.7 0.1 114.66 
0.1 0.2 168.88 0.4 0.2 114.72 0.7 0.2 117.53 
0.1 0.3 151.35 0.4 0.3 117.14 0.7 0.3 121.28 
0.1 0.4 142.15 0.4 0.4 120.05 0.7 0.4 125.22 
0.1 0.5 138.57 0.4 0.5 122.79 0.7 0.5 129.28 
0.1 0.6 138.89 0.4 0.6 125.13 0.7 0.6 133.49 
0.1 0.7 140.94 0.4 0.7 127.14 0.7 0.7 137.81 
0.1 0.8 143.61 0.4 0.8 129.14 0.7 0.8 142.23 
0.1 0.9 146.54 0.4 0.9 131.40 0.7 0.9 146.69 
0.2 0.1 138.03 0.5 0.1 113.38 0.8 0.1 116.90 
0.2 0.2 125.13 0.5 0.2 114.43 0.8 0.2 120.51 
0.2 0.3 123.20 0.5 0.3 117.25 0.8 0.3 124.84 
0.2 0.4 124.69 0.5 0.4 120.25 0.8 0.4 129.38 
0.2 0.5 127.24 0.5 0.5 123.15 0.8 0.5 134.08 
0.2 0.6 130.18 0.5 0.6 126.01 0.8 0.6 138.95 
0.2 0.7 133.68 0.5 0.7 129.02 0.8 0.7 143.98 
0.2 0.8 138.00 0.5 0.8 132.29 0.8 0.8 149.15 
0.2 0.9 142.86 0.5 0.9 135.84 0.8 0.9 154.50 
0.3 0.1 121.04 0.6 0.1 113.40 0.9 0.1 120.05 
0.3 0.2 117.09 0.6 0.2 115.47 0.9 0.2 124.44 
0.3 0.3 118.59 0.6 0.3 118.72 0.9 0.3 129.47 
0.3 0.4 121.41 0.6 0.4 122.12 0.9 0.4 134.78 
0.3 0.5 124.67 0.6 0.5 125.59 0.9 0.5 140.34 
0.3 0.6 127.90 0.6 0.6 129.19 0.9 0.6 146.16 
0.3 0.7 130.56 0.6 0.7 132.97 0.9 0.7 152.29 
0.3 0.8 132.27 0.6 0.8 136.90 0.9 0.8 158.77 
0.3 0.9 133.12 0.6 0.9 140.91 0.9 0.9 165.67 

 

Based on Table 2, it can be seen that there are 4 combinations that have the smallest RMSE values, namely the 
following combinations: 

 

Table 3. Optimal Combination Value of Training and Testing Data 

Parameter Value 
RMSEP 
Training 

RMSEP  
Testing 

= 0.4 and = 

0.2 

114.72 122.92 

= 0.5 and = 

0.1 

113.38 127.50 

= 0.6 and = 

0.1 

113.40 121.13 



 
 

= 0.7 and = 

0.1 

114.66 118.03 

 
b.​ Modeling with ARIMA 

The rainfall data to be modeled with ARIMA is first transformed and differencing to make it stationary in 
mean and variance. The ACF and PACF plots of the transformed and differencing data of order 1 can be seen in 
Figures 3 and 4. 

 
Fig. 3. ACF Plot of Rainfall Data Results of Differencing 

 
Fig. 4. PACF Plot of Rainfall Data Results of Differencing 

 
Based on the ACF plot, it can be seen that the cut-off after lag 1, so the q order used is 0 and 1. Meanwhile, 

based on the PACF plot, it can be seen that there is a cut-off after lag 3 so that the p order used is 0, 1, 2, and 3. So 
that the temporary ARIMA models that can be formed are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), ARIMA 
(0,1,1), ARIMA (1,1,1), ARIMA (2,1,1), and ARIMA (3,1,1). 

Table 5. Temporary ARIMA Model Parameter Estimation 

Model Parameter Estimate p-value Conclusion 

ARIMA(1,1,0)  -0.380766 5.579e-10 Significant 



 
 

Model Parameter Estimate p-value Conclusion 

ARIMA(2,1,0) 
 -0.455156 2.982e-12 

Significant 

 -0.193967 0.002867 

ARIMA(3,1,0) 

 -0.507994 1,760e-15 

Significant  -0.320263 3.421e-06 

 -0.275761 1.507e-05 

ARIMA(0,1,1)  -1,000000 < 2.2e-16 Significant 

ARIMA(1,1,1) 
 0.273909 2.071e-05 

Significant 

 -1,000000 < 2.2e-16 

ARIMA(2,1,1,) 

 0.266500 6.351e-05 

Not Significant  0.028447 0.6701 

 -1,000000 < 2.2e-16 

ARIMA(3,1,1) 

 0.268049 5.375e-05 

Not Significant 
 0.048998 0.475 

 -0.081457 0.220 

 -1,000000 < 2.2e-16 
 

The temporary ARIMA models that have significant parameters are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), 
ARIMA (0,1,1) and ARIMA (1,1,1). The following figures are visualizations of the residual independence and 
residual normality assumptions of the temporary ARIMA models that are formed. 

 
Fig. 5. Independence and Normality of ARIMA Residuals (1,1,0) 



 
 

 
Fig. 6. Independence and Normality of ARIMA Residuals (2,1,0) 

 
Fig. 7. Independence and Normality of ARIMA Residuals (3,1,0) 

 
Fig. 8. Independence and Normality of ARIMA Residuals (0,1,1) 

 
Fig. 9. Independence and Normality of ARIMA Residuals (1,1,1) 

Based on the figures above, it can be seen that all temporary ARIMA models meet the residual normality 
assumption because they form a bell curve, meaning that the models have normally distributed residuals. 
However, all of these models can be indicated that there is autocorrelation or violation of the residual 
independence assumption because there are several lags that are outside the upper and lower limits of the ACF 
plot. The selection of the best temporary ARIMA model can be determined by looking at the smallest RMSEP value 
in the transformed data. Thus, the ARIMA model (1,1,1) is the best temporary ARIMA model.  



 
 

Table 6. Accuracy of Training and Testing Data for ARIMA Model (1,1,1) 
Proportion RMSEP 

Data Training 92.75 
Data Testing 80.82 

 
c.​ Modeling with Neural Network (NN) 

●​ Determination of Input Variables 
The determination of network input variables is done based on significant lags on the ACF graph or PACF 

graph. The ACF graph and PACF graph of rainfall data in Samarinda can be seen in Figure 10. 

 

(a)​ ACF graph 

 

(b)​ PACF graph 

Fig. 10. ACF and PACF graphs of rainfall data in Samarinda 
 

Based on Figure 10, it can be seen that there are several significant lags. In the ACF graph, there are significant 

lags at lag 1, lag 9, lag 12, and lag 13, while in the PACF graph, significant lags are at lag 1, lag 9, lag 11, and lag 

12. This indicates a dependency between the value of an observation and the value of the previous observation 

up to 12 or 13 time periods. Therefore, this study uses 6 time lags as input variables, namely lag 1, lag 2, lag 3, 

lag 9, lag 11, and lag 12. 

●​ Data Standarization 
Standardization of research data is done to change the range of data values into a more uniform scale, 

thus facilitating comparison and analysis. In this study, the z-score standardization method is used to change the 
data into a standard score with an average of 0 and a standard deviation of 1. 

●​ Best Model Selection in NN 
The backpropagation training process is carried out by adjusting the NN architecture. In this study, two 

types of architectures are used, namely networks with one hidden layer and networks with two hidden layers 
where each architecture will try various combinations of the number of neurons in each layer. The criterion for 
stopping training is when it reaches a maximum iteration of 50,000,000 using a learning rate of 0.001. This 
training aims to minimize the error value and obtain a model with good generalization. After getting the results 
of the NN architecture, the next step is to perform a back transformation or destandardization. This process aims 
to change the predicted values that have been normalized back to their original scale, so that the predicted 
results can be interpreted in the context of the original data and can compare the predicted values with the actual 
values of the data. 



 
 

In the NN architecture in this study, researchers tried to use a maximum of two hidden layers in the NN 
compartment, where a combination of the number of neurons from 1 to 10 will be carried out. This combination 
obtains the optimal number of neurons in the first and second hidden layers. Some architectures of combinations 
of neurons in each hidden layer are intended to perform hyperparameter tuning, limiting the learning rate and 
the number of hidden layers and choosing the activation function used. Evaluation using RMSEP on training and 
testing data. Based on the calculation results, the RMSEP value of each model is obtained which can be seen in 
Table 7. 

