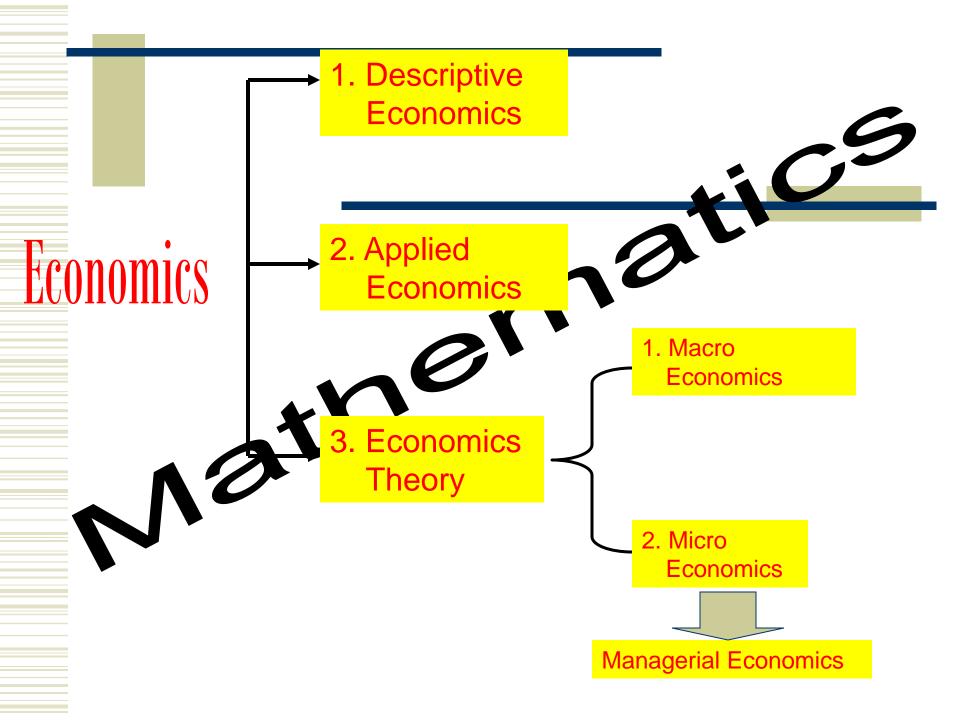


MATEMATIKA EKONOMI

Oleh

Dr. Jiuhardi, S.E., M.M

Semester Ganjil 2022–2023



Sumber acuan/referensi

- Dumairy (1995). *Matematika Terapan untuk Bisnis & Ekonomi*. Yogyakarta: BPFE.
- ➤ Hidayat, W., & Jihadi, M. (2016). *Matematika ekonomi, Cetakan 1: revisi*. Malang: UMM Press.
- Sessu, H. A. (2014). *Pengantar matematika ekonomi*. Jakarta: Bumi Aksara.
- Sunaryo, S. (2017). *Aplikasi matematika untuk ekonomi dan bisnis*. Malang: UB Press.

Materi Perkuliahan

- Konsep-konsep Dasar Matematika
- Fungsi dan hubungan Linier
- Penerapan Linier dalam Ekonomi
- Fungsi Non Linier
- Penerapan Non Linier dalam Ekonomi
- Limit, differensial & Integral
- Matriks
- Program Linier

INTEGR<mark>ATION</mark> OF ECONOMIC THEORY AND METHODOLOGY WITH ANALYTICAL TOOLS FOR APLICATION TO DECITION MAKING ABOUT THE ALLOCATION OF SCARCE RESOURCES IN PUBLIC PRIVATE INSTITUTIONS

ECONOMIC THEORY

Micro Economic meory.

Deal with decition making within individual unit: household, business firm, and public institution

wacro Economic Theory.

concerned with the overali level of ekonomic activity and its cyclical behaviour: deal with broad economic angregate

ANALYTICAL TOOLS

Mathematical Economics state economic relationship in mathematical form which makes them amenable to empirical testing or other modelling techniques

Econometrics: uses statistical technique to test economic model

AREAS OF SPESIALISATION

Agricultural Economics
Comporative economic system
Economic Development
Foreig Trade
Industrial Organisation

Managerial Economics
Labour Enomics
Public Finance
Urban Economic
Other

Descriptive Models: explain how economic variable are related; employ scientifc method of data analysis testing

Normative Models: find eficient methd for achieving atated objectives; involve optimisation methods usually recognising given constraint

ECONOMIC METHODOLOGY

Konsep-konsep Dasar

Himpunan
Sistem Bilangan
Pangkat, akar & Logaritma
Deret

Himpunan

Tidak ada defenisi baku untuk himpunan
Def. Sementara
Himpunan adalah kumpulan obyek yang
cenderung memiliki jenis yang sama
Contoh penulisan : A={anggota/tanpa anggota}

