
Received March 8, 2021, accepted March 25, 2021, date of publication March 29, 2021, date of current version April 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069449

Towards Paddy Rice Smart Farming: A Review
on Big Data, Machine Learning, and
Rice Production Tasks
RAYNER ALFRED 1, JOE HENRY OBIT 1, CHRISTIE PEI-YEE CHIN1,
HAVILUDDIN HAVILUDDIN 2, (Member, IEEE),
AND YUTO LIM3, (Member, IEEE)
1Faculty of Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
2Department of Informatics, Universitas Mulawarman, Samarinda 75123, Indonesia
3School of Information Science, Security and Networks Area, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan

Corresponding author: Rayner Alfred (ralfred@ums.edu.my)

This work was supported by the Universiti Malaysia Sabah Internal Grant under Grant DFK2004-2020.

ABSTRACT Big Data (BD), Machine Learning (ML) and Internet of Things (IoT) are expected to have a
large impact on Smart Farming and involve the whole supply chain, particularly for rice production. The
increasing amount and variety of data captured and obtained by these emerging technologies in IoT offer the
rice smart farming strategy new abilities to predict changes and identify opportunities. The quality of data
collected from sensors greatly influences the performance of the modelling processes using ML algorithms.
These three elements (e.g., BD, ML and IoT) have been used tremendously to improve all areas of rice
production processes in agriculture, which transform traditional rice farming practices into a new era of
rice smart farming or rice precision agriculture. In this paper, we perform a survey of the latest research on
intelligent data processing technology applied in agriculture, particularly in rice production. We describe the
data captured and elaborate role of machine learning algorithms in paddy rice smart agriculture, by analyzing
the applications of machine learning in various scenarios, smart irrigation for paddy rice, predicting paddy
rice yield estimation, monitoring paddy rice growth, monitoring paddy rice disease, assessing quality of
paddy rice and paddy rice sample classification. This paper also presents a framework that maps the activities
defined in rice smart farming, data used in data modelling and machine learning algorithms used for each
activity defined in the production and post-production phases of paddy rice. Based on the proposed mapping
framework, our conclusion is that an efficient and effective integration of all these three technologies is
very crucial that transform traditional rice cultivation practices into a new perspective of intelligence in rice
precision agriculture. Finally, this paper also summarizes all the challenges and technological trends towards
the exploitation of multiple sources in the era of big data in agriculture.

INDEX TERMS Rice production, big data analytics, Internet of Things, machine learning, smart farming,
precision agriculture, agriculture supply chain.

I. INTRODUCTION
The current global population of 7.8 billion (2020) persons is
expected to reach 9.7 billion by 2050 [1]. It is expected that
the world would require 70% more food than what available
at the moment with less natural resources like land and water
due to urbanization, soil erosion, climatic changes, water
shortages and excessive use by livestock. It is estimated that
there is about 33% wastage of agriculture production due
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to poor logistics and storage [2]–[4]. As result, the key for
coping strategies in the contexts of climate change and food
security is to implement precision agricultural or smart farm-
ing. Precision agriculture is a technology-enabled approach to
farming management that observes, measures, and analyzes
the needs of individual fields and crops [5]. Smart farming
is defined as the application of information and data tech-
nologies for optimizing complex farming systems. It focuses
on how the collected agriculture related information can be
used in a smart way, rather than the storage of data, access to
data and the application of these agriculture data. Big data and
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machine learning algorithms are two main important compo-
nents in paddy rice smart farming. Big Data can be defined as
a data that can be described using three key concepts: volume,
velocity, and variety. Volume refers to size of the data, variety
refers to the various types of data (e.g., text, numbers, images,
videos and audios) and Velocity refers to the increasing speed
at which big data is created (e.g., live stream data). Machine
learning focuses on the development of computer programs
that can access data and use it learn for themselves.

Applying smart farming technologies will definitely assist
farmers in various tasks to increase crop productions. In order
to narrow down the scope of this paper, we focus on paddy
rice smart farming as rice is an increasingly important staple
food in Asia Pacific region and other parts of the world.

The changes over time in land use and soil salinity levels
have significant impact on the production of rice yields [6].
In addition to that, unpredictable weather conditions and inef-
ficient techniques to predict weather conditions are amongst
the few factors that reduce rice yields production [7], [8]. For
instance, most farmers in Myanmar face heavy rains during
the rice growing season and that crop damage and yield losses
due to heavy rains cause extensive losses among farmers [9].
As a result, the ability to predict weather or climate trends and
environmental factors (e.g., soil nutrient) is very important in
enhancing paddy farmers’ productivity [7].

The current practices, which heavily rely on fertilizers and
pesticides to increase productivity are not supporting the sus-
tainable rice yields production because these activities are not
environmentally friendly farming systems [10]. In addition
to that, the timing for rice yields harvesting also influences
the production of rice yields as the best timing for paddy
harvesting showed a linear relationship with grain loss [11].
As a result, monitoring the growth of paddy is very crucial to
sustain rice yields production.

