
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Microservice API Implementation For E-Government Service
Interoperability
To cite this article: N Puspitasari et al 2021 J. Phys.: Conf. Ser. 1807 012005

View the article online for updates and enhancements.

This content was downloaded from IP address 36.83.62.169 on 04/06/2021 at 07:22

https://doi.org/10.1088/1742-6596/1807/1/012005
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstECOWY4UZrIt_ScAfJ7YqTCE7i1Q9KFerYbFN3Aq6KTBejor_s0L0QwX968xeL5UtsdEmGdZGDQt9J2zE0nDMcg3dKSknhjevBxvkgakb0cR3AEsjbVY6ykk0sw0GUqqGYQzpa0R96Nw9xjfOP6JQ3OMcarz-UjK4jnSVxrCrVvCu0EfyMYLV1HczvEQ2hOloDExA-lT5dorUB7FAzpVWxV3dW37VbaRqzZirNGZ6FZaG840d-9jffMSILoDVJsrCvq97hY7hwMnx9mILx-A&sig=Cg0ArKJSzIKJb9R5ZQkQ&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/ecs-blog/call-for-nominations-editor-in-chief/%3Futm_source%3DIOPConferenceServicesEIC%26utm_medium%3DIOPConferenceServices%26utm_campaign%3DSENSEIC

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICSINTESA 2019
Journal of Physics: Conference Series 1807 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1807/1/012005

1

Microservice API Implementation For E-Government Service

Interoperability

N Puspitasari*1, E Budiman2, Y N Sulaiman3, M B Firdaus4

1,2,3,4Department of Informatics Engineering, Faculty of Computer Science &

Information Technology, Mulawarman University, Indonesia

*Coressponding author: novia.ftik.unmul@gmail.com, edy.budiman@fkti.unmul.ac.id

Abstract. To improve e-government services released by Communication and Information

Technology Office of Samarinda City, each system needs to be able to interoperate even when

developed by different developers. Interoperation can be achieved by using one data source

which is API (Application Programming Interface) for general data objects such as

announcements. Given this condition, API built by using microservice can support further

enhancement even if API is developed by developers who use different programming

languages. The result shows that microservice API can be used to interoperate in relaying data

between e-government services and can be developed using more than one programming

language and base codes. Further development of this API can be done by adding more data

objects, using AWS Cognito as authorization management, adding AWS Elasticsearch to load

and filter data, and by showing data objects in real-time on the front end.

Keyword: architecture microservice, API, interoperability, smart city.

1. Introduction

Announcement is a notice given to the public about information in the written or verbal form. The

purpose of the announcement is to convey information to be known by the public [1]. Announcements

can be delivered through a website page. This is in line with smart city action which is a city that has

integrated information and communication technology in day-to-day activity, with the purpose of

improving effectivity, fixing public services, and improving the welfare of citizens [2, 3]. To improve

the public services, in the form of e-government service, each application in e-government service

from Communication and Information Technology Office of Samarinda City needs to interoperate

with each other. The ability to interoperate is called interoperability, technically defined by IEEE

Standard Computer Dictionary as the ability of two or more system to interchange data or information

and ability to use said data and information [4]. Interoperability may be achieved by using varied

hardware and software both the operating system, database, and programming language used,

especially ones used in government instances [5, 6]. Interoperability is achieved using data exchange

format standardization. Each related party has to use the defined standard as a joint reference.

Interoperability in relaying data objects, in this case, the announcement as a data object, can be

supported by using API (Application Programming Interface). An Application Programming Interface

(API) is a particular set of rules and specifications that a software program can follow to access and

make use of the services and resources provided by another particular software program that

implements that API [7, 8]. It serves as an interface between different software programs and

facilitates their interaction, similar to the way the user interface facilitates interaction between humans

and computers. Microservice architecture for the API was chosen to facilitate API development

because microservice is a software architecture to develop an application formed by layers of small

services and could be developed by using multiple programming languages (polyglot) therefore

allowing development by multiple developers using different languages. This condition was needed in

case of developer changes happening in Communication and Information Technology Office of

Samarinda City.

