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Abstract.  The conformation evolution of threads that fall freely after being 
released from varying altitudes was investigated and compared to behaviors 
generated by other well-known fundamental physical processes. It was observed 
that the thread conformation replicated the conformation of long polymer 
chains, motivating the authors to apply a 2D self-avoiding walk (SAW) model 
to explain their stable conformation. Strong evidence was identified that the 
thread conformation strongly resembles 2D SAW behavior and has scaling 
power comparable to that of a 2D SAW. Also, by fitting how thread end-
to-end distance evolves with time, an equation was obtained that is exactly 
identical to the modified Avrami equation, which is usually used for explaining 
phase transformation processes in 1D space (D  =  1). The exponential power of 
n  =  D  +  1  =  2 was simply obtained in our fitting. In conclusion, it can strongly 
be stated that the evolution of thread conformation over time replicates the 
crystallization process in 1D space and an SAW in a 2D space, showing that 
these microscopic processes can be replicated at macroscopic scale.
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1.  Introduction

If we release a horizontally stretched thread to fall freely, the thread shape becomes 
curly. Specifically, the end-to-end distance becomes shorter and the shape resembles 
that of long polymer chains observed under an electron microscope. Interestingly, the 
shape shrinks as time lapses and is likely to reach a stable size, where further time lapse 
does not change the size while the curly orientation may still change. This means that 
the thread will evolve to attain final conformation.

The shapes of polymer chains have been explained using the SAW model [1, 2]. 
In many situations the model successfully explains the chain conformation, including 
accurate estimation of end-to-end distance and radius of gyration as a function of chain 
length [3, 4]. Since the shape of the thread resembles that of a polymer chain, it is chal-
lenging to explore potential application of the SAW model to explain the conformation 
of threads after reaching stable size (after being left to fall from high altitude). This 
exploration is interesting since it is a simple macroscopic demonstration of the SAW 
phenomenon that can be observed by the naked eye.

Letting threads to fall freely from a high altitude may seem like an unimportant 
phenomenon, since many people experience it and seemingly nothing interesting can be 
extracted from its observation. However, it will be shown here that this phenomenon 
may attract a lot of attention since it exhibits several interesting physical phenomena. 
Indeed, there are many common phenomena around us that could be interesting topics 
of research that have not been considered as such by many people [5–12]. Explorations 
of ‘common phenomena’ in order to show richness of physical phenomena have been 
reported, such as walking with coee [9], capillary force repelling the coee-ring eect 
[13], fingering structures inside the coee ring [14], shapes of a suspended curly hair 
[5], bending of sparklers [10], and wringing of wet cloth [7].

The phenomenon of the free fall of a thread can be investigated further by asking 
what the influence is of changing the thread material and wetting the thread (since 
dierent wetting liquids lead to dierent elastic properties of the thread) on the final 
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conformation. Does the behavior approximate that of SAW phenomena at microscopic 
scale?

The objective of this work was to explore the shape of free falling threads and to find 
its correlation with SAW phenomena. This work also aimed to prove the occurrence of 
SAW phenomena at macroscopic scale. Simple experiments were performed and math-
ematical formulae were derived to describe the experimental results. However, it must 
be noted that the eect of gravity was not taken into account. The free-falling process 
was solely employed for producing free conformation conditions (air friction only) start-
ing from the thread in a straight state until it reaches stable conformation. This is an 
easier way to generate such conditions compared to suspending threads with some kind 
of upward force for example.