Rice production in coastal areas is frequently affected by
typhoons. The lack of ability to manage impacts from natural
events and disasters that include contamination of water bod-
ies, loss of harvest, and destruction of irrigation systems and
other agricultural infrastructure is another shortcoming that
requires attention [12], [13]. With smart farming, the appli-
cation of data mining and analytical techniques designed so
far for prediction, detection and development of appropriate
disaster management strategy based on the collected data
from disasters can be used to manage these impacts and
consequently support agriculture or farming activities with
more effectively and efficiently.

Variation within farms and region based on resource
endowments, location topography and farmers circumstances
make it difficult to apply the same strategy in maximiz-
ing rice yields productivity. Towards the end of the twen-
tieth century, precision agriculture began to be utilized that
applies information technologies to capture and integrate
data from multiple sources (e.g., farmers, sensors) in order
to have a more robust strategy associated with crop man-
agement and thus can be used to maximize agriculture
productivity [14].

Unsustainable rice yields production [6], inefficient tech-
niques to predict weather conditions, lack of ability to man-
age calamities [7], [8], [12], variation within farms and
region [14] and poor logistics and storage [2]–[4] are among
the reasons why smart farming should be adopted to sustain
and optimize rice yields productivity.

In this paper, we conduct a systematic literature
review (SLR) of the latest research on intelligent data pro-
cessing technology involved in rice smart farming focusing
on the rice production and post-production phases of the
agriculture supply chain. We describe the main datasets or
features extracted for data modelling. We then elaborate
role of machine learning algorithms in smart agriculture,
by analyzing the applications of machine learning in various
scenarios in the rice production and post-production phases
of the agriculture supply chain. This paper also presents
a framework that maps the activities defined in rice smart
farming, datasets or features used in data modelling and
machine learning algorithms used to analyze these features
for each activity defined in the early stage of agriculture
supply chain.

The remainder of this article is organized as fol-
lows. Section II provides the literature review of the
most recent reviews conducted related to smart farming.
Section 3 describes the existing frameworks related to agri-
culture supply chain. Section 4 provides an in-depth analysis
of the type of big data used in rice smart farming agricul-
ture focusing on the variety of sources used, the variety of
machine learning algorithms used and finally the variety tasks
involved in the rice production and post-production phases of
smart farming. The research work presented in this section
is classified based on the sources and types of data that
are used, the types of tasks involve in smart farming and
also the type of machine learning algorithms used to model
these data. Section 5 presents a framework that maps the
activities defined in smart farming, datasets or features used
in data modelling and machine learning algorithms used to
analyze these features for each activity defined in the early
stage of agriculture supply chain. Finally, Section 6 concludes
this paper and presents challenges and technological trends
towards the exploitation of multiple sources in the era of big
data in agriculture.

II. LITERATURE REVIEW
A survey has been conducted to look into the global cov-
erage in terms of innovation related to smart farming and
the usage of machine learning in smart farming. The survey
was conducted by using two methods; looking at the trends
of number of scholarly works over time related to Smart
Farming, Machine Learning in Smart Agriculture, Artificial
Intelligence in Smart Agriculture and Internet of Things in
Smart Agriculture, and reviewing all review studies that were
conducted on several elements of I4.0 and its applications in
smart farming for improving the productivity.

Firstly, the trends of number of scholarly works over
time related to Smart Farming, Machine Learning in Smart

VOLUME 9, 2021 50359



R. Alfred et al.: Towards Paddy Rice Smart Farming: A Review on BD, ML, and Rice Production Tasks

FIGURE 1. The trends of scholarly works over time related to Smart Farming.

FIGURE 2. The trends of scholarly works over time related to Machine Learning in Smart Farming.

Agriculture, Artificial Intelligence in Smart Agriculture and
Internet of Things in Smart Agriculture, can be obtained by
using the Lens website (https://www.lens.org). Lens provides
open datasets of patent documents, scholarly research works
and any inventions related to machine learning, artificial
intelligence, internet of things and smart farming disclosed
in patents [15]. The Lens serves global patent and schol-
arly knowledge as a public resource to make science- and
technology-enabled problem solving more effective, efficient
and inclusive. This knowledge may help show ways forward

such as new or repurposed ideas and inventions, better strate-
gies and targeted partnerships for collective action. Based
on these four keywords used in searching for trends in
smart farming research, the usage of Machine Learning (ML)
in smart farming, the usage of Artificial Intelligence (AI) in
smart farming and the usage of Internet of Things (IoT) in
smart farming, Fig. 1 through Fig. 4 display the increasing
trends of number of scholarly works over time related to
these keywords. For instance, based on these Fig. 1, Fig. 2,
Fig. 3 and Fig. 4, several scholarly works have been filed
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FIGURE 3. The trends of scholarly works over time related to Artificial Intelligence in Smart Farming.

FIGURE 4. The trends of scholarly works over time related to Internet of Things in Smart Farming.

and recorded and the number of scholarly works filed has
increased between the year of 2018 and 2019.