Table 7. RMSE Calculation Rsults 
Hidden Layer RMSEP Difference between Training 

and Testing RMSEP Hidden Layer1 Hidden Layer2 Training Testing 

1 neuron  88.988 86.595 2.393 

2 neurons  85.018 90.197 5.180 

3 neurons  78.101 110.632 32.531 

4 neurons  75.907 100.158 24.251 

5 neurons  66.340 97.531 31.192 

6 neurons  68.059 96.647 28.589 

7 neurons  69.542 103.764 34.222 

8 neurons  58.299 102.938 44.639 

9 neurons  57.471 114.915 57.444 

10 neurons  46.560 110.919 64.359 

2 neurons 1 neuron 83.746 82.969 0.777 

3 neurons 2 neurons 77.546 100.939 23.393 

4 neurons 3 neurons 70.852 97.184 26.332 

5 neurons 4 neurons 61.167 131.724 70.557 

6 neurons 5 neurons 52.473 89.749 37.276 

7 neurons 6 neurons 49.585 121.518 71.933 

8 neurons 7 neurons 29.696 135.889 106.194 

9 neurons 8 neurons 27.501 116.387 88.886 

10 neurons 9 neurons 17.891 181.869 163.978 

 
By considering various considerations such as choosing the smallest RMSEP value and the difference between the 
RMSEP values of the training data and testing data is not very significant, then based on Table 7, it is found that 
the NN model with a 2 hidden layer architecture model (6-5 neurons) is the best NN model to be used in 
predicting rainfall in Samarinda for the next 12 periods. In this model, the RMSEP of the training data is 52.473 
and the RMSE of the testing data is 89.749. Some of the architectural results of the NN modeling can be seen in 
Figure 11.  



 
 

 

(a)​ NN model 1 hidden layer (8 neurons) 

 

(b)​ NN model 1 hidden layer (9 neurons) 

 

(c)​ NN model 2 hidden layers (6-5 neurons) 

 

(d)​ NN model 2 hidden layers (10-9 neurons) 

Fig. 11. Some architectures of NN modeling 
 

d.​ Best Model Selection 
Based on the results of rainfall data modeling using DES Holt, ARIMA, and NN above, the next step is to 

determine the best model that can be used for forecasting. Table 8 displays the RMSEP values of the best models. 
The model with the smallest RMSE value will be selected as the best method. 

 
Table 8. Model Goodness of Fit Measure 

Method 
RMSEP 

Training Testing 
DES Holt 

( = 0.7 and = 0.1) 
114.66 118.03 

ARIMA (1,1,1) 92.75 80.82 
NN 2 HL (6-5 neurons) 52.473 89.749 

In Table 8, it can be seen that the NN 2 HL (6-5 neurons) has a smaller RMSEP value for training data compared to 
other models, so the NN 2 HL (6-5 neurons) model will be used for forecasting the next 12 periods of rainfall data. 

 

 
e.​ Forecasting and Discussion 

Forecasting rainfall data for the next 12 periods using the NN 2 HL (6-5 neurons) model can be seen in Table. 

Table 9. Forecasting Results of 12 Periods of NN 2 HL (6-5 neurons) 



 
 

 

Month Prediction Results 
January 301.935 

February 245.819 
March 168.822 
April 82.964 
May 173.226 
June 209.721 
July 107.147 

August 204.006 
September 201.430 

October 133.406 
November 207.887 
December 206,919 

 

 
Fig. 12. Comparison plot of actual and predicted data 

Figure 12 shows that in the time series graph for training and testing data, the predicted values ​​almost follow 
the actual data pattern with a forecast accuracy level using RMSEP for training data of 52,473. Forecasting results 
for the following 12 periods show fluctuations in specific periods. Monthly rainfall trends indicate that the months 
with the highest rainfall occur around November to March. Based on the prediction results, it is known that the 
month with the highest rainfall is January. Rainfall patterns also tend to be seasonal, with peak rainfall at the 
beginning of the year and decreasing drastically in the middle of the year. The results of high rainfall predictions in 
certain months can undoubtedly be information and knowledge that brings several practical implications that 
need to be considered by various parties, including the government, society, and the private sector. For example, 
for the government, it can be an early warning system in facing the rainy season with high intensity, including in 
previous periods, by repairing drainage channels, building dams, and normalizing rivers. The government can also 
manage water resources through dams and irrigation. 

Samarinda, as one of the cities supporting the archipelago's capital, certainly faces challenges due to 
significant fluctuations in rainfall. It is hoped that the results of this prediction can become a mitigation strategy 
for the City of Samarinda in spatial management, an early warning system through weather monitoring, which 



 
 

monitors weather conditions in real time. Water resource management is critical to collect and absorb rainwater 
into the soil. Some steps that can be taken include: 

●​ Adequate drainage system: The Samarinda City Government collaborates with related parties to 
evaluate and design an effective drainage system to drain rainwater smoothly and reduce puddles. 

●​ Mapping flood-prone zones: The Samarinda City Government can map areas that are potentially 
flooded and establish appropriate regulations. 

●​ Water resource management: The Samarinda City Government can build absorption wells and 
biopores to help absorb rainwater into the ground, reducing the risk of flooding. Rehabilitation of 
river basins through reforestation can increase water-holding capacity and reduce sedimentation. 

 

Limitations 
Limitations of this study include the potential for model overfitting, reliance on historical data that may not account 
for future climate change, and limited generalizability of the findings to other regions. 
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Abstract 

Modeling rainfall data is critical as one of the steps to mitigate natural disasters due to weather changes. This 

research compares the goodness of traditional and machine learning models for predicting rainfall in Samarinda City. 

Monthly rainfall data was recapitulated by the Meteorology, Climatology, and Geophysics Agency from 2000 to 2020. 

The traditional models used are Exponential Smoothing and ARIMA, while the machine learning model is a Neural 

Network. Data is divided into training and testing with a proportion of 90:10. Evaluation of goodness-of-fit using Root 

Mean Squared Error Prediction (RMSEP). The research results show that the Neural Network has better accuracy in 

predicting rainfall in Samarinda. Forecasting results indicate that monthly rainfall trends suggest that the months 

with the highest rainfall occur around November to March. This research provides important implications for 

developing a warning system for hydrometeorological disasters in Samarinda. The superior points in this research are: 

●​ Modeling rainfall data in Samarinda City using several forecasting methods: Exponential Smoothing, ARIMA, 

and Neural Network.  

●​ The Neural-Network algorithm used is Backpropagation with data standardization. 

●​ Information about predicted high rainfall can be used to issue early warnings of floods or landslides. Disaster 

mitigation through policies to regulate water discharge based on rainfall predictions to prevent floods and 

drought.  

 

Graphical abstract 



 
 

 

The research design used was ex post facto, meaning data was collected after all the events. The stages of data 

analysis modeling rainfall data in Samarinda City are visualized in the Graphical Abstract. The researchers chose the 

three methods based on their advantages and flexibility in the modeling process. The modeling process uses R 

software. 
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This table provides general information on your method. 

Subject area Environmental Science 

More specific subject area Climatology; Hydrology; Statistics Modeling; Forecasting 

Name of your method 
Traditional and Machine Learning Models in Forecasting: Exponential 
Smoothing, ARIMA, NN 

Name and reference of original method 

R. S. Pontoh, T. Toharudin, B. N. Ruchjana, N. Sijabat, and M. D. Puspita, 
“Bandung Rainfall Forecast and Its Relationship with Niño 3.4 Using Nonlinear 
Autoregressive Exogenous Neural Network,” Atmosphere (Basel), vol. 13, no. 
2, Feb. 2022, doi: 10.3390/atmos13020302.  
 
N. H. A. Rahman, M. H. Lee, Suhartono, and M. T. Latif, “Artificial neural 
networks and fuzzy time series forecasting: an application to air quality,” Qual 
Quant, vol. 49, no. 6, pp. 2633–2647, Nov. 2015, doi: 
10.1007/s11135-014-0132-6. 

Resource availability  

The data used is the rainfall data of Samarinda City from 2000 to 2020, 
monthly. The data collection technique used is secondary data collection, 
which is obtained directly from related agencies, in this case the Meteorology, 
Climatology and Geophysics Agency (BMKG) of Samarinda City 



 
 

 

Background 

Rainfall is the height of rainwater collected in a flat place in a certain period, usually measured in millimeters (mm) 

per unit of time (BMKG) [1]. Rainfall is a natural phenomenon that plays a vital role in various aspects of life, 

including the agricultural sector and water resources, and can also be information for natural disaster mitigation. 

