View Item 
  •   Unmul Repository Home
  • Akuntabel
  • J - Computer Sciences and Information Technology
  • View Item
  •   Unmul Repository Home
  • Akuntabel
  • J - Computer Sciences and Information Technology
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Glaucoma Detection Method Applying a Statistical Approach to Fundus Images

Thumbnail
View/Open
Automatic glaucoma detection method applying a statistical approach to fundus images.pdf (6.272Mb)
Date
2018-01
Author
Septiarini, Anindita
Khairina, Dyna Marisa
Kridalaksana, Awang Harsa
Hamdani, Hamdani
Metadata
Show full item record
Abstract
Objectives: Glaucoma is an incurable eye disease and the second leading cause of blindness in the world. Until 2020, the number of patients of this disease is estimated to increase. This paper proposes a glaucoma detection method using statistical features and the k-nearest neighbor algorithm as the classifier. Methods: We propose three statistical features, namely, the mean, smoothness and 3rd moment, which are extracted from images of the optic nerve head. These three features are obtained through feature extraction followed by feature selection using the correlation feature selection method. To classify those features, we apply the k-nearest neighbor algorithm as a classifier to perform glaucoma detection on fundus images. Results: To evaluate the performance of the proposed method, 84 fundus images were used as experimental data consisting of 41 glaucoma image and 43 normal images. The performance of our proposed method was measured in terms of accuracy, and the overall result achieved in this work was 95.24%, respectively. Conclusions: This research showed that the proposed method using three statistics features achieves good performance for glaucoma detection.
URI
http://repository.unmul.ac.id/handle/123456789/4884
Collections
  • J - Computer Sciences and Information Technology [94]

Repository Universitas Mulawarman copyright ©   LP3M Universitas Mulawarman
Jalan Kuaro Kotak Pos 1068
Telp. (0541) 741118
Fax. (0541) 747479 - 732870
Samarinda 75119, Kalimantan Timur, Indonesia
Contact Us | Send Feedback
 

 

Browse

All of Unmul RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Repository Universitas Mulawarman copyright ©   LP3M Universitas Mulawarman
Jalan Kuaro Kotak Pos 1068
Telp. (0541) 741118
Fax. (0541) 747479 - 732870
Samarinda 75119, Kalimantan Timur, Indonesia
Contact Us | Send Feedback