ICSINTESA 2019
Journal of Physics: Conference Series 1807 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1807/1/012005

2

Therefore, a microservice API was built so data could be relayed between e-government services

released by Communication and Information Technology Office of Samarinda City and services may

interoperate and API still able to be developed even if the developers were different or used different

programming language.

2. Literature Review

2.1. Interoperability

Interoperability technically defines the ability of two or more systems to exchange data or information

and ability to use said exchanged information. Interoperability may be achieved by using varied

hardware and software be operating system, database, and programming language used, especially

ones used in government instances. Interoperability is achieved using data exchange format

standardization. Each related party has to use defined standard as a joint reference [4].

2.2. Application Programming Interface

An Application Programming Interface (API) is a particular set of rules and specifications that a

software program can follow to access and make use of the services and resources provided by another

particular software program that implements that API. It serves as an interface between different

software programs and facilitates their interaction, similar to the way the user interface facilitates

interaction between humans and computers [7, 8].

2.3. Microservice

Microservice, also known as microservice architecture is an architectural style that structures an

application as a collection of services that are highly maintainable and testable, loosely coupled,

independently deployable, and organized around business capabilities [9-11]. There are a few

differences between microservice and monolith architectures, as explained in Table 1 [12].

Table 1. Comparing Monolith and Microservice Architecture

Category Monolith Architecture Microservice Architecture

Code One base code for entire application Multiple base codes. Each microservice

has its own base code.

Understandability Confusing and hard to maintain Much better readability and much

easier to maintain.

Deployment Complex deployments with maintenance

windows and schedules downtimes.

Complex deployments with

maintenance windows and schedules

downtimes.

Language Typically, entirely developed in one

programing language.

Each microservice can be developed in

a different programing language.

Scaling Requires you to scale the entire application

even though bottlenecks are localized

Enables you to scale bottlenecked

services without scaling the entire

application.

3. Old and New System Comparison

On the existing system, all systems were built monolith—each system had its base codes and

databases [13]. If there were a new announcement that had to be spread in multiple systems, data had

to be manually inputted in each system. By implementing microservice API for e-government,

announcement data was directed to and from one system by API. Microservice architecture is a

Function as a Service. Therefore, a service is divided into each of their functions. The announcement

module as a service was separated by each of their functions, resulting in add announcement, edit

announcement, delete announcement, list announcement, and detail announcement. These functions

were modelled with use case diagram, making announcement service shown in Figure 1.

ICSINTESA 2019
Journal of Physics: Conference Series 1807 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1807/1/012005

3

Figure 1. Use Case Diagram

Microservice supports system development with multiple languages and base codes. Microservice

API implementation for e-government service interoperability simulated conditions where multiple

developers were using different programming languages, simulated by using Node.js [14] and Go.

Functions and language used were detailed as follows: a) Add, edit and delete functions were

developed using Node.js and may be accessed by an authenticated user with API key; b) List and

detail functions were developed using Go and may be accessed by the unauthenticated user without an

API key.

Furthermore, throwaway prototypes are used for the implementation of the microservice API.

Throwaway prototyping is a prototyping method to demonstrate ability or interface simulations but not

to be used as a final version. The prototyping method can decrease project risks [15, 16]. Throwaway

prototyping can be done by planning and pre-analyzing requirements. Continued by analyzing,

designing, and implementing the program into dummy prototype, and iteration based on requirement

changes and ended by implementing the final version. In this study, testing was done by white-box

testing, which is a way to test the external functionality of code by testing code, code structure, and its

internal design flow, in the form of unit testing. After white box testing was done, each API endpoint

generated was tested with Postman. Those endpoints are [POST] /pengumuman, to add announcement,

[PUT] /pengumuman/{id} to edit announcement, [DELETE] /pengumuman/{id} to delete

announcement, [GET] /pengumuman to list announcements, and [GET] /pengumuman/{id} to get

announcement detail. To test the interoperability, endpoints above were tested by integrating them into

prototypes. The system interoperability testing scheme is shown in Figure 2.