Rainfall is one of the most essential elements in climate patterns [2]. An accurate understanding and prediction of 

rainfall is needed in policy-making and early warning systems. Rainfall prediction can use time series models[3], [4]. 

The time series model is a mathematical representation of data collected sequentially over time[5], [6]. With the 

advancement of information technology today, the development of time series models is massive in obtaining the 

best accuracy, from traditional to machine learning models[7]. Researchers will use conventional and 

machine-learning models to model rainfall data in this study [8], [9]. The forecasting models that will be used in this 

study are Exponential Smoothing (ES), Autoregressive Integrated Moving Average (ARIMA), and neural network (NN). 

Exponential Smoothing (ES) is one of the simple smoothing methods, but it has a pretty good performance and can be 

used to forecast future time series[10]. The working principle of ES is to provide further weight to the latest 

observation time series data compared to older observation time series data. The advantage of the ES method is that 

it is simple and easy to implement in its application[11]. Several time series data studies that use ES include [10], [11], 

[12], Autoregressive Integrated Moving Average (ARIMA) is a time series model with solid assumptions that require 

stationary data, so it is necessary to transform the data[13], [14]. In addition, the residuals of the ARIMA model must 

be White Noise and Normally Distributed. Several studies of time series data using ARIMA include [15], [16], [17], 

[18], [19].  

Neural Network (NN), a time series model inspired by Artificial Neural Networks, is known for its adaptability to data 

change patterns [8]. It adjusts the weight of connections between neurons based on the difference between the 

actual output and the output to be predicted, a process done iteratively [20]. This adaptability allows NN to identify 

complex data patterns that traditional models may miss. Several time series data studies have successfully utilized NN 

are [16], [21], [22], [23], [24], [25]. 

The primary goal of this study is to forecast rainfall data for the next 12 periods using the best time series model. This 

model, once identified, can serve as a valuable tool for obtaining future insights. Its potential benefits extend beyond 

the academic realm, as it can help the general public mitigate the negative impacts of extreme weather, making it a 

crucial step in disaster management. 

 

Method details  

A.​ Exponential Smoothing 

In the world of forecasting, the exponential smoothing method is divided into three parts, namely Single 

Exponential Smoothing, which is a development of the Single Moving Average; Double Exponential Smoothing, 

which is a development of the Double Moving Average method, and Triple Exponential Smoothing which is a 

method used to analyze data that has a trend or seasonal pattern. One of the Double Exponential Smoothing 

methods that is often used in forecasting is Double Exponential Smoothing Holt [10], [11]. Double Exponential 

Smoothing (DES) Holt is an exponential smoothing method with two parameters, and its analysis uses trends and 

actual data patterns. DES Holt forecast uses the following formula in Eq. (1)- Eq. (3). 

Level smoothing 



 
 

 
(1) 

Trend smoothing 

 
(2) 

With 

 
(3) 

The Holt DES method estimates two smoothing values, which can be done using the following Eq. (4). 

 and  
(4) 

Where: 

​ : level smoothing parameter, 0 < < 1 

​ : trend smoothing parameter, 0 < < 1 

​ : actual data at time t 

​ : level smoothing at time t 

​ : trend smoothing at time t 

​ : forecasting at time (t+m) 

 

B.​ ARIMA 

the ARIMA model was introduced in 1970 by George EP Box and Gwilym M. Jenkins through their book 

entitled Time Series Analysis [5], [26]. ARIMA is also often called the Box-Jenkins time series method. ARIMA is very 

accurate for both short-term and long-term forecasting. ARIMA can be interpreted as combining two models, 

namely the Autoregressive (AR) model integrated with the Moving Average (MA) model[27]. The ARIMA model is 

generally written with the notation ARIMA (p,d,q) where p is the degree of the AR process, d is the differencing 

order, and I is the degree of the MA process. 

According to Box and Jenkins, the ARIMA (p,d,q) can be expressed in Eq. (5). 

 
(5) 

With: 

​ : backshift operator(B) AR process 

​ : backshift operator(B) MA process 

​ ​ ​ ​ ​ : backshift operator 



 
 

​ ​ ​ ​ : differentiating operator 

​ ​ ​ ​ ​ : order of differencing 

Eq. (5) can be expressed in another form, namely: 

 
(6) 

The ARIMA (p,d,q) model is a combination of the AR (p) and MA (q) models with non-stationary data patterns, 

then differencing is performed with order d. Several time series models for stationary data are as follows: 

1.​ Autoregressive (AR) Model 

Autoregressive is a form of regression but not one that connects dependent variables, but rather connects 

them with previous values at a time lag, so that an autoregressive model will state a forecast as a 

function of previous values of the time series data. The autoregressive model with the order AR (p) or 

ARIMA model (p,0,0) is stated as follows in Eq. (7). 

 
(7) 

Eq. (7) can be written using the backshift operator (B) as: 

 
(8) 

With  is called AR(p) operator. 

 

2.​ Moving Average (MA) Model 

Another model of the ARIMA model is the moving average which is denoted as MA (q) or ARIMA (0,0,q) 

which is written in Eq. (9). 

 
(9) 

Eq. (9) can be written using the backshift operator (B), as: 

 
(10) 

With  is called MA(q) operator. 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) that have been calculated are 

then used to identify the ARIMA model [15], [28]. The identification stage is a stage used to find or determine 

other orders of p and q with the help of the autocorrelation function (ACF) and partial autocorrelation function 

(PACF) as follows: 

Table 1. General ACF and PACF Patterns for AR and MA Models 

Process ACF PACF 

AR (p) 
Dies down (rapidly decreasing 

exponentially/sinusoidal) 
Cuts off after lag p 

MA (q) Cuts off after lag q 
Dies down (rapidly decreasing 

exponentially/sinusoidal) 



 
 

Process ACF PACF 

ARMA (p,q) 
Dies down (rapidly decreasing 

exponentially/sinusoidally) 

Dies down (rapidly decreasing 

exponentially/sinusoidally) 

AR (p) or MA (q) Cuts off after lag q Cuts off after lag p 

White Noise 

(Random) 
Nothing is out of bounds Nothings is out of bounds 

 

C.​ Neural Network 

Neural Network (NN) is an information processing method that imitates how the human brain works[29]. NN 

has several simple processing units that are interconnected and work in parallel to complete complex tasks. The 

learning process in NN is carried out by adjusting the weight of the synapses that connect between units so that 

they can generalize patterns in data and make predictions [30], [31]. NN consists of neurons that have information 

flow. The NN structure consists of three layers of neural units, namely the input layer, the hidden layer, and the 

output layer[32]. As an illustration, it can be seen in Figure 1. 

 

 

Fig. 1. Neural Network Structure 

Backpropagation is a core algorithm in NN learning that works by adjusting the connection weights between 

neurons to minimize prediction errors[33]. This process allows NN to learn complex patterns in data. The 

activation function, an essential component in neurons, plays a role in determining whether a neuron will be 

active. A good activation function must have continuous, differentiable, and non-monotonic properties for the 

gradient calculation during the backpropagation process. The derivative of this activation function is crucial in 

measuring how much each neuron contributes to the total error, allowing for more precise weight 

adjustments[34]. The activation function used in this study is the bipolar sigmoid function. The bipolar sigmoid 

activation function has a value range of -1 to 1 with the formula in Eq. (11). 

 

(11) 

With the derivative of Eq. (11) shown in Eq. (12). 

 

(12) 



 
 

D.​ Root Mean Square Error Prediction 

In this study, to find the forecast accuracy value, the Root Mean Square Error Prediction (RMSEP) method is 

used. RMSEP can be interpreted as a measure of error based on the difference between two-value, actual and 

prediction. The RMSEP formula shown in Eq. (13). 

 
(13) 

 

E.​ Data and Data Sources  

The data used is the rainfall data of Samarinda City from 2000 to 2020, monthly. The data collection 

technique used is secondary data collection, which is obtained directly from related agencies, in this case the 

Meteorology, Climatology and Geophysics Agency (BMKG) of Samarinda City. Time series plot of the rainfall data 

in Samarinda for 2000 – 2020 can be seen in Figure 2. 

 

 

Fig. 2. Time series plot of rainfall data in Samarinda 

Based on Figure 2, there is a significant fluctuation in rainfall in Samarinda in the period from January 2000 to 
December 2020. This indicates that rainfall in Samarinda has experienced quite significant changes over time 
during this period. This fluctuation can be caused by various factors, such as global climate change, human 
activities, and other natural phenomena 

 

Method validation 
a.​ Modeling with Double Exponential Smoothing 

Double Exponential Smoothing (DES) Holt is an exponential smoothing method that has two parameters, 

namely  and  . In this study, the data was divided into training data and testing data with a division of 

90:10. The first step that must be taken is to find the combination value for  and  optimal by looking at the 

Root Mean Square Error Prediction (RMSEP) value on the training data, where the smaller the RMSEP value, the 
better the model's ability to predict accurately. The following is a table of combination results. 