2. Experiment

In the experiment, three types of threads were used: wool, mélange and multifilament. 
The length of the threads was varied between 0.5 m, 0.75 mn, 1 m, 1.25 m, 2 m, and 2.5 m.  
We applied three mechanical conditions to the threads: dry, wetted with water, and wet-
ted with alcohol. Water and alcohol have dierent surface tension (around 0.023 N m−1  
for ethyl alcohol [15] and around 0.073 N m−1 for water [15, 16]). The dierence in 
surface tension was expected to aect the mechanical properties of the thread and 
influence the final end-to-end distance. The threads were released from an altitude 
of up to 22.5 m and positioned horizontally to ensure stable conformation was devel-
oped. The time it took for the threads to touch the ground was also recorded. After 
the threads touched the ground, the end-to-end distance was measured. Repetitions 
between 6 and 10 times were conducted for each experimental condition.

After being released from dierent altitudes, pictures were taken of the threads 
while falling and after touching the ground to show their conformation. The threads 
were immersed in a luminescent liquid beforehand and the pictures were taken in the 
dark under specific light illumination to show the conformation of the threads more 
clearly. The reason for using luminescent liquid was that the threads were very thin 
and their colors were not strongly dierent from the background (tiles).

3. Experimental results

Figure 1 shows images of the dierent threads used: (a) wool, (b) mélange and (c) 
multifilament released at dierent altitudes: (i) 0.5 m, (ii) 1.5 m and (iii) 2.5 m; all 
had the same length (0.5 m). As mentioned above, the pictures were taken in the dark 
using a specific light source so the threads glowed up after they touched the ground. 
It can clearly be seen that all threads formed conformations nearly identical to that 
of polymer chains, especially the threads that were released from higher altitudes. 
Generally, curling conformation increased when the altitude was increased. This means 
that the initial state, when the thread was straight, was very unstable. Under free 
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release (assuming the interaction of the thread with molecules in the air was negligible), 
the thread evolved into stable conformation. It can also be seen that the conformation 
of the threads was closely related to an SAW.

The final conformation was also inspected under variation of the thread length. 
Figure 2 (left) shows the final topologies of the multifilament threads released at an 
altitude of 1.0 m. Three dierent lengths were used: 0.5 m, 0.75 m, and 1.0 m. Longer 
threads correspond to longer SAWs (time proportional to thread length).

The eect of wetting liquid on the conformation was also inspected. The topologies 
of dry wool, wool wetted with alcohol, and wool wetted with water were compared. 
Three threads of the same length (0.5 m) were released from the same altitude of 0.5 m.  
As shown in figure 2 (middle), dry wool tended to form a straight conformation, while 
wool wetted with water tended to form a more curly conformation. This means that 
dry wool is much harder to bend and the wool wetted with water is the most easily 
bent.

Microscopic images of the samples were also recorded. Images of wool threads are 
shown in figure 2 (right): (a) camera picture of dry wool, (b) microscopic image of wool 
wetted with alcohol, and (c) microscopic image of wool wetted with water. It is likely 
that the wool absorbs more water than alcohol, causing the wool wetted with water to 
become much more weak than the dry wool or the wool wetted with alcohol.

Figure 1.  Topologies of the threads after touching the ground. The threads glowed 
under specific light illumination. Three dierent threads were used: (a) wool, (b) 
mélange, and (c) multifilament. They had the same length (0.5 m) and were released 
from dierent altitudes: (i) 0.5 m, (ii) 1.5 m, and (iii) 2.5 m.
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It is also interesting to investigate whether the conformation obeys a 2D or a 
3D topology. For clarification, horizontally oriented pictures were taken of the fall-
ing threads. Figure 3 shows side images of the falling threads. The threads were also 
recorded using a video camera. The images in figure 3 are frames depicting a thread of 
0.75 m length at dierent times, which was dropped from an altitude of 4 m from the 
ground. The appearance of the threads had insucient contrast so we used rectangles 
to indicate the curl boundaries. It was observed that the thread conformation was not 
only occurred within a horizontal plane (2D conformation) but slightly expanded in 
a vertical direction, which means that the conformation is 3D. However, the vertical 
dimension was much smaller than the horizontal dimension so that in this work it was 
approximated as 2D conformation.

