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[I.n[-mduction]

Geometric optics is one of the classical approaches in physics to describe the propagation of
light, especially in the limit of very small wavelengths (1—0). This approach uses the concept of
light rays propagating through a medium with a certain refractive index, and is often used to
understand the phenomena of refraction, reflection, and optical paths in various complex media
[1][2][3]. In the electromagnetic framework, geometric optics can be derived from Maxwell's
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equations through the eikonal equation approach, which describes the path of light as a classical
limit solution of electromagnetic waves [4][5][6][7]. This approach has also been extended to
include anisotropic media and refractive index gradients using the gauge field [8][9][10].

Recently, research has attempted to reformulate geometric optics within the framework of
Abelian U(1) gauge theory [11]. Nevertheless, this reformulation, which holds potential for
optical engineering, contains conceptual inaccuracies that prevent it from making valid physical
predictions, such as: the propagation of light in straight lines in a medium with a homogeneous
refractive index or in a vacuum, as well as light refraction in optical metamaterials (with a
negative refractive index) and anisotropic media.

The article also claims that the optical phase, refractive index, and propagation of light beams
can be understood through gauge potentials, field strength tensors, and topological structures.
This claim is mathematically interesting because it utilizes the formalism of gauge theory, which
is often wused to explain particle physics and quantum  field phenomena
[12][13][14][15][16][17][18]. Previously, several studies have indeed demonstrated the
application of gauge theory to light propagation in complex media, such as anisotropic media
and metamaterials [19][20][21]]22]. Unfortunately, the claim has not been explained in detail
regarding which aspects of geometric optics are connected with gauge theory.

In the following analysis, the inaccuracies in previous research, particularly phase shifts in light,
will be addressed. A corrected formulation of geometric optics within the framework of gauge
theory will also be presented to ensure its physical accuracy. Simulations of light passing
through homogeneous refractive index media, a vacuum, anisotropic materials, and optical
metamaterials are included to demonstrate potential outcomes that could be observed in future
experiments.

Comprehending phase shifts in light is essential for applications in interferometry, optical
metrology, and fiber-optic communication [23][24][25]. Phase analysis plays a key role in
material characterization, optical system design, and enhancing signal transmission across
various scientific and technological fields.

Phase Formula

Geometrical optics in the framework of Abelian U(1) gauge field theory is proposed [11]. The
authors reformulate the eikonal equation as a gauge theory in a (3+1)-dimensional vacuum
space-time using a weak-field approximation. Key equations include the gauge potential

Ay =a,(r,t)eldmt 0
and the field strength tensor

Fo,=0,A4,—-4d,4, 2
which describe the optical field in terms of the refractive index n(r) and other variables.
Numerical simulations reveal that the refractive index can be approximated as n(r)=1.0001 in

vacuum space-time and that the weak magnetic field magnitude |B|=0.10452 T supports the
weak-field approximation.

The vacuum space-time is interpreted as a weak-field limit, where electromagnetic fields are of
very low intensity. The study introduces the phase g(r.t), related to the refractive index,
expressed as:
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glr,t) =X [f:f n(r) d3r — cr}, @)
where X is a constant. The refractive index is modeled as
ﬂl"z
n(r) =no (1- %), @)

showing that it decreases with increasing distance from the source. The authors also define the
amplitude p(r,t) and phase g(r,t) in the scalar field

¢, t) = plr,t)elrd), )
highlighting its topological and isotropic properties in vacuum.

Numerical results show the refractive index decreases radially, confirming vacuum
characteristics. The study also finds the weak magnetic field magnitude |BI=0.10452 T,
computed using

B=VxA. (6)
These findings might reveal an innovative perspective connecting geometrical optics with
gauge field theory, opening new avenues for exploring topological structures and weak-field
conditions.

[Correction of the Phase Formula|

— & t [E2]: The corrections to the

The revised phase formulation of geometric optics within the framework of gauge theory
provides a more accurate description of light propagation in graded-index media and under
weak-field approximations. In graded-index media, this approach enables precise modeling of
light bending and refraction caused by spatial variations in the refractive index, thereby
improving predictions of light focusing and beam shaping. Under weak-field conditions, the

formulation ensures accurate modeling of light ray trajectories, even in the presence of small

perturbations, effectively capturing subtle effects often overlooked in classical geometric
optics.

In this section, the phase equation (Equation (3)) will be investigated using fundamental
concepts following the correction process with steps as shown in Figure 1.