Figure 2. System Interoperability Scheme

The scheme in Figure 2. showed the flow to test system interoperability. The system can be called

interoperating if each system used the same data source, which can be accessed through API.

Prototype A as an authenticated user was designed as an admin page to add, edit, and delete

announcements that would be shown on prototype B and C. Prototype B and C were set as

unauthenticated users, designed to simulate the view of existing e-government services released by

Communication and Information Technology Office of Samarinda City, used as models to show that

each systems are sharing the same resource, which was the API. Prototype B was built to look alike

Samarinda City’s website (https://samarindakota.go.id/website) and prototype C was built similar to

Sungai Kunjang District’s website (https://kec-sungai-kunjang.samarindakota.go.id/) to simulate API

usage on both websites.

ICSINTESA 2019
Journal of Physics: Conference Series 1807 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1807/1/012005

4

4. Result and Discussion

Creating a throwaway prototype to implement microservice API was started by analyzing

requirements with the announcement as data object. Next, a system was designed to simulate a

condition where there was more than one developer using different programming languages, which

was done by using Node.js dan Go. Implementation was done by creating code base or serverless

repository with each language used. After the implementation process, white box testing in the form of

unit testing was done to test the internals of the code, with test items and results in Table 2.

Table 2. White-box Test Result

Test Class Test Case Result

System is able to add

announcement.

Add announcement fails if input header does not have API key Valid

Add announcement fails if title is empty or has less than 3 characters. Valid

Add announcement succeeds if input header has API key, and title is

more than 3 characters

Valid

System is able to edit

announcement

Edit announcement fails if input header does not have API key Valid

Edit announcement fails if Id is empty Valid

Edit announcement fails if Id does not exist in database Valid

Edit announcement succeeds if input header has API key, Id is not

empty and exists in database

Valid

System is able to delete

announcement

Delete announcement fails if input header does not have API key Valid

Delete announcement fails if Id is empty Valid

Delete announcement fails if Id does not exist in database Valid

Delete announcement succeeds if input header has API key, Id is not

empty and exists in database

Valid

System is able to give

announcement list

Lists announcements from database. Valid

System is able to give

announcement detail

Detail announcement fails if Id is empty Valid

Detail announcement fails if Id does not exist in database Valid

Detail announcement succeeds if Id is not empty and exists in database Valid

After coding and unit testing is done, each base code repositories were deployed to AWS separately by

using serverless deploy command that would deploy each repository to AWS based on each

repository’s settings. Deployed functions can be viewed in AWS Lambda. Endpoints for each function

can be viewed on AWS API Gateway. Each endpoint was tested using Postman to check whether API

relayed data correctly. The test resulted in all endpoints are working properly. These endpoints were

implemented on prototype A, B, and C, which were simulations of e-government systems. Results

showed Prototype A as an authenticated user were able to add, edit, and remove announcement

through API. Prototype A shown in Figure 3.

Figure 3. Prototype A

ICSINTESA 2019
Journal of Physics: Conference Series 1807 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1807/1/012005

5

Data from prototype A as an administrator was able to be relayed through prototype B and C without

having to be manually inputted in prototype B and C. Prototype B, built similar to Samarinda City’s

website, was able to display latest announcement retrieved from API as shown in Figure 4.

Furthermore, Prototype B, built similar to Samarinda City’s website, was also able to display

announcement detail retrieved from API as seen on Figure 5.

Figure 4. Prototype B Figure 5. Announcement Detail on Prototype B

Prototype C, built similar to Sungai Kunjang District’s website, was able to display list of

announcement retrieved from API seen in Figure 6. Furthermore, Figure 7. shows Prototype C built

similar to Sungai Kunjang District’s website was also able to show announcement detail retrieved

from API.

Figure 6. Prototype C Figure 7. Announcement Detail on Prototype C

Prototype C was also able to show announcement list and detail retrieved from API, consistent with

the data source managed in Prototype A. This usage of a single data source is called interoperability.