The threads’ end-to-end distances were then measured under dierent conditions: 
dierent types of thread, dierent altitudes for release, and dierent wetting liquids 
to inspect whether the curly conformation of the threads had a correlation with the 
SAW model. A SAW model was used instead of simple random walk since the threads 
behave like polymer chains, so that it is impossible for random walk to visit the same 
site more than once. The most important parameter is the power factor, relating the 
walk time to the end-to-end distance. If the threads are divided into a large number of 
segments, the segment length corresponds to distance traveled at one time step while 
the thread length corresponds to the total time of the SAW. The same as in the simple 

Figure 2.  (Left) Images of multifilament threads of dierent lengths: (a) 0.5 m, (b) 
0.75 m, and (c) 1.0 m, released from the same altitude of 1.0 m. (Middle) Images of 
wool of 0.5 m length with dierent wetting liquids released from the same altitude 
of 0.5 m: (d) dry wool, (e) wool wetted with alcohol, (f) wool wetted with water. 
(Right) Image of (g) dry wool recorded using a digital camera, and images of (h) 
wool wetted with alcohol, and (i) wool wetted with water, both recorded using an 
optical microscope.
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random walk model, in the SAW model the end-to-end distance satisfies 
»
〈r2〉 ∝ tκ 

with t is time and κ is the scaling factor depending on the dimension (=1, 0.75, and 
0.588 for one, two, and three dimensions, respectively) [17]. In a simple random walk 
model we have κ  =  0.5, which is the same as κ for an SAW in 4D. In the present work, 
what needed to be inspected was if the same relation will also been obtained for a 2D 

SAW, i.e. 
»
〈r2〉 ∝ Lκ with L is the thread length and κ is the scaling parameter. As 

explained above, the conformation of the released threads approximated a 2D confor-
mation, although slight stretches in the vertical dimension were observed (which were 
ignored in this work). The tendency to form a 2D conformation is due to gravitation, 
which attracts the thread elements simultaneously (under the assumption that air fric-
tion is identical for all segments). Slight spreading into a 3D conformation is caused by 
dierent air frictions experienced by dierent segments or the internal arrangement of 
the thread to maintain energy conservation.

The threads were dropped starting from a straight horizontal position. The shape 
evolved to curly and the end-to-end distance decreased progressively. The question is 
how much time is required for the thread to reach stable conformation, i.e. when the 
end-to-end distance is saturated. For this purpose, the threads were dropped from a 
building from an altitude of up to 22.5 m from the ground. Figure 4 shows the data of 
the end-to-end distance of the threads for dierent materials in three length variations 
and the same threads wetted with dierent liquids. From all figures it is clear that a 
stable end-to-end distance was obtained after the threads had fallen for about 5 m. The 
end-to-end distance remained relatively unchanged after dropping from an attitude 5 
m to 22.5 m. It is also clear that the end-to-end distance decreased as the thread length 

decreased. Therefore, the relation 
»
〈r2〉 ∝ Lκ seems to be acceptable. What needed to 

Figure 3.  Images of falling threads recorded from the side. The view is oriented 
horizontally. Images (a)–(c) represent the threads at dierent altitudes ((a)–(c) 
means they are approaching the ground). The appearance of the threads had 
insucient contrast so we used rectangles to indicate the curl boundaries.  
The images depict a thread of 0.75 m length after being released from an altitude 
of 4 m.
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be further explored was the value of parameter κ. Is this parameter consistent with the 
corresponding parameter for an SAW process?

At the same time, the relationship between falling time and falling distance was 
also measured. For example, figure 5 shows a plot of falling distance against falling 
time for: (a) dry wool and (b) wool wetted with alcohol. Both materials showed a lin-
ear relationship between falling time and falling distance, indicating that both quickly 
reached terminal velocity. The terminal velocities were obtained by fitting the data 
with a linear function, where the slope of the curve represents the terminal veloc-
ity. The terminal velocities for all dry wools were nearly the same (1.06–1.14 m s−1 
with 0.992  <  R2  <  0.999). Similarly, the terminal velocities for all wools wetted with 
alcohol were also nearly the same (in the range between 2.68 and 2.96 m s−1 with 
0.994  <  R2  <  998). The terminal velocity of wool wetted with water was clearly higher 
than that of dry wool.