 
 

 

Table 2. Combination  and  Optimal 

Alpha (

) 
Beta ( ) 

RMSEP 
Alpha (

) 
Beta ( ) 

RMSEP 
Alpha (

) 
Beta ( ) 

RMSEP 

0.1 0.1 209.57 0.4 0.1 115.28 0.7 0.1 114.66 
0.1 0.2 168.88 0.4 0.2 114.72 0.7 0.2 117.53 
0.1 0.3 151.35 0.4 0.3 117.14 0.7 0.3 121.28 
0.1 0.4 142.15 0.4 0.4 120.05 0.7 0.4 125.22 
0.1 0.5 138.57 0.4 0.5 122.79 0.7 0.5 129.28 
0.1 0.6 138.89 0.4 0.6 125.13 0.7 0.6 133.49 
0.1 0.7 140.94 0.4 0.7 127.14 0.7 0.7 137.81 
0.1 0.8 143.61 0.4 0.8 129.14 0.7 0.8 142.23 
0.1 0.9 146.54 0.4 0.9 131.40 0.7 0.9 146.69 
0.2 0.1 138.03 0.5 0.1 113.38 0.8 0.1 116.90 
0.2 0.2 125.13 0.5 0.2 114.43 0.8 0.2 120.51 
0.2 0.3 123.20 0.5 0.3 117.25 0.8 0.3 124.84 
0.2 0.4 124.69 0.5 0.4 120.25 0.8 0.4 129.38 
0.2 0.5 127.24 0.5 0.5 123.15 0.8 0.5 134.08 
0.2 0.6 130.18 0.5 0.6 126.01 0.8 0.6 138.95 
0.2 0.7 133.68 0.5 0.7 129.02 0.8 0.7 143.98 
0.2 0.8 138.00 0.5 0.8 132.29 0.8 0.8 149.15 
0.2 0.9 142.86 0.5 0.9 135.84 0.8 0.9 154.50 
0.3 0.1 121.04 0.6 0.1 113.40 0.9 0.1 120.05 
0.3 0.2 117.09 0.6 0.2 115.47 0.9 0.2 124.44 
0.3 0.3 118.59 0.6 0.3 118.72 0.9 0.3 129.47 
0.3 0.4 121.41 0.6 0.4 122.12 0.9 0.4 134.78 
0.3 0.5 124.67 0.6 0.5 125.59 0.9 0.5 140.34 
0.3 0.6 127.90 0.6 0.6 129.19 0.9 0.6 146.16 
0.3 0.7 130.56 0.6 0.7 132.97 0.9 0.7 152.29 
0.3 0.8 132.27 0.6 0.8 136.90 0.9 0.8 158.77 
0.3 0.9 133.12 0.6 0.9 140.91 0.9 0.9 165.67 

 

Based on Table 2, it can be seen that there are 4 combinations that have the smallest RMSE values, namely the 
following combinations: 

 

Table 3. Optimal Combination Value of Training and Testing Data 

Parameter Value 
RMSEP 
Training 

RMSEP  
Testing 

= 0.4 and = 

0.2 

114.72 122.92 

= 0.5 and = 

0.1 

113.38 127.50 

= 0.6 and = 

0.1 

113.40 121.13 



 
 

= 0.7 and = 

0.1 

114.66 118.03 

 
b.​ Modeling with ARIMA 

The rainfall data to be modeled with ARIMA is first transformed and differencing to make it stationary in 
mean and variance. The ACF and PACF plots of the transformed and differencing data of order 1 can be seen in 
Figures 3 and 4. 

 
Fig. 3. ACF Plot of Rainfall Data Results of Differencing 

 
Fig. 4. PACF Plot of Rainfall Data Results of Differencing 

 
Based on the ACF plot, it can be seen that the cut-off after lag 1, so the q order used is 0 and 1. Meanwhile, 

based on the PACF plot, it can be seen that there is a cut-off after lag 3 so that the p order used is 0, 1, 2, and 3. So 
that the temporary ARIMA models that can be formed are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), ARIMA 
(0,1,1), ARIMA (1,1,1), ARIMA (2,1,1), and ARIMA (3,1,1). 

Table 5. Temporary ARIMA Model Parameter Estimation 

Model Parameter Estimate p-value Conclusion 

ARIMA(1,1,0)  -0.380766 5.579e-10 Significant 



 
 

Model Parameter Estimate p-value Conclusion 

ARIMA(2,1,0) 
 -0.455156 2.982e-12 

Significant 

 -0.193967 0.002867 

ARIMA(3,1,0) 

 -0.507994 1,760e-15 

Significant  -0.320263 3.421e-06 

 -0.275761 1.507e-05 

ARIMA(0,1,1)  -1,000000 < 2.2e-16 Significant 

ARIMA(1,1,1) 
 0.273909 2.071e-05 

Significant 

 -1,000000 < 2.2e-16 

ARIMA(2,1,1,) 

 0.266500 6.351e-05 

Not Significant  0.028447 0.6701 

 -1,000000 < 2.2e-16 

ARIMA(3,1,1) 

 0.268049 5.375e-05 

Not Significant 
 0.048998 0.475 

 -0.081457 0.220 

 -1,000000 < 2.2e-16 
 

The temporary ARIMA models that have significant parameters are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), 
ARIMA (0,1,1) and ARIMA (1,1,1). The following figures are visualizations of the residual independence and 
residual normality assumptions of the temporary ARIMA models that are formed. 

 
Fig. 5. Independence and Normality of ARIMA Residuals (1,1,0) 



 
 

 
Fig. 6. Independence and Normality of ARIMA Residuals (2,1,0) 

 
Fig. 7. Independence and Normality of ARIMA Residuals (3,1,0) 

 
Fig. 8. Independence and Normality of ARIMA Residuals (0,1,1) 

 
Fig. 9. Independence and Normality of ARIMA Residuals (1,1,1) 

Based on the figures above, it can be seen that all temporary ARIMA models meet the residual normality 
assumption because they form a bell curve, meaning that the models have normally distributed residuals. 
However, all of these models can be indicated that there is autocorrelation or violation of the residual 
independence assumption because there are several lags that are outside the upper and lower limits of the ACF 
plot. The selection of the best temporary ARIMA model can be determined by looking at the smallest RMSEP value 
in the transformed data. Thus, the ARIMA model (1,1,1) is the best temporary ARIMA model.  



 
 

Table 6. Accuracy of Training and Testing Data for ARIMA Model (1,1,1) 
Proportion RMSEP 

Data Training 92.75 
Data Testing 80.82 

 
c.​ Modeling with Neural Network (NN) 

●​ Determination of Input Variables 
The determination of network input variables is done based on significant lags on the ACF graph or PACF 

graph. The ACF graph and PACF graph of rainfall data in Samarinda can be seen in Figure 10. 

 

(a)​ ACF graph 

 

(b)​ PACF graph 

Fig. 10. ACF and PACF graphs of rainfall data in Samarinda 
 

Based on Figure 10, it can be seen that there are several significant lags. In the ACF graph, there are significant 

lags at lag 1, lag 9, lag 12, and lag 13, while in the PACF graph, significant lags are at lag 1, lag 9, lag 11, and lag 

12. This indicates a dependency between the value of an observation and the value of the previous observation 

up to 12 or 13 time periods. Therefore, this study uses 6 time lags as input variables, namely lag 1, lag 2, lag 3, 

lag 9, lag 11, and lag 12. 

●​ Data Standarization 
Standardization of research data is done to change the range of data values into a more uniform scale, 

thus facilitating comparison and analysis. In this study, the z-score standardization method is used to change the 
data into a standard score with an average of 0 and a standard deviation of 1. 

●​ Best Model Selection in NN 
The backpropagation training process is carried out by adjusting the NN architecture. In this study, two 

types of architectures are used, namely networks with one hidden layer and networks with two hidden layers 
where each architecture will try various combinations of the number of neurons in each layer. The criterion for 
stopping training is when it reaches a maximum iteration of 50,000,000 using a learning rate of 0.001. This 
training aims to minimize the error value and obtain a model with good generalization. After getting the results 
of the NN architecture, the next step is to perform a back transformation or destandardization. This process aims 
to change the predicted values that have been normalized back to their original scale, so that the predicted 
results can be interpreted in the context of the original data and can compare the predicted values with the actual 
values of the data. 