Operasi Himpunan

- Gabungan (Union) notasi U
- ◆ Irisan(Intersection) notasi ∩
- Selisih notasi (-)
- Pelengkap(complement) misal Him. A^C

Beberapa notasi Himpunan

 $a \in A$ berarti a anggota him A

a ∉ A berarti a bukan anggota him A

notasi untuk himpunan kosong Ø atau { }

Penyajian Himpunan

Dua macam cara:

-Cara daftar

contoh : $A = \{1, 2, 3, 4, 5\}$

-Cara kaidah

contoh : $A = \{y | 6 > y > 0\}$

Kaidah matematika dlm Himpunan

Idempoten

$$A \cap A = A$$

$$AUA = A$$

Asosiatif

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Komutatif

$$A \cap B = B \cap A$$

Distributif

$$AU(B \cap C) = (AUB) \cap (AUC)$$

Identitas

$$AU\emptyset = A$$

$$AUS = S$$

Kelengkapan

$$A U A^c = S$$

$$(A^c)^c = A$$

De Morgan

$$(AUB)^c = A^c \cap B^c$$

Sistem Bilangan

Dalam matematika bilangan terbagi 2:

- 1. Nyata terdiri dari Irrasional & rasional
- 2. Tidak Nyata/unreal

Bilangan rasional sendiri terdiri atas: bilangan bulat & pecahan

Operasi Bilangan

- Kaidah Komutatif
- Kaidah Asosiatif
- Kaidah Pembatalan
- Kaidah Distributif
- Unsur Penyama
- Kebalikan

Operasi tanda

Pada Prinsipnya operasi dalam matematika hanya dua yaitu:

Penjumlahan

Contoh: 2 + 3 = 5; 2 + -3 menjadi 2 - 3 = -1

Perkalian

Contoh: $2 \times 3 = 6$; $2 \times 1/3 = 2/3$

Pangkat, Akar & Logaritma

Pangkat adalah suatu indeks yang menunjukkan banyaknya perkalian bilangan yang sama secara berurutan.

Bentuk umum

 $a.a.a.a.a... = a^n$

Contoh: $7 X 7 X 7 X 7 = 7^4$

Kaidah Pemangkatan

Pangkat, Akar & Logaritma

- Akar dari suatu bilangan adalah basis yang memenuhi bilangan tersebut berkenaan dengan pangka akarnya
- Bentuk umum:

$$x^a = m \rightarrow x = \sqrt{m}$$

Pangkat, akar & Logaritma

Logaritma dari suatu bilangan adalah pangkat yang harus dikenakan pada bilangan pokok Logaritma untuk memperoleh bilangan tersebut.

Deret

Hubungan Fungsional

Fungsi
Hubungan linier
Penerapan Ekonomi
Hubungan Non Linier

Fungsi

- Suatu bentuk matematis yang menghubungkan bentuk ketergantungan antara satu variabel dengan variabel yang lainnnya
- Bentuk Umum dan sederhana

$$Y = a + bX$$

Hubungan Linier

- Menghubungkan antara satu fungsi linier dengan fungsi linier yang lainnya sehingga diperoleh titik temu antara Fungsi-fungsi tersebut
- Ada tiga cara:
 - Substitusi
 - Eliminasi
 - Determinasi

Penerapan Ekonomi

- Keseimbangan Pasar (satu & dua jenis)
- Fungsi Anggaran
- Fungsi Biaya
- Fungsi Pendapatan Nasional

Hubungan Non Linier

Fungsi Non Linier

Yang biasa digunakan adalah kuadrat & kubik

Aplikasi Non Linier

- Fungsi Biaya
- Fungsi Pendapatan Nasional

Aljabar Kalkulus

Limit
Diferensial
Integral

Limit

- Limit menggambarkan seberapa jauh sebuah fungsi akan berkembang apabila variabel di dalam fungsi yang bersangkutan terus menerus berkembang mendekati suatu nilai tertentu.
- Notasi

$$Lim f(x) = L$$
$$x--> a$$

Kaidah Limit

1. Jika
$$y = f(x) = x^{n \operatorname{dan} n} > 0 \operatorname{maka}$$
 $\lim_{x \to a} x^{n} = a^{n}$

2. Limit dari konstanta adalah konstanta sendiri $\lim_{x\to a} k = k$

3.
$$\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

- 4. Limit dari perkalian fungsi adalah perkalian dari limit fungsi-fungsinya
- 5. Limit dari pembagian fungsi adalah pembagian dari limit fungsi-fungsinya
- 6. Limit dari fungsi berpangkat n adalah pangkat n dari limit fungsinya
- 7. Limit dari suatu fungsi terakar adalah akar dari limit fungsinya
- 8. Dua buah fungsi yang serupa mempunyai limit yang sama jika f(x) = g(x) untuk semua x kecuali a dan $\lim_{x \to a} f(x) = L$

Maka
$$\lim_{x \to a} f(x) = L$$
 juga

Diferensial

- Differensial membahas tentang perubahan suatu fungsi sehubungan dengan perubahan kecil dalam variabel bebas fngsi yang bersangkutan
- Sebagaimana diketahui analisis dalam bisnis dan ekonomi sangat akrab dengan perubahan, penentuan tingkat maksimum dan minimum

Integral

Kebalikan dari differensial yaitu suatu konsep yang berhubungan dengan proses penemuan suatu fungsi asal apabila turunan atau derivatifnya diketahui.