Figure 6 shows a plot of ln r (r is the average end-to-end distance) with respect 
to lnL for: (a) wool wetted with water, (b) mélange thread wetted with water, and 
(c) multifilament thread wetted with water. The symbols indicate the measurement 
results. The data clearly show a linear relationship between ln r and lnL. Based on the 
fitting results, the gradients obtained for the lines were: κ  =  0.895, 0.798, and 0.794 for 
wool thread wetted with water, mélange thread wetted with water, and multifilament 
thread wetted with water, respectively. The three collected data sets satisfied the fol-
lowing fitting equations: ln r = 0.895 lnL− 1.593 (R2  =  0.958), ln r = 0.798 lnL− 1.170 
(R2  =  0.974), and ln r = 0.794 lnL− 1.050 (R2  =  0.976), for wool thread wetted with 
water, mélange thread wetted with water, and multifilament thread wetted with water, 
respectively. Based on the scaling factors obtained from fitting it could be deduced that 
the scaling factors for the three materials were between the scaling factors of 1D SAW 

Figure 4.  Eect of altitude on the end-to-end distance of the threads. Upper 
figures (A): (i) wool thread, (ii) mélange thread, and (iii) multifilament thread. The 
length of all three threads was varied between 0.5 m, 0.75 m, 1.0 m, 2 m, and 2.5 
m. Bottom figures (B): (i) dry wool, (ii) wool wetted with alcohol, and (iii) wool 
wetted with water. The symbols indicate measured data and the curves display 
the fitting results.
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(1.0) and 2D SAW (0.75). It is also interesting to observe that the resulted scaling fac-
tors for the three materials were almost identical. They were dierent by 0.1 only.

Figure 7 shows the same data for wool wetted with dierent liquids: (a) dry wool, (b) 
wool wetted with alcohol, and (c) wool wetted with water. Here also, the data clearly 
show a linear relationship between ln r and lnL. The three collected data sets satisfy 
the following fitting equations: ln r = 0.834 lnL− 1.338, ln r = 0.879 lnL− 1.447, and 
ln r = 0.895 lnL− 1.595, for dry wool, wool wetted with alcohol, and wool wetted with 
water, respectively. The estimated scaling factors were also between the scaling factors 
of 1D SAW (1.0) and 2D SAW (0.75). It can thus be concluded from figures 6 and 7 
that, in spite of slight conformation stretching in the vertical direction, the 3D behavior 
is negligible. Also, based on the values of the scaling factor, the 2D SAW is more domi-
nant than the 1D SAW. Therefore, in the rest of this paper the thread conformation is 
considered as being controlled by a 2D SAW.

Figure 5.  Plot of falling distance (h) with respect to falling time (t) of: (A) dry 
wool and (B) wool wetted with alcohol. Symbols indicate measured data and the 
curves display the linear fitting results.

https://doi.org/10.1088/1742-5468/aaf322
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4. Modelling

The random walk model is commonly used for explaining the random motion of par-
ticles, such as the Brownian motion of particles in a suspension. In this model, the 
particle is allowed to visit the same site at dierent times. However, in case of poly-
mer conformation, if a certain site has been occupied (visited) by a monomer, such a 

Figure 6.  Eect of thread length on end-to-end distance assuming that a stable 
distance has been reached: (a) wool thread wetted with water, (b) mélange 
thread wetted with water, and (c) multifilament thread wetted with water. 
The fitting equations  ln r = 0.895 lnL− 1.593, ln r = 0.798 lnL− 1.170 and 
ln r = 0.794 lnL− 1.050 were obtained for wool thread wetted with water, mélange 
thread wetted with water, and multifilament thread wetted with water, respectively.