 
 

In the NN architecture in this study, researchers tried to use a maximum of two hidden layers in the NN 
compartment, where a combination of the number of neurons from 1 to 10 will be carried out. This combination 
obtains the optimal number of neurons in the first and second hidden layers. Some architectures of combinations 
of neurons in each hidden layer are intended to perform hyperparameter tuning, limiting the learning rate and 
the number of hidden layers and choosing the activation function used. Evaluation using RMSEP on training and 
testing data. Based on the calculation results, the RMSEP value of each model is obtained which can be seen in 
Table 7. 

Table 7. RMSE Calculation Rsults 
Hidden Layer RMSEP Difference between Training 

and Testing RMSEP Hidden Layer1 Hidden Layer2 Training Testing 

1 neuron  88.988 86.595 2.393 

2 neurons  85.018 90.197 5.180 

3 neurons  78.101 110.632 32.531 

4 neurons  75.907 100.158 24.251 

5 neurons  66.340 97.531 31.192 

6 neurons  68.059 96.647 28.589 

7 neurons  69.542 103.764 34.222 

8 neurons  58.299 102.938 44.639 

9 neurons  57.471 114.915 57.444 

10 neurons  46.560 110.919 64.359 

2 neurons 1 neuron 83.746 82.969 0.777 

3 neurons 2 neurons 77.546 100.939 23.393 

4 neurons 3 neurons 70.852 97.184 26.332 

5 neurons 4 neurons 61.167 131.724 70.557 

6 neurons 5 neurons 52.473 89.749 37.276 

7 neurons 6 neurons 49.585 121.518 71.933 

8 neurons 7 neurons 29.696 135.889 106.194 

9 neurons 8 neurons 27.501 116.387 88.886 

10 neurons 9 neurons 17.891 181.869 163.978 

 
By considering various considerations such as choosing the smallest RMSEP value and the difference between the 
RMSEP values of the training data and testing data is not very significant, then based on Table 7, it is found that 
the NN model with a 2 hidden layer architecture model (6-5 neurons) is the best NN model to be used in 
predicting rainfall in Samarinda for the next 12 periods. In this model, the RMSEP of the training data is 52.473 
and the RMSE of the testing data is 89.749. Some of the architectural results of the NN modeling can be seen in 
Figure 11.  



 
 

 

(a)​ NN model 1 hidden layer (8 neurons) 

 

(b)​ NN model 1 hidden layer (9 neurons) 

 

(c)​ NN model 2 hidden layers (6-5 neurons) 

 

(d)​ NN model 2 hidden layers (10-9 neurons) 

Fig. 11. Some architectures of NN modeling 
 

d.​ Best Model Selection 
Based on the results of rainfall data modeling using DES Holt, ARIMA, and NN above, the next step is to 

determine the best model that can be used for forecasting. Table 8 displays the RMSEP values of the best models. 
The model with the smallest RMSE value will be selected as the best method. 

 
Table 8. Model Goodness of Fit Measure 

Method 
RMSEP 

Training Testing 
DES Holt 

( = 0.7 and = 0.1) 
114.66 118.03 

ARIMA (1,1,1) 92.75 80.82 
NN 2 HL (6-5 neurons) 52.473 89.749 

In Table 8, it can be seen that the NN 2 HL (6-5 neurons) has a smaller RMSEP value for training data compared to 
other models, so the NN 2 HL (6-5 neurons) model will be used for forecasting the next 12 periods of rainfall data. 

 

 
e.​ Forecasting and Discussion 

Forecasting rainfall data for the next 12 periods using the NN 2 HL (6-5 neurons) model can be seen in Table. 

Table 9. Forecasting Results of 12 Periods of NN 2 HL (6-5 neurons) 



 
 

 

Month Prediction Results 
January 301.935 

February 245.819 
March 168.822 
April 82.964 
May 173.226 
June 209.721 
July 107.147 

August 204.006 
September 201.430 

October 133.406 
November 207.887 
December 206,919 

 

 
Fig. 12. Comparison plot of actual and predicted data 

Figure 12 shows that in the time series graph for training and testing data, the predicted values ​​almost follow 
the actual data pattern with a forecast accuracy level using RMSEP for training data of 52,473. Forecasting results 
for the following 12 periods show fluctuations in specific periods. Monthly rainfall trends indicate that the months 
with the highest rainfall occur around November to March. Based on the prediction results, it is known that the 
month with the highest rainfall is January. Rainfall patterns also tend to be seasonal, with peak rainfall at the 
beginning of the year and decreasing drastically in the middle of the year. The results of high rainfall predictions in 
certain months can undoubtedly be information and knowledge that brings several practical implications that 
need to be considered by various parties, including the government, society, and the private sector. For example, 
for the government, it can be an early warning system in facing the rainy season with high intensity, including in 
previous periods, by repairing drainage channels, building dams, and normalizing rivers. The government can also 
manage water resources through dams and irrigation. 

Samarinda, as one of the cities supporting the archipelago's capital, certainly faces challenges due to 
significant fluctuations in rainfall. It is hoped that the results of this prediction can become a mitigation strategy 
for the City of Samarinda in spatial management, an early warning system through weather monitoring, which 



 
 

monitors weather conditions in real time. Water resource management is critical to collect and absorb rainwater 
into the soil. Some steps that can be taken include: 

●​ Adequate drainage system: The Samarinda City Government collaborates with related parties to 
evaluate and design an effective drainage system to drain rainwater smoothly and reduce puddles. 

●​ Mapping flood-prone zones: The Samarinda City Government can map areas that are potentially 
flooded and establish appropriate regulations. 

●​ Water resource management: The Samarinda City Government can build absorption wells and 
biopores to help absorb rainwater into the ground, reducing the risk of flooding. Rehabilitation of 
river basins through reforestation can increase water-holding capacity and reduce sedimentation. 

 

Limitations 
Limitations of this study include the potential for model overfitting, reliance on historical data that may not account 
for future climate change, and limited generalizability of the findings to other regions. 
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a b s t r a c t 

Modeling rainfall data is critical as one of the steps to mitigate natural disasters due to weather 

changes. This research compares the goodness of traditional and machine learning models for 

predicting rainfall in Samarinda City. Monthly rainfall data was recapitulated by the Meteorol- 

ogy, Climatology, and Geophysics Agency from 2000 to 2020. The traditional models used are 

Exponential Smoothing and ARIMA, while the machine learning model is a Neural Network. Data 

is divided into training and testing with a proportion of 90:10. Evaluation of goodness-of-fit us- 

ing Root Mean Squared Error Prediction (RMSEP). The research results show that the Neural 

Network has better accuracy in predicting rainfall in Samarinda. Forecasting results indicate that 

monthly rainfall trends suggest that the months with the highest rainfall occur around Novem- 

ber to March. This research provides important implications for developing a warning system for 

hydrometeorological disasters in Samarinda. The superior points in this research are: 

• Modeling rainfall data in Samarinda City using several forecasting methods: Exponential 
Smoothing, ARIMA, and Neural Network. 

• The Neural-Network algorithm used is Backpropagation with data standardization. 

• Information about predicted high rainfall can be used to issue early warnings of floods or 
landslides. Disaster mitigation through policies to regulate water discharge based on rainfall 

predictions to prevent floods and drought. 
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N. H. A. Rahman, M. H. Lee, Suhartono, and M. T. Latif, “Artificial neural networks 

and fuzzy time series forecasting: an application to air quality, ” Qual Quant, vol. 49, 

no. 6, pp. 2633–2647, Nov. 2015, doi: 10.1007/s11135–014–0132–6. 

Resource availability: The data used is the rainfall data of Samarinda City from 2000 to 2020, monthly. 

The data collection technique used is secondary data collection, which is obtained 

directly from related agencies, in this case the Meteorology, Climatology and 

Geophysics Agency (BMKG) of Samarinda City 

Background 

Rainfall is the height of rainwater collected in a flat place in a certain period, usually measured in millimeters (mm) per unit of time 

(BMKG) [ 1 ]. Rainfall is a natural phenomenon that plays a vital role in various aspects of life, including the agricultural sector and 

water resources, and can also be information for natural disaster mitigation. Rainfall is one of the most essential elements in climate 

patterns [ 2 ]. An accurate understanding and prediction of rainfall is needed in policy-making and early warning systems. Rainfall 

prediction can use time series models [ 3 , 4 ]. The time series model is a mathematical representation of data collected sequentially over 

time [ 5 , 6 ]. With the advancement of information technology today, the development of time series models is massive in obtaining 

the best accuracy, from traditional to machine learning models [ 7 ]. Researchers will use conventional and machine-learning models 

to model rainfall data in this study [ 8 , 9 ]. The forecasting models that will be used in this study are Exponential Smoothing (ES), 

Autoregressive Integrated Moving Average (ARIMA), and neural network (NN). 