Formulating: Light Light in
in a vacuum (k) Phase a medium (k")
(a)
Comparing:
Correcting
Correcting; Yes | Eq. (3)
Figure 1. Flowchart of the correction process.
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The visible light wave propagates through a vacuum with a velocity of [1][2][5]
c=Af
_2mf

= TEm

=2 @)

where f is the frequency of the light, @ is the angular frequency, 1 is the wavelength of the
light, and k is the wave number of the light, along with

_ 2
W=7
= 2nf ®)
and
_om
k= = 9

When the light propagates through a medium, a change in the wavelength occurs, while the
frequency remains constant. The wave speed of light in the medium will then become
v=A"f
ot
Im
ar

== (10)

with
,_zm 4-
k=2 (11)
Meanwhile, the refractive index is defined as [1][2][5]

c

n==. (12)
The combination of Equations (10) and (12), followed by rearrangement, will yield the equation
K =%n. (13)

c

The wave speed of light in the medium also satisfies the equation [1][2][5]
v="_ (14)

t

where [ is the distance traveled by light within the medium and tis the time interval for light
propagation through the medium.

The optical path length or the distance effectively traveled by the light wave is defined as
1121151
A=ct. (15)
The combination of Equations (12), (14), and (15) will yield the equation
A=ct

<)
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=nl. (16)
Multiplying Equation (10) by I and relating it to Equation (16), the resulting equation will be
k'l =2nl
=%a. (17)

The phase in Equations (1) and (5) satisfies the equation [1][2][5]
qr.t) =51 -t
= k'l — wt. (18)
The combination of Equations (17) and (18) will yield the equation
g(r, t) = k'l — wt

= %A — wt
=2(a —ct). (19)

When light travels along a path [ defined by the position vectors r; and rs, the optical path
length will satisfy the equation

A= fr:zn(r)dl. (20

The phase of the light wave therefore satisfies the combined Equations (19) and (20), expressed
as:

g(r,t) = %(f:n(r)dl - r:t). (21)

Based on Equation (21), it can be concluded that Equation (3) contains a mathematical form
that is not physically clear, namely: f::zn(r) d*r. The correct form of the integral should be:

fr?n(r) dl, which corresponds to the concept of optical path length [1][2][3][4].

[Consequences of the Correction|

-1 € t [E3]: The discussion remains

The refined phase formulation improves the prediction of phenomena such as light bending
and phase shifts in various media, including homogeneous media, vacuum, anisotropic
materials, and optical metamaterials. This section demonstrates that the revision provides an
accurate approximation of light wave propagation through the derivation of the light ray
trajectory equation (geodesic equation) and the presentation of light ray trajectories in the
media via numerical simulations.

Optical geodesic equation

Referring to Equation (21), Equation (3) is revised to become:

gr,t) = X[f:l“n(r) di - ct}. 22)
In Equation (22), one may select
g1 = [}7n@) dl. (23)
The shortest wave propagation path from 1, to r; at any time satisties the condition:
8q1 = 0. (24)

104

highly abstract and does not delve into the
physical implications of the refined
formulation. For example, how does the
corrected equation improve upon the
original in predicting phenomena like light
bending or phase shifts in different media?

The manuscript does not provide numerical

les or simulations to d ate
the validity and applicability of the refined
formulation. Including such examples
would significantly enhance the impact and
clarity of the discussion.




Indonesian Physical Review. x(x):

It can be found the variation of qu as [26][27]
T2
8qy = EJ‘ n(r)dl
T

1

= [2n(r) 8(dD) + [F sn(r)dl.

In Equation (25), there are two relations, namely:
8(dl) = §(z.dr)
= 1.6(dr) + 6t.dr
=T1.8(dr) + 0.dr

=1.5(dr) (26)

and
an dan on

1
dn(r) = Eﬁx + @ﬁy + Eﬁz

cdn . dn dn , .
= (1§+;5 + kg).(xﬁx + jéy + kéz)
= Vn.dr (27)
where
dr
=2 (28)
By combining Equations (24), (25), (26) and (27), it can be obtained
Ty Ty
8q, = f n(r) r.d(dr) +f Sr.Vn(r) dl
T Ty

1

r
= {n(r)r. dr]rj - j: dr.dn(r)t + j:;z Vn (r). drdl

d
=0 — [2 0 Srdl + [ vn(r) .svdl

_ _ dnanyr _
= [\?n(r) " ].anﬂ 0

(29)

where T is the vector of tangential units with respect to the direction of wave propagation.