Figure 7.  Eect of thread length on end-to-end distance for (a) dry wool, (b) wool 
wetted with alcohol, and (c) wool wetted with water. The following corresponding 
fitting equations  were obtained: (a) ln r = 0.834 lnL− 1.338, R2  =  0.923; (b) 
ln r = 0.879 lnL− 1.447, R2  =  0.920; and (c) ln r = 0.895 lnL− 1.595, R2  =  0.958.
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monomer stays at that site to reject the visit of other monomers. This is a key assump-
tion of the SAW model, which is why it is best to use the SAW model to describe poly-
mer conformation. As mentioned above, thread conformation likely duplicates polymer 
conformation and therefore we used a SAW model to describe the thread conformation. 
The repulsive energy for a walk of N steps stretching out over distance r in a space with 
fractal dimension d̄  can be approximated as [18]:

U ≈ N2r−d̄.� (1)
This expression also represents the repulsive energy experienced by a polymer chain in 
a dilute solution [19] and we may consider air as a very dilute solution. The entropy 
was estimated under the assumption of a Gaussian distribution of the distance r trav-
elled in a random walk after N steps. The probability distribution of end-to-end dis-
tance in a 2D vector space with a limit of N  →∞ is given by the Gaussian distribution 
function P (�r) = Ψ(N) exp(−r2/r20), with Ψ(N) is a function of N and r0 increases as a 
power of N [17, 19], r0 ∝ N1/dw, with dw is the diusion dimension defined by rdw ≈ t 
for very large t (time elapsed for random walk). Both d̄  and dw are related by equa-
tion d̄+ ζ = dw, with ζ is the resistivity exponent defined by Ω(r) ≈ rζ for the resistiv-
ity Ω between two points at a distance r.

The entropy dierence between a thread with end-to-end distance �r  and one with 
an end-to-end vector of zero is S ∝ lnP (�r)/P (0), or:

S ≈ −r2N−2/dw .� (2)
Based on equations (1) and (2), the Helmholtz free energy F = U − TS  is estimated as:

F ≈ N2r−d̄ + Tr2N−2/dw� (3)
with T is temperature. The standard thermodynamic expression for free energy is used, 
including the introduction of an absolute temperature in the entropy part, even though 
the system is macroscopic. Indeed, a similar treatment for macroscopic systems has 
been considered using a microscopic equation. For example, Rosato et al have consid-
ered the Brazil nuts eect of a mixture of small and large intruders in a shaking con-
tainer by applying the Maxwell–Boltzmann distribution function for the particles even 
though the particle masses were very large [20]. Several authors have considered the 
granular system to behave like a gas and equations that are applied to gas were applied 
to a granular system (macroscopic size) [21, 22]. The equilibrium state is obtained by 
minimizing F to produce −d̄N2r−d̄ + 2TrN−2/dw ≈ 0, resulting in:

r ≈
(

d̄

2T

)1/(2+d̄)

Nκ� (4)

with

κ =
2(1 + 1/dw)

2 + d̄
.� (5)

Equations (1)–(5) were derived from the assumption of a free SAW. However, for the 
threads used in the present work, the energy depends on the threads’ properties, such 
as elasticity (even though the modulus of elasticity may be very small, especially for the 
wet threads) and wetting level. The dry and wet threads should have dierent repulsive 
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energies for the same stretching distance. Therefore, we propose to rescale the repulsive 
energy for the threads as follows:

U ≈ φN2r−d̄� (6)

to give the Helmholtz free energy as:

F ≈ φN2r−d̄ + Tr2N−2/dw� (7)

with φ is a parameter that accounts for the thread properties as mentioned above. 
Using the same procedure as for obtaining equation  (4), the distance between the 
thread ends is estimated as:

r(φ,N) ≈
(
φd̄

2T

)1/(2+d̄)