Secondly, in the past, few review studies were conducted
on several elements of I4.0 and its applications in smart
farming for improving the productivity in agriculture sec-
tors as mentioned in Table 1. These studies have focused
on I4.0 applications in the smart farming covering specific
aspects like Internet of Things, Cloud Computing and Big
Data Analytics (Machine Learning). Table 1 shows several
reviews that were conducted recently that are related to smart

farming or precision agriculture. Several reviews conducted
were focusing on the application of machine learning algo-
rithms in smart farming [16], [17]. For instance, Sharma et al.
investigated the current state of research on machine learn-
ing (ML) applications in Agriculture Supply Chain (ASC)
that includes the application of ML in four different phases
in ASC; pre-production, production, processing and distri-
bution [16]. It was concluded that all three ML algorithms
can be leveraged to develop a sustainable ASC. A Machine
Learning-Agriculture Supply Chain performance framework
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TABLE 1. Review papers: Elements of I4.0 and its applications in smart farming.

was introduced in which the machine learning algorithms are
mapped into all four different phases in ASC based on the
type of data used. However, these data are not explained and
categorized comprehensively.

Mekonnen et al. conducted a review on the application of
various machine learning methods in analyzing data captured
from sensors within the agricultural ecosystem [17]. In this
review, a limited number of machine learning algorithms is
listed based on the data that are captured using different types
of Wireless Sensor Networks (WSN) (e.g., ZigBee WSN,

GSM and GPS WSN, LoRa WSN, Wifi and MQTT Sensor
based with Raspberry pi and Arduino) and also remotely
sensed data (multispectral or hyperspectral data) and vege-
tation indices. Based on the trend obtained from this review,
there will be an increased use of more advanced techniques
like distributed (or edge) deep learning.

Several reviews also conducted focusing on the application
of deep learning algorithms only in smart farming [18]–[21].
One of the findings from these reviews is that the deep
learning algorithms are proven to be better in providing high
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accuracy results compared with other machine learning algo-
rithms in terms of accuracy when applied to various agricul-
tural problems, such as disease detection and identification,
fruit or plants classification and fruit counting among other
domains.

The evolution of agriculture systems involves the adoption
of incoming data from various sources [27] and also the
application of big data applications in smart farming [26].
Together these big data technologies and the capability of
machine learning algorithms in forecasting certain outcomes
will cause major changes in the scope and organization of
smart farming [16], [17], [26]. Lytos et al. conducted a survey
paper that covers the state-of-the-art big data architectures
and agriculture systems in order to bridge the knowledge
gap between agriculture systems and exploitation of big data.
However, in this review, the authors list out the name of the
databases and features used in the agriculture systems only
without outlining how these data are processed or analyzed.

The quality and type of dataset collected from sensors
greatly influence the performance of the forecasting algo-
rithm in predicting the crop yields. For instance, in opti-
mizing the performance of forecasting crop yields, Fabrizio
Balducci et al. have investigated the performance of several
machine learning algorithms based on different subsets of
features extracted from the environmental sensors [29].

There are quite a number of reviews conducted related to
Internet of Things (IoT) technologies [38]. The emergence
of Internet of Things (IoT) technologies has also improved
the performance of a real-time monitoring of the data related
to smart farming [20]. IoT are mainly used in monitoring
crop, soil and weather, forecasting disease and crop yields,
controlling irrigation machinery and autonomous vehicles
and robots [22]. Based on several reviews, it can be concluded
that incorporating precision livestock farming technologies
(Sensors), big data analytics, and the IoT in smart farm-
ing practices puts forth a possible solution to assist us to
improve agriculture productivity and meet projected global
agricultural product demands [23]–[25], [28]. The increasing
amount and variety of data captured and obtained by these
emerging technologies in IoT offer the smart farming strategy
new abilities to predict changes and identify opportunities.

However, to the best of our knowledge, no such studies
are conducted to review comprehensively the present map-
ping of datasets or features and machine learning algorithms
based on different types of tasks involved in the paddy rice
production and post-production phases of the ASC. There
are several related works conducted about the applications of
machine learning on the paddy rice smart farming. Several
researches have been conducted that apply machine learn-
ing algorithm (e.g., Support Vector Machine (SVM) [46],
[98], [127], Convolutional Neural Network (CNN) [94], [95],
and hybrid approaches [103], [124]) in paddy rice sample
recognition and classification using high-resolution images.
Remotely sensed, vegetation indices and climate data are
commonly used to predict paddy rice yield estimation [34],
[35], [48], [76], [77], [109] and to monitor paddy rice

growth [63], [73], [84] using artificial neural networks and
its variants and also linear regression approaches. In addi-
tion to that, hyperspectral and high-resolution images have
been used to accurately and affectively monitor paddy rice
disease [40], [41], [87], [88], [118] and assessing quality
of paddy rice [93], [104], [105] by using deep learning
algorithms.

In this paper, we will present a framework that maps
three elements which include a) Paddy rice production and
post-production activities defined in the ASC, b) datasets
or