Jenis Integral

- Integral tak tentu
- Integral tertentu

PROGRAM LINIER

ALAT UNTUK MENCARI: SOLUSI OPTIMAL DENGAN SUMBER TERBATAS Misal :

Perusahaan memproduksi n produk (sepatu laki-laki, wanita, anak-anak). Setipa produk membutuhkan sumber daya seperti kulit, mesin-mesin, tenaga kerja dsb. Yang terbatas. Berapakah jumlah sepatu wanita, laki-laki & anak-anak yang harus dibuat?

Asumsi: Hubungan linier karakteristik:

- 2 variable dengan grafik
- 2 variable simplex

- Teknik M
- Teknik Penalty

Langkah-langkah:

- 1. Klasifikasi tujuan dan pembahas
- 2. Buat model matematik
- Fungsi obyektif (minimize/maximize)
- Fungsi pembatas
- 3. Gunakan teknik yang sesuai
- 4. Cari solusi optimal

Contoh: (2 variable)

Sebuah perusahaan sepatu membuat 2 macam sepatu yaitu laki-laki & sepatu wanita.

Keuntungan yang dapat diperoleh adalah Rp 20.000,- untuk setiap pasang sepatu laki-laki membutuhkan kulit sebanyak 0,5 lembar kulit dan 1 pasang sepatu wanita membutuhkan 0,3 lembar kulit.

Setiap hari tersedia 1.500 lembar kulit.

Berdasarkan survey pasar, setiap hari perusahaan hanya mampu menjual 3.000 pasang sepatu.

Sedangkan pasar sepatu laki-laki masih terbuka.

Tentukan jumlah sepatu wanita dan sepatu laki-laki yang harus dibuat.

Jawaban:

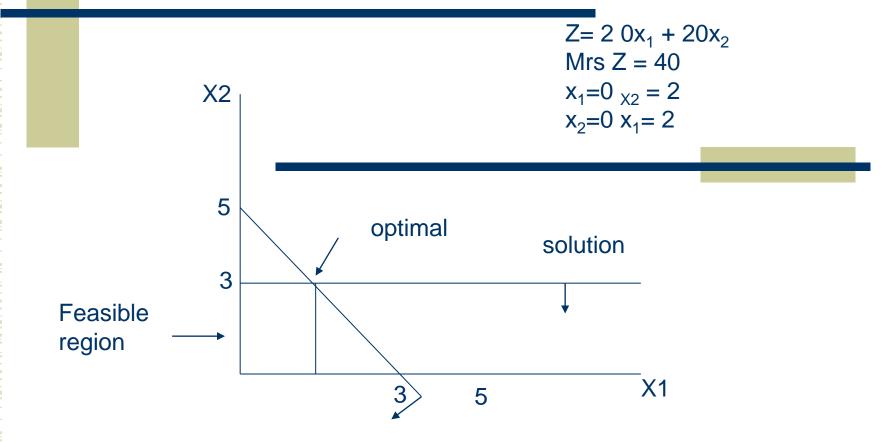
Misalkan jumlah sepatu laki-laki = X_1 jumlah sepatu wanita = X_2

Fungsi obyektif : Max $Z = 20.000 X_1 + 20.000 X_2$

Pembatas : 0,5 X1 + 0,3 $X_2 \le 1.500 \quad x_{1.}x_2 \ 0$

 $X2 \le 3000$

Gambarkan Daerah Feasible:


Pembatas 1:

$$0.5 X_1 + 0.3 X_2 = 1.500$$

$$X_1 = 0$$
 , $X_2 = 5.000$

$$X_2 = 0$$
 , $X_1 = 3.000$

Pembatas 2 : $x1 + X_2 \le 3000 \rightarrow \text{garis sejajar } X_1$

Optimal solution $X_2 = 3000 X_1 = 2000$ Keuntungan max = Rp 100 juta

Latihan:

Sebuah perusahaan garmen membuat 2 macam baju yaitu baju laki-laki dan baju wanita. Perusahaan tersebut memiliki 20 mesin yang bekerja selama 12,5 jam sehari (termasuk lembar) untuk membuat 1 buat wanita maupun laki-laki dibutuhkan 5 jam mesin jahit. Berdasarkan pengalaman, pasar hanya mampu menyerap 30 baju wanita dan 40 baju laki-laki per hari, harga jual baju wanita = Rp 100.000,-, harga jual baju laki-laki = Rp 85.000,-

Biaya produksi adalah Rp 80.000,- per unit tentukan solusi optimal.