Nκ.� (8)

If the thread is considered as N connected identical segments of the same length, a, we 
can write N  =  L/a, with L is the thread length. Substituting into equation (8) we get:

r(φ, L) ≈ ψφ1/(2+d̄)Lκ
� (9)

with

ψ ≈ 1

aκ

(
d̄

2T

)1/(2+d̄)

.� (10)

Wet threads are much easier to be bend than dry ones. The parameter ψ is a material 
constant. Thus φ decreases as the wetting level increases. From equation (9) we can 
write:

ln r(φ, L) ≈ ln
[
ψφ1/(2+d̄)

]
+ κ lnL.� (11)

Dekeyser et al [18] have shown that, for 2D SAWs, the following estimated values are 
acceptable: dw ≈ 3 and d̄ ≈ 2. Substituting into equation (5) we get:

κ ≈ 2(1 + 1/3)

2 + 2
= 0.666.� (12)

This value is slightly dierent from the theoretical estimation for a 2D SAW of 0.75. 
However, for a 2D SAW, d̄ = 4/3 [23, 24] and dw ≈ 2.8 are also acceptable. Using these 
values, we have another estimation for κ  ≈  0.8, which is very close to the power con-
stant belonging to 2D SAWs (κ  =  0.75) and is consistent with the slopes obtained in 
our experimental results, i.e. between 0.794–0.895 (figure 6). Therefore, the hypothesis 
of a 2D SAW process for thread conformation is justifiable.

It is clear from figure 7 that dw is almost independent of the wetting level, indicated 
by the slopes (κ) changing only slightly (0.834, 0.879, and 0.895) under the three condi-
tions. By assuming d̄  is nearly the same for all cases, κ remaining unchanged indicates 
that dw is unchanged as well. Therefore the wetting level only aects the end-to-end 
distance.

Let us consider the eect of wetting on the energy of the thread. Based on figures 6 and 

7 we clearly obtain a linear fitting of y = ax+ b for all data, where y = ln r(φ, L), x = lnL, 
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a = κ and b ≈ ln
î
ψφ1/(2+d̄)

ó
. The last relationship can be rewritten as ψφ1/(2+d̄) ≈ exp(b). 

Substituting equation (10) into (11) we can write φ1/(2+d̄) ∝ aκ exp(b). By assuming that 
aκ is nearly the same for the same threads under all conditions (as shown in figure 7, 

where κ is nearly the same for dry, alcohol wetted and water wetted wool) we can then 

approximate φ1/(2+d̄) ∝ exp(b), or:

φ ∝ e(2+d̄)b.� (13)

Based on the fitting results as displayed in figure 7 and using d̄ ≈ 2, wetting the wool 
with alcohol (b  =  −1.447) reduces the energy of the thread compared to dry wool 
(b  =  −1.338 by 1.55), while wetting the wool with water (b  =  −1.595) reduces the 
energy of the thread compared to dry wool by 1.81.

In the experiment we observed that the distance between threads ends changed 
with time. As the falling distance increased, the end-to-end distance decreased to 
approximate a certain value for a very long time, implying that the end-to-end distance 
evolved with time. It is then challenging to explore any equations that can describe the 
evolution of the end-to-end distance.

The reduction of the end-to-end distance can be compared with the process of 
shrinkage. Thus, an equation describing the rate of shrinkage might be adopted. Weir 
has proposed an equation to explain the shrinkage of tendon collagen, where the length 
of the tendon changes as [25] � = (�0 − �∞) exp(−Kt) + �∞, with �0 is the initial length 
of the tendon and �∞ is the final length of the tendon (when t  →  ∞) and K is the rate 
constant. We assume that the same equation applies for end-to-end distance as follows:

r(L, t) = (L− r(φ, L)) exp(−Kt) + r(φ, L)� (14)
with K in general is a function of t.