From Equation (29), it can be acquired the following relationship:

dnir )'r‘ (3 U)

vn(r) = a0

Expanding Equation (30), it can be found the following Equation:

dr dn(r)
n(r) = n(r)a +T T

=n(r) % +1(1.Vn(r)) (31)

where
anir)
dn(r) _ 5, 4ar
dl dl
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_ Bn(r)g
T oar odl

- () (%57)

= (zlz).(Vn(r))

= 1.Vn(r). (32)
Equation (31) can be rearranged so that it can be found the following equation:
dr _ L _
o= r[(r){ﬁ'ﬂ(r) 7(r.n(M)}. (33)
Meanwhile, it is known that
=1 (34
and thus, it can be determined
d
nd_y, (35)
It is also known that
=0 (36)

where 9 is the vector of normal units (perpendicular to the direction) of wave propagation.

When the left-hand and right-hand sides of Equation (35) are multiplied by the radius of
curvature of the optical path R and connected to Equation (36), the resulting equation is
obtained [27][28]:

dr _ 1
dl R’ @7)
The combination of Equations (33) and (37) gives the following equation:
p_ 1
e [Va(r) — t(z.Vn(r))}. (38)
If Equation (38) is subjected to a dot operation with #, it will give the equation
t__
R ) vn(r). (39

Based on Equation (39), it can be deduced that the direction of wave propagation is influenced
by variations in the refractive index. Specifically, as the refractive index increases, the wave
undergoes a change in direction. Consequently, when a wave propagates in a homogeneous
medium where #(r) is constant, or in free space where n(r)=1, so Vn(r) = 0, the wave trajectory
remains unaffected by refraction. In such cases, the bending radius R approaches infinity,
indicating that the wave path is linear.
The light ray trajectory equation (geodesic equation) can be derived by rearranging Equation
(31) and considering Equation (28), resulting in the following form:
L~ L {Vn(r) - 7(z.Vn()) (40)
diz2  n(r) : :
By reviewing the Abelian U(1) gauge theory [29], it can be understood that Equation (40)
incorporates the refractive index n(r), which is analogous to the gauge field, the gradient of the
refractive index Wn(r), which is analogous to the field tensor, the optical force Vn(#)/n(r), which
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is analogous to the electromagnetic force, light rays, which are analogous to charged particles,
and the role of the refractive index in altering light paths, which is analogous to the role of
potential in influencing particle trajectories.

Simulation

The simulation of phase shifts, and trace of light bending, in light trajectories through a
homogeneous medium (A), vacuum (B), anisotropic materials (C), and optical metamaterials
(D) is presented in Figure 2 and Figure 3. In the simulation, light passes through: (A) a medium
represented by a series of identical refractive index values, (B) vacuum represented by
refractive index values equal to 1, (C) anisotropic materials represented by the boundary
region between two media, and (D) optical metamaterials represented by negative refractive
index values, as shown in Table 1.

The simulation is based on Equation (17), Equation (39) and Equation (40), implemented using
a numerical method as follows:

1 ~ MikrTMicg (41)
Riy1 npar
AD? (g i
Tigr = 21 —Tiig + %(#) (1-1%, (42)
and
(1]
@ = — (1 — i) (43)

The graph in Figure 2 depicting the relationship between phase shift ¢ and propagation path
length [ can be analyzed based on the characteristics of the media through which light travels.
In regions where light propagates through homogeneous media with constant refractive
indices, such as vacuum or transparent materials, the phase shift remains stable or linear with
respect to the path length. This behavior is evident in the regions between /=0 m and (=10 m,
I=15m and /=41, and [=45 m and [=53 m, where @ is close to zero. These regions reflect the
absence of significant disturbances or interactions, indicating stable light propagation.

In contrast, regions between [=10 m and [=11 m, as well as [=14 m and (=15 m, exhibit moderate
fluctuations, suggesting interactions with anisotropic materials. These materials have
refractive indices that depend on the direction of propagation or polarization of light, leading
to more noticeable phase shifts. Such fluctuations can be attributed to birefringence
phenomena, where light splits into two beams with different propagation speeds depending
on polarization, resulting in phase variation.

Additionally, the sharp fluctuations observed in the region between [=42 m and /=44 m indicate
interactions with optical metamaterials having negative refractive indices. In such materials,
the wave vector and energy flow vector (Poynting vector) are oppositely directed, leading to
unconventional effects like negative refraction. The significant positive phase shift followed by
a sharp negative shift in this region reflects the distinctive properties of negative-index
materials.