Exponential Smoothing (ES) is one of the simple smoothing methods, but it has a pretty good performance and can be used to 

forecast future time series [ 10 ]. The working principle of ES is to provide further weight to the latest observation time series data 

compared to older observation time series data. The advantage of the ES method is that it is simple and easy to implement in its 

application [ 11 ]. Several time series data studies that use ES include [ 10 –12 ], Autoregressive Integrated Moving Average (ARIMA) is 

a time series model with solid assumptions that require stationary data, so it is necessary to transform the data [ 13 , 14 ]. In addition, 

the residuals of the ARIMA model must be White Noise and Normally Distributed. Several studies of time series data using ARIMA 

include [ 15 –19 ]. 

Neural Network (NN), a time series model inspired by Artificial Neural Networks, is known for its adaptability to data change 

patterns [ 8 ]. It adjusts the weight of connections between neurons based on the difference between the actual output and the output 

to be predicted, a process done iteratively [ 20 ]. This adaptability allows NN to identify complex data patterns that traditional models 

may miss. Several time series data studies have successfully utilized NN are [ 16 , 21 –25 ]. 

The primary goal of this study is to forecast rainfall data for the next 12 periods using the best time series model. This model, 

once identified, can serve as a valuable tool for obtaining future insights. Its potential benefits extend beyond the academic realm, 

as it can help the general public mitigate the negative impacts of extreme weather, making it a crucial step in disaster management. 

Method details 

Exponential smoothing 

In the world of forecasting, the exponential smoothing method is divided into three parts, namely Single Exponential Smoothing, 

which is a development of the Single Moving Average; Double Exponential Smoothing, which is a development of the Double Moving 

Average method, and Triple Exponential Smoothing which is a method used to analyze data that has a trend or seasonal pattern. 

One of the Double Exponential Smoothing methods that is often used in forecasting is Double Exponential Smoothing Holt [ 10 , 11 ]. 

Double Exponential Smoothing (DES) Holt is an exponential smoothing method with two parameters, and its analysis uses trends and 

actual data patterns. DES Holt forecast uses the following formula in Eq. (1) –Eq. (3) . 

Level smoothing 

𝐿𝑡 = 𝛼𝑍𝑡 + ( 1 − 𝛼) 
(
𝐿𝑡 −1 + 𝑇𝑡 −1 

)
(1) 

Trend smoothing 

𝑇𝑡 = 𝛽
(
𝐿𝑡 − 𝐿𝑡 −1 

)
+ ( 1 − 𝛽) 𝑇𝑡 −1 (2) 

With 

𝐹𝑡 + 𝑚 = 𝐿𝑡 + 𝑇𝑡 𝑚 (3) 

The Holt DES method estimates two smoothing values, which can be done using the following Eq. (4) . 

𝐿1 = 𝑍1 𝑎𝑛𝑑 𝑇1 = 𝑍2 −𝑍1 (4) 

Where: 

𝛼 level smoothing parameter, 0 < 𝛼< 1 

𝛽 trend smoothing parameter, 0 < 𝛼< 1 

𝑍𝑡 actual data at time t 

𝐿𝑡 level smoothing at time t 
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𝑇𝑡 trend smoothing at time t 

𝐹𝑡 + 𝑚 forecasting at time ( t + m ) 

ARIMA 

The ARIMA model was introduced in 1970 by George EP Box and Gwilym M. Jenkins through their book entitled Time Series 

Analysis [ 5 , 26 ]. ARIMA is also often called the Box-Jenkins time series method. ARIMA is very accurate for both short-term and 

long-term forecasting. ARIMA can be interpreted as combining two models, namely the Autoregressive (AR) model integrated with 

the Moving Average (MA) model [ 27 ]. The ARIMA model is generally written with the notation ARIMA ( p,d,q ) where p is the degree 

of the AR process, d is the differencing order, and I is the degree of the MA process. 

According to Box and Jenkins, the ARIMA ( p,d,q ) can be expressed in Eq. (5) . 

𝜙𝑝 ( 𝐵)(1 − 𝐵) 𝑑 𝑍𝑡 = 𝜃𝑞 ( 𝐵)𝑎𝑡 (5) 

With: 

𝜙𝑝 ( 𝐵) = 1 − 𝜙1 𝐵 − 𝜙2 𝐵
2 − ... − 𝜙𝑝 𝐵

𝑝 backshift operator( B ) AR process 

𝜃𝑞 ( 𝐵) = 1 − 𝜃1 𝐵 − 𝜃2 𝐵
2 − ... − 𝜃𝑞 𝐵

𝑞 backshift operator( B ) MA process 

𝐵 backshift operator 

(1 − 𝐵) 𝑑 differentiating operator 

𝑑 order of differencing 

Eq. (5) can be expressed in another form, namely: 

(1 − 𝜙1 𝐵 − 𝜙2 𝐵
2 − ... − 𝜙𝑝 𝐵

𝑝 )𝑍𝑡 = (1 − 𝜃1 𝐵 − 𝜃2 𝐵
2 − ... − 𝜃𝑞 𝐵

𝑞 )𝑎𝑡 (6) 

The ARIMA ( p,d,q ) model is a combination of the AR ( p ) and MA ( q ) models with non-stationary data patterns, then differencing 

is performed with order d . Several time series models for stationary data are as follows: 

Autoregressive (AR) Model 

Autoregressive is a form of regression but not one that connects dependent variables, but rather connects them with previous 

values at a time lag, so that an autoregressive model will state a forecast as a function of previous values of the time series data. The 

autoregressive model with the order AR ( p ) or ARIMA model ( p ,0,0) is stated as follows in Eq. (7) . 

𝑍𝑡 = 𝜙1 𝑍𝑡 −1 + 𝜙2 𝑍𝑡 −2 + ... + 𝜙𝑝 𝑍𝑡 − 𝑝 + 𝑎𝑡 (7) 

Eq. (7) can be written using the backshift operator ( B ) as: 

𝜙𝑝 ( 𝐵)𝑍𝑡 = 𝑎𝑡 (8) 

With 𝜙𝑝 ( 𝐵) = 1 − 𝜙1 𝐵 − 𝜙2 𝐵
2 − ... − 𝜙𝑝 𝐵

𝑝 is called AR( p ) operator. 

Moving Average (MA) Model 

Another model of the ARIMA model is the moving average which is denoted as MA ( q ) or ARIMA (0,0, q ) which is written in 

Eq. (9) . 

𝑍𝑡 = 𝑎𝑡 − 𝜃1 𝑎𝑡 −1 − 𝜃2 𝑎𝑡 −2 − ... − 𝜃𝑞 𝑎𝑡 − 𝑞 (9) 

Eq. (9) can be written using the backshift operator ( B ), as: 

𝑍𝑡 = 𝜃𝑞 ( 𝐵)𝑎𝑡 (10) 

With 𝜃𝑞 ( 𝐵) = 1 − 𝜃1 𝐵 − 𝜃2 𝐵
2 − ... − 𝜃𝑞 𝐵

𝑞 is called MA( q ) operator. 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) that have been calculated are then used to identify 

the ARIMA model [ 15 , 28 ]. The identification stage is a stage used to find or determine other orders of p and q with the help of the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) as follows: 

Neural network 

Neural Network (NN) is an information processing method that imitates how the human brain works [ 29 ]. NN has several simple 

processing units that are interconnected and work in parallel to complete complex tasks. The learning process in NN is carried out 

by adjusting the weight of the synapses that connect between units so that they can generalize patterns in data and make predictions 

[ 30 , 31 ]. NN consists of neurons that have information flow. The NN structure consists of three layers of neural units, namely the 

input layer, the hidden layer, and the output layer [ 32 ]. As an illustration, it can be seen in Fig. 1 . ( Table 1 ). 

Backpropagation is a core algorithm in NN learning that works by adjusting the connection weights between neurons to minimize 

prediction errors [ 33 ]. This process allows NN to learn complex patterns in data. The activation function, an essential component in 

neurons, plays a role in determining whether a neuron will be active. A good activation function must have continuous, differentiable, 

and non-monotonic properties for the gradient calculation during the backpropagation process. The derivative of this activation func- 

tion is crucial in measuring how much each neuron contributes to the total error, allowing for more precise weight adjustments [ 34 ]. 
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Fig. 1. Neural network structure. 