To confirm equation (14), the time required by the threads to fall over dierent dis-
tances was measured. Figure 8 shows a plot of end-to-end distance of wool wetted with 
water and multifilament wetted with water as a function of falling time. Each material 
was varied at three dierent lengths. The symbols indicate measurement results and 
the curves are fitting curves using equation (14). It is obvious that all data could be 
well fitted with equation (14), producing R2  >  0.87 (mostly  >  0.95).

Let us inspect figure 8(A). For L  =  0.5 m, 0.75 m, and 1 m we have r(φ,0.5)  =  0.12 
m, r(φ,0.75)  =  0.17 m, and r(φ,1)  =  0.2 m, respectively. If we assume that the rela-
tion r(φ, L) ∝ Lκ satisfies κ aproximated to be around 0.666, then we must have 

r(φ, L1)/r(φ, L2) ∝ (L1/L2)
0.666. Using L1  =  0.75 m and L2  =  1 m we have r1/r2  =  0.85 

while (L1/L2)0.666  =  0.83. Then, using L1  =  0.5 ans L2  =  1 we have r1/r2  =  0.6 while 
(L1/L2)0.666  =  0.63. These results have a very nice consistency. Another example is 
figure 8(B). For L  =  0.5 m, 0.75 m, and 1 m we have r(φ,0.5)  =  0.21 m, r(φ,0.75)  =  0.254 m, 
and r(φ,1)  =  0.31 m, respectively. Using L1  =  0.75 m and L2  =  1 m we have r1/r2  =  0.819 
while (L1/L2)0.666  =  0.83. Then using L1  =  0.5 and L2  =  1 we have r1/r2  =  0.677 while 
(L1/L2)0.666  =  0.63. These results also have a very nice consistency.

Instead of using a constant, K, in this model the better fittings were obtained using 
K as a linear function of time, K = pt+ q, where p and q are constants. Table 1 lists the 
parameters used to get better fitting for the data in figure 7. In all cases it was obtained 
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that K increased with time. It was observed that the values of each parameter for all 
thread lengths were nearly identical.

Since p  >  0 and q  <  0 for all fitting conditions, we will identify that if t  <  −q/2p, 
the end-to-end distance increases with time from the moment the threads are released 
to fall freely. This is impossible since the maximum end-to-end distance is equal to 
the thread length. Therefore, we may say that the fitting equations  only apply for 
t  >  −q/2p. Furthermore, if we inspect the value of parameters p and q we will find 
that  −q/2p is very small. For example, the largest value is 1.0706/(2  ×  1.9758)  =  0.27 s. 
Other values are smaller than 0.15 s.

Based on the above discussion, we can strongly state that equation (14) is able to 
explain the evolution of end-to-end distance of the threads with time, although some 
discrepancies occurred due to inaccuracies in the experiment. A possible source of 
inaccuracy may have been the measurement of time. The time was measured by two 

Figure 8.  Plot of end-to-end distance for: (A) wool wetted with water and (B) 
multifilament wetted with water as a function of falling time. Each material was 
varied at three dierent lengths: (top) 1 m, (middle) 0.75 m, and (bottom) 0.5 m. 
The symbols indicate measurement results and the curves display the fitting curves 
using equation (14). The inset in figure (A) is the simulated thread conformation 
at dierent end-to-end distances.

https://doi.org/10.1088/1742-5468/aaf322


Curling evolution of suspended threads replicates 2D self-avoiding walk phenomena and 1D crystallization process

14https://doi.org/10.1088/1742-5468/aaf322

J. S
tat. M

ech. (2019) 013401

people, one at an elevated position (up to 22.5 m above the ground) and one on the 
ground. Also, while the thread falls, the air resistance may change because of the con-
tinuous change in thread conformation until it touches the ground.