In summary, the graph illustrates the journey of light through a combination of propagation
paths that include homogeneous media (stable), anisotropic materials (moderate fluctuations),
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and optical metamaterials (drastic fluctuations). This analysis provides insights into the
complex interactions of light with various types of media, which are particularly relevant in
advanced optical systems such as interferometers, metamaterials, or integrated optical devices.

The graph in Figure 3 shows the relationship between the inverse radius of curvature 1/R and
the propagation path length I, providing insights into the wavefront behavior as light interacts
with different media. In regions where light propagates through homogeneous media or
vacuum —specifically [=0m to [=10 m, [=15m to [=41 m, and =45 m to [=53 m, the 1/R value
remains constant, indicating a nearly planar wavefront with no significant curvature changes.

In contrast, regions between [=10 m and [=11m, and [=14 m and [=15 m, exhibit ripple in 1/R,
suggesting interactions with anisotropic materials. These fluctuations indicate perturbations in
the wavefront curvature, likely caused by birefringence or directional-dependent refractive
indices within the material, momentarily distorting the wavefront.

The most pronounced behavior is observed in the region between [=42 m and [=44 m, where
1/R not only exhibit ripple sharply but also becomes negative. This curvature inversion is a
hallmark of optical metamaterials with negative refractive indices, where the wavefront
exhibits unusual effects such as reverse focusing or negative curvature due to the opposition of
phase velocity and energy flow.

Together with the phase shift analysis, this graph highlights the distinct interactions of light
with different media along the propagation path. Homogeneous regions are characterized by
stable and planar wavefronts, anisotropic materials introduce moderate perturbations, and
optical metamaterials cause sharp ripples, demonstrating their unique optical properties.

04 B

03

0,2

01
@ (.ofc) 0 A B / \ A B A B

1{m)

Figure 2. The phase shift of light through a homogeneous medium (A), vacuum (B),
anisotropic materials (C), and optical metamaterials (D).
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Figure 3. The trace of light bending through a homogeneous medium (A), vacuum (B),
anisotropic materials (C), and optical metamaterials (D).
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Table 1. Simulation results for =0,9.

n(r) | I{m) 1/R (m™) @(m) n(r) | I{m) 1/R (m™) @ (m)
1 0 0,000000001 0 1 27 0,000000001 0,3325
1 1 0,000000001 0 1 28 0,000000001 0,3325
1 2 0,000000001 0 1 29 0,000000001 0,3325
1 3 0,000000001 0 1 30 0,000000001 0,3325
1 4 0,000000001 0 1 31 0,000000001 0,3325
1 5 0,000000001 0 1 2 0,000000001 0,3325
1 6 0,000000001 0 1 3 0,000000001 0,3325
1 7 0,000000001 0 1 3 0,000000001 0,3325
1 8 0,25 0 1 35 0,000000001 0,3325
1 9 0,166666667 | 0,07125 1 36 0,000000001 0,3325
1 10 0,000000001 | 0,19 1 37 0,000000001 0,3325
1,5 11 0,000000001 | 0,30875 1 38 0,000000001 0,3325

i 1 39 -1,25 0,3325

1,5 12 0,166666667 | 0,4275 1 p 0,833333333 -0,1425
15 13 0,25 0,3325 1 41 0,000000001 | -0,02375
1,5 14 0,000000001 | 0,3325 -

1 15 0,000000001 | 0,3325 -1,5 42 0,833333333 0,095

1 16 0,000000001 | 0,3325 1,5 43 1,25 -0,30083
1 17 0,000000001 | 0,3325 1,5 44 0,000000001 | -0,30083
1 18 0,000000001 | 0,3325 1 45 0,000000001 | -0,30083
1 19 0,000000001 | 0,3325 1 46 0,000000001 | -0,30083
1 20 0,000000001 | 0,3325 1 47 0,000000001 | -0,30083
1 21 0,000000001 | 0,3325 1 48 0,000000001 | -0,30083
1 22 0,000000001 | 0,3325 1 49 0,000000001 | -0,30083
1 23 0,000000001 | 0,3325 1 50 0,000000001 | -0,30083
1 24 0,000000001 | 0,3325 1 0,000000001 | -0,30083
1 25 0,000000001 | 0,3325 1 52 0,000000001 | -0,30083
1 26 0,000000001 | 0,3325 1 53 0,000000001 | -0,30083

Conclusion

This study introduces a groundbreaking reformulation of geometrical optics using a gauge-
theoretic approach, allowing for the derivation of phase equations and precise modeling of light
ray trajectories. Through extensive simulations across diverse optical media, the method
showcases its versatility and powerful predictive ability, offering a solid framework for
exploring and understanding complex optical phenomena.
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