Table 1 

General ACF and PACF Patterns for AR and MA Models. 

Process ACF PACF 

AR ( p ) Dies down (rapidly decreasing exponentially/sinusoidal) Cuts off after lag p 

MA ( q ) Cuts off after lag q Dies down (rapidly decreasing exponentially/sinusoidal) 

ARMA ( p,q ) Dies down (rapidly decreasing exponentially/sinusoidally) Dies down (rapidly decreasing exponentially/sinusoidally) 

AR ( p ) or MA ( q ) Cuts off after lag q Cuts off after lag p 

White Noise (Random) Nothing is out of bounds Nothings is out of bounds 

The activation function used in this study is the bipolar sigmoid function. The bipolar sigmoid activation function has a value range 

of -1 to 1 with the formula in Eq. (11) . 

𝑓1 ( 𝑧) =
2 

1 + 𝑒−2 𝑧 
− 1 (11) 

With the derivative of Eq. (11) shown in Eq. (12) . 

𝑓 ′
1 ( 𝑧) =

1 
2 
[
1 + 𝑓1 ( 𝑧) 

][
1 − 𝑓1 ( 𝑧) 

]
(12) 

Root mean square error prediction 

In this study, to find the forecast accuracy value, the Root Mean Square Error Prediction (RMSEP) method is used. RMSEP can be 

interpreted as a measure of error based on the difference between two-value, actual and prediction. The RMSEP formula shown in 

Eq. (13) . 

𝑅𝑀𝑆𝐸𝑃 = 1 
𝑛 

√ √ √ √ 

𝑛 ∑
𝑡 =1 

(
𝑍𝑡 − 𝑍̂𝑡 

)
(13) 

Data and data sources 

The data used is the rainfall data of Samarinda City from 2000 to 2020, monthly. The data collection technique used is secondary 

data collection, which is obtained directly from related agencies, in this case the Meteorology, Climatology and Geophysics Agency 

(BMKG) of Samarinda City. Time series plot of the rainfall data in Samarinda for 2000 – 2020 can be seen in Fig. 2 . 

Based on Fig. 2 , there is a significant fluctuation in rainfall in Samarinda in the period from January 2000 to December 2020. 

This indicates that rainfall in Samarinda has experienced quite significant changes over time during this period. This fluctuation can 

be caused by various factors, such as global climate change, human activities, and other natural phenomena. 

Method validation 

Modeling with double exponential smoothing 

Double Exponential Smoothing (DES) Holt is an exponential smoothing method that has two parameters, namely 𝛼 and 𝛽. In this 

study, the data was divided into training data and testing data with a division of 90:10. The first step that must be taken is to find 

4
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Fig. 2. Time series plot of rainfall data in Samarinda. 
Table 2 

Combination 𝛼 and 𝛽 Optimal. 

Alpha ( 𝛼) Beta ( 𝛽) RMSEP Alpha ( 𝛼) Beta ( 𝛽) RMSEP Alpha ( 𝛼) Beta ( 𝛽) RMSEP 

0.1 0.1 209.57 0.4 0.1 115.28 0.7 0.1 114.66 

0.1 0.2 168.88 0.4 0.2 114.72 0.7 0.2 117.53 

0.1 0.3 151.35 0.4 0.3 117.14 0.7 0.3 121.28 

0.1 0.4 142.15 0.4 0.4 120.05 0.7 0.4 125.22 

0.1 0.5 138.57 0.4 0.5 122.79 0.7 0.5 129.28 

0.1 0.6 138.89 0.4 0.6 125.13 0.7 0.6 133.49 

0.1 0.7 140.94 0.4 0.7 127.14 0.7 0.7 137.81 

0.1 0.8 143.61 0.4 0.8 129.14 0.7 0.8 142.23 

0.1 0.9 146.54 0.4 0.9 131.40 0.7 0.9 146.69 

0.2 0.1 138.03 0.5 0.1 113.38 0.8 0.1 116.90 

0.2 0.2 125.13 0.5 0.2 114.43 0.8 0.2 120.51 

0.2 0.3 123.20 0.5 0.3 117.25 0.8 0.3 124.84 

0.2 0.4 124.69 0.5 0.4 120.25 0.8 0.4 129.38 

0.2 0.5 127.24 0.5 0.5 123.15 0.8 0.5 134.08 

0.2 0.6 130.18 0.5 0.6 126.01 0.8 0.6 138.95 

0.2 0.7 133.68 0.5 0.7 129.02 0.8 0.7 143.98 

0.2 0.8 138.00 0.5 0.8 132.29 0.8 0.8 149.15 

0.2 0.9 142.86 0.5 0.9 135.84 0.8 0.9 154.50 

0.3 0.1 121.04 0.6 0.1 113.40 0.9 0.1 120.05 

0.3 0.2 117.09 0.6 0.2 115.47 0.9 0.2 124.44 

0.3 0.3 118.59 0.6 0.3 118.72 0.9 0.3 129.47 

0.3 0.4 121.41 0.6 0.4 122.12 0.9 0.4 134.78 

0.3 0.5 124.67 0.6 0.5 125.59 0.9 0.5 140.34 

0.3 0.6 127.90 0.6 0.6 129.19 0.9 0.6 146.16 

0.3 0.7 130.56 0.6 0.7 132.97 0.9 0.7 152.29 

0.3 0.8 132.27 0.6 0.8 136.90 0.9 0.8 158.77 

0.3 0.9 133.12 0.6 0.9 140.91 0.9 0.9 165.67 

the combination value for 𝛼 and 𝛽 optimal by looking at the Root Mean Square Error Prediction (RMSEP) value on the training data, 

where the smaller the RMSEP value, the better the model’s ability to predict accurately. The following is a table of combination 

results. 

Based on Table 2 , it can be seen that there are 4 combinations that have the smallest RMSE values, namely the following combi- 

nations: ( Table 3 ). 

Modeling with ARIMA 

The rainfall data to be modeled with ARIMA is first transformed and differencing to make it stationary in mean and variance. The 

ACF and PACF plots of the transformed and differencing data of order 1 can be seen in Figs. 3 and 4 . 
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Table 3 

Optimal combination value of training and testing data. 

Parameter Value RMSEP Training RMSEP Testing 

𝛼 = 0.4 and 𝛽 = 0.2 114.72 122.92 

𝛼 = 0.5 and 𝛽 = 0.1 113.38 127.50 

𝛼 = 0.6 and 𝛽 = 0.1 113.40 121.13 

𝛼 = 0.7 and 𝛽 = 0.1 114.66 118.03 

Fig. 3. ACF plot of rainfall data results of differencing. 

Fig. 4. PACF plot of rainfall data results of differencing. 

Based on the ACF plot, it can be seen that the cut-off after lag 1, so the q order used is 0 and 1. Meanwhile, based on the PACF 

plot, it can be seen that there is a cut-off after lag 3 so that the p order used is 0, 1, 2, and 3. So that the temporary ARIMA models 

that can be formed are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), ARIMA (0,1,1), ARIMA (1,1,1), ARIMA (2,1,1), and ARIMA 

(3,1,1). 

The temporary ARIMA models that have significant parameters are ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), ARIMA (0,1,1) 

and ARIMA (1,1,1). The following figures are visualizations of the residual independence and residual normality assumptions of the 

temporary ARIMA models that are formed ( Table 4 ). 

Based on the figures above, it can be seen that all temporary ARIMA models meet the residual normality assumption because they 

form a bell curve, meaning that the models have normally distributed residuals. However, all of these models can be indicated that 

there is autocorrelation or violation of the residual independence assumption because there are several lags that are outside the upper 

and lower limits of the ACF plot. The selection of the best temporary ARIMA model can be determined by looking at the smallest 

RMSEP value in the transformed data. Thus, the ARIMA model (1,1,1) is the best temporary ARIMA model ( Fig. 5 ). 

6
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Table 4 

Temporary ARIMA model parameter estimation. 

Model Parameter Estimate p-value Conclusion 

ARIMA(1,1,0) 𝜙̂1 -0.380766 5.579e-10 Significant 

ARIMA(2,1,0) 𝜙̂1 -0.455156 2.982e-12 Significant 

𝜙̂2 -0.193967 0.002867 

ARIMA(3,1,0) 𝜙̂1 -0.507994 1,760e-15 Significant 

𝜙̂2 -0.320263 3.421e-06 

𝜙̂3 -0.275761 1.507e-05 

ARIMA(0,1,1) 𝜃̂1 -1,000000 < 2.2e-16 Significant 

ARIMA(1,1,1) 𝜙̂1 0.273909 2.071e-05 Significant 

𝜃̂1 -1,000000 < 2.2e-16 

ARIMA(2,1,1,) 𝜙̂1 0.266500 6.351e-05 Not Significant 

𝜙̂2 0.028447 0.6701 

𝜃̂1 -1,000000 < 2.2e-16 

ARIMA(3,1,1) 𝜙̂1 0.268049 5.375e-05 Not Significant 

𝜙̂2 0.048998 0.475 

𝜙̂3 -0.081457 0.220 

𝜃̂1 -1,000000 < 2.2e-16 

Table 5 

Accuracy of Training and Testing Data for 

ARIMA Model (1,1,1). 

Proportion RMSEP 

Data Training 92.75 

Data Testing 80.82 

Fig. 5. Independence and Normality of ARIMA Residuals (1,1,0). 

Fig. 6. Independence and Normality of ARIMA Residuals (2,1,0). 

Modeling with neural network (NN) 

• Determination of Input Variables 

The determination of network input variables is done based on significant lags on the ACF graph or PACF graph. The ACF graph 

and PACF graph of rainfall data in Samarinda can be seen in Fig. 10 ( Table 5 ). 

Based on Fig. 10 , it can be seen that there are several significant lags. In the ACF graph, there are significant lags at lag 1, lag 

9, lag 12, and lag 13, while in the PACF graph, significant lags are at lag 1, lag 9, lag 11, and lag 12. This indicates a dependency 

between the value of an observation and the value of the previous observation up to 12 or 13 time periods. Therefore, this study uses 

6 time lags as input variables, namely lag 1, lag 2, lag 3, lag 9, lag 11, and lag 12 ( Fig. 6 ). 

7
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Fig. 7. Independence and Normality of ARIMA Residuals (3,1,0). 

Fig. 8. Independence and Normality of ARIMA Residuals (0,1,1). 

• Data Standarization 

Standardization of research data is done to change the range of data values into a more uniform scale, thus facilitating comparison 

and analysis. In this study, the z-score standardization method is used to change the data into a standard score with an average of 0 

and a standard deviation of 1 ( Fig. 7 ). 

• Best Model Selection in NN 

The backpropagation training process is carried out by adjusting the NN architecture. In this study, two types of architectures 

are used, namely networks with one hidden layer and networks with two hidden layers where each architecture will try various 

combinations of the number of neurons in each layer. The criterion for stopping training is when it reaches a maximum iteration of 

50,000,000 using a learning rate of 0.001. This training aims to minimize the error value and obtain a model with good generalization. 

After getting the results of the NN architecture, the next step is to perform a back transformation or destandardization. This process 

aims to change the predicted values that have been normalized back to their original scale, so that the predicted results can be 

interpreted in the context of the original data and can compare the predicted values with the actual values of the data ( Fig. 8 ). 

In the NN architecture in this study, researchers tried to use a maximum of two hidden layers in the NN compartment, where a 

combination of the number of neurons from 1 to 10 will be carried out. This combination obtains the optimal number of neurons 

in the first and second hidden layers. Some architectures of combinations of neurons in each hidden layer are intended to perform 

hyperparameter tuning, limiting the learning rate and the number of hidden layers and choosing the activation function used. Evalu- 

ation using RMSEP on training and testing data. Based on the calculation results, the RMSEP value of each model is obtained which 

can be seen in Table 6 and Fig. 9 . 

By considering various considerations such as choosing the smallest RMSEP value and the difference between the RMSEP values 

of the training data and testing data is not very significant, then based on Table 6 , it is found that the NN model with a 2 hidden 

layer architecture model (6–5 neurons) is the best NN model to be used in predicting rainfall in Samarinda for the next 12 periods. 

In this model, the RMSEP of the training data is 52.473 and the RMSE of the testing data is 89.749. Some of the architectural results 

of the NN modeling can be seen in Fig. 11 . 

Fig. 9. Independence and Normality of ARIMA Residuals (1,1,1). 
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Table 6 

RMSE calculation rsults. 

Hidden Layer RMSEP Difference between 

Training and Testing 

RMSEP Hidden Layer1 Hidden Layer2 Training Testing 

1 neuron 88.988 86.595 2.393 

2 neurons 85.018 90.197 5.180 

3 neurons 78.101 110.632 32.531 

4 neurons 75.907 100.158 24.251 

5 neurons 66.340 97.531 31.192 

6 neurons 68.059 96.647 28.589 

7 neurons 69.542 103.764 34.222 

8 neurons 58.299 102.938 44.639 

9 neurons 57.471 114.915 57.444 

10 neurons 46.560 110.919 64.359 

2 neurons 1 neuron 83.746 82.969 0.777 

3 neurons 2 neurons 77.546 100.939 23.393 

4 neurons 3 neurons 70.852 97.184 26.332 

5 neurons 4 neurons 61.167 131.724 70.557 

6 neurons 5 neurons 52.473 89.749 37.276 

7 neurons 6 neurons 49.585 121.518 71.933 

8 neurons 7 neurons 29.696 135.889 106.194 

9 neurons 8 neurons 27.501 116.387 88.886 

10 neurons 9 neurons 17.891 181.869 163.978 

Table 7 

Model goodness of fit measure. 

Method 

RMSEP 

Training Testing 

DES Holt ( 𝛼 = 0.7 and 𝛽 = 0.1) 114.66 118.03 

ARIMA (1,1,1) 92.75 80.82 

NN 2 HL (6–5 neurons) 52.473 89.749 

Fig. 10. ACF and PACF graphs of rainfall data in Samarinda. 

Best model selection 

Based on the results of rainfall data modeling using DES Holt, ARIMA, and NN above, the next step is to determine the best model 

that can be used for forecasting. Table 7 displays the RMSEP values of the best models. The model with the smallest RMSE value will 

be selected as the best method. 

In Table 7 , it can be seen that the NN 2 HL (6–5 neurons) has a smaller RMSEP value for training data compared to other models, 

so the NN 2 HL (6–5 neurons) model will be used for forecasting the next 12 periods of rainfall data. 

Forecasting and Discussion 

Forecasting rainfall data for the next 12 periods using the NN 2 HL (6–5 neurons) model can be seen in Table 8 . 
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Fig. 11. Some architectures of NN modeling. 

Table 8 

Forecasting results of 12 Periods of NN 2 HL 

(6–5 neurons). 

Month Prediction Results 

January 301.935 

February 245.819 

March 168.822 

April 82.964 

May 173.226 

June 209.721 

July 107.147 

August 204.006 

September 201.430 

October 133.406 

November 207.887 

December 206,919 

Fig. 12 shows that in the time series graph for training and testing data, the predicted values almost follow the actual data 

pattern with a forecast accuracy level using RMSEP for training data of 52,473. Forecasting results for the following 12 periods show 

fluctuations in specific periods. Monthly rainfall trends indicate that the months with the highest rainfall occur around November to 

March. Based on the prediction results, it is known that the month with the highest rainfall is January. Rainfall patterns also tend to 

be seasonal, with peak rainfall at the beginning of the year and decreasing drastically in the middle of the year. The results of high 

rainfall predictions in certain months can undoubtedly be information and knowledge that brings several practical implications that 

need to be considered by various parties, including the government, society, and the private sector. For example, for the government, 

it can be an early warning system in facing the rainy season with high intensity, including in previous periods, by repairing drainage 

channels, building dams, and normalizing rivers. The government can also manage water resources through dams and irrigation 

( Table 8 ). 

Samarinda, as one of the cities supporting the archipelago’s capital, certainly faces challenges due to significant fluctuations in 

rainfall. It is hoped that the results of this prediction can become a mitigation strategy for the City of Samarinda in spatial management, 
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Fig. 12. Comparison plot of actual and predicted data. 

an early warning system through weather monitoring, which monitors weather conditions in real time. Water resource management 

is critical to collect and absorb rainwater into the soil. Some steps that can be taken include: 

• Adequate drainage system: The Samarinda City Government collaborates with related parties to evaluate and design an effective 
drainage system to drain rainwater smoothly and reduce puddles. 

• Mapping flood-prone zones: The Samarinda City Government can map areas that are potentially flooded and establish appropriate 
regulations. 

• Water resource management: The Samarinda City Government can build absorption wells and biopores to help absorb rainwater 
into the ground, reducing the risk of flooding. Rehabilitation of river basins through reforestation can increase water-holding 

capacity and reduce sedimentation. 

Limitations 

Limitations of this study include the potential for model overfitting, reliance on historical data that may not account for future 

climate change, and limited generalizability of the findings to other regions. 
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