Let us further explore equation (14). Using the linear function of K resulted from 
fitting all data, we obtain the following equation:

Y = 1− exp
Ä
−p(t− tm)

2
ä

� (15)

with tm = −q/2p and Y defined as:

Y = 1− r − r(φ, L)

L− r(φ, L)
exp

Ç
− q2

4p

å
.� (16)

Equation (15) is identical to the modified Avrami equation Y = 1− exp (−p(t− tm)
n), 

with tm is known as the incubation time [26] and n  =  D  +  1, with D is the dimension of 
space in which crystallization occurs. The Avrami equation describes the transforma-
tion of a material from one phase to another at constant temperature, where Y deter-
mines the fraction of the new phase that has been formed at time t. We are dealing 
with threads having 1D behaviour, D  =  1 or n  =  2, exactly the same as equation (16). 
Therefore, we can state that the process of thread conformation is likely a process of 
phase transformation in 1D space. The complete crystallization can be associated when 
the end-to-end distance is equal to r(φ, L).

Using the fitting parameters in table  1 we have 0 < q2/4p < 0.145 such that 
0.86 < exp(−q2/4p) < 1. By approximating this value with unity, we obtain the approx-
imated form of equation (16) as:

Y ≈ L− r

L− r(φ, L)
.� (17)

At very small time (t  <  tm) we have r  ≈  L so that Y  ≈  0, while at t  →∞(r = r(φ, L)) we 
obtain Y  =  1. Parameter tm can be seen as adjustment time or time to start the phase 
transition process. Based on the data in table 1 this time ranges from 0.10 s to 0.27 s.

A simple simulation was conducted to visualize the conformation of the threads at 
dierent time lapses. The threads were divided into 1000 identical segments. The seg-
ments were placed sequentially, the direction of which was selected randomly. The first 
segment was placed horizontally. It was assumed that the angle made by the ith and 
the (i  +  1)th segment was constant, β. After placing the first segment, the direction of 
the second segment was selected randomly by generating a random number, 0  ⩽  w  ⩽  1. 
Suppose the angle made by the ith segment is θi, then the angle made by the (i  +  1)th 
segment satisfies the following rule:

Table 1.  Parameters used for fitting the data from figure 8.

Figure Position p Q

8(A) Top 2.1980 −0.6838
Middle 2.2888 −0.6290
Bottom 2.5552 −0.415

8(B) Top 1.9758 −1.0706
Middle 1.2983 −0.3881
Bottom 1.6011 −0.3291
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θi+1 =

{
θi − β if 0 � w < 0.5

θi + β if 0.5 � w � 1
.� (18)

The inset in figure  8(A) shows examples of the conformation of the threads when 
r  =  0.635L, r  =  0.484L, and r  =  0.274L. In the simulation we used β  =  7°. It can clearly 
be seen that the conformations produced by the simulation almost perfectly match the 
images in figures 1 and 2.

As a final note we state here that the simple phenomenon of a free-falling thread 
is able to replicate two famous physical phenomena: a 2D random walk and crystal-
lization in 1D space as described by the modified Avrami equation. The two latter 
phenomena occur at microscopic scale. Therefore, the present experiment was able to 
manisfest or replicate two microscopic processes at macroscopic scale that can be easily 
observed with the naked eye.

5. Conclusion

Conducting an experiment on free-falling threads and modelling their behavior based 
on the experimental results was successful in bringing two microscopic processes (a 2D 
SAW and phase transition in 1D space according to the modified Avrami equation) 
to macroscopic scale, a process that can easily be observed with the naked eye. The 
dependence of the thread’s end-to-end distance on the thread length satisfies a scal-
ing relation that is exactly the same as the scaling relation in a 2D SAW. The equa-
tion describing the evolution of the thread’s end-to-end distance with time is precisely 
the same as the evolution of the crystallization process described by the modified 
Avrami equation. This is very surprising since a simple phenomenon from daily life 
indeed was proven to contain very rich physical ingredients.
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