Prototype B and C as unauthenticated users were able to access the announcement list and detail

through the API. It can be said that prototype A, B, and C as the e-government system had simulated

interoperation for using the same data source. This implementation is a dummy prototype. If there is

any iteration done in the future, each base code can be updated and deployed without affecting other

base codes.

5. Conclusion

Based on the results, it can be concluded that interoperability in relaying announcement data between

e-government system applications can be done by using microservice API. Microservice API can be

developed using more than one programming language and more than one base code, therefore

suitable for conditions where there is more than one developer using different programming

languages. Future research can be done by adding more service for data objects required by multiple

systems such as news, events, and personnel information. API authorization can be improved by using

AWS Cognito. AWS Elasticsearch can also be added to enhance data searching and filtering. Data

from API can also be shown by real-time.

References

[1] A. Baltag, L. S. Moss, and S. Solecki, "The logic of public announcements, common

knowledge, and private suspicions," in Readings in Formal Epistemology: Springer, 2016, pp.

773-812.

ICSINTESA 2019
Journal of Physics: Conference Series 1807 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1807/1/012005

6

[2] A. Meijer and M. P. R. Bolívar, "Governing the smart city: a review of the literature on smart

urban governance," international review of administrative sciences, vol. 82, no. 2, pp. 392-408,

2016.

[3] E. Park, A. del Pobil, and S. Kwon, "The role of internet of things (IoT) in smart cities:

Technology roadmap-oriented approaches," Sustainability, vol. 10, no. 5, p. 1388, 2018.

[4] M. Janssen, E. Estevez, and T. Janowski, "Interoperability in big, open, and linked data-

organizational maturity, capabilities, and data portfolios," IEEE Computer, vol. 47, no. 10, pp.

44-49, 2014.

[5] H. J. Schnoll, E-Government: Information, Technology, and Transformation: Information,

Technology, and Transformation. Routledge, 2015.

[6] T. Lodato, E. French, and J. Clark, "Open government data in the smart city: Interoperability,

urban knowledge, and linking legacy systems," Journal of Urban Affairs, pp. 1-15, 2018.

[7] S. P. Ong et al., "The Materials Application Programming Interface (API): A simple, flexible

and efficient API for materials data based on REpresentational State Transfer (REST)

principles," Computational Materials Science, vol. 97, pp. 209-215, 2015.

[8] M. A. Boillot, "Application programming interface (API) for sensory events," ed: Google

Patents, 2012.

[9] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice architecture: aligning

principles, practices, and culture. " O'Reilly Media, Inc.", 2016.

[10] A. Sill, "The design and architecture of microservices," IEEE Cloud Computing, vol. 3, no. 5,

pp. 76-80, 2016.

[11] Y. Yu, H. Silveira, and M. Sundaram, "A microservice based reference architecture model in the

context of enterprise architecture," in 2016 IEEE Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IMCEC), 2016: IEEE, pp.

1856-1860.

[12] W. H. C. Almeida, L. de Aguiar Monteiro, R. R. Hazin, A. C. de Lima, and F. S. Ferraz,

"Survey on Microservice Architecture-Security, Privacy and Standardization on Cloud

Computing Environment," ICSEA 2017, p. 210, 2017.

[13] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, "From monolithic to

microservices: An experience report from the banking domain," Ieee Software, vol. 35, no. 3,

pp. 50-55, 2018.

[14] M. Villamizar et al., "Infrastructure cost comparison of running web applications in the cloud

using AWS lambda and monolithic and microservice architectures," in 2016 16th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016: IEEE, pp.

179-182.

[15] A. M. Davis, "Operational prototyping: A new development approach," IEEE software, vol. 9,

no. 5, pp. 70-78, 1992.

[16] H.-M. Chen, R. Kazman, and S. Haziyev, "Strategic prototyping for developing big data

systems," IEEE Software, vol. 33, no. 2, pp. 36-43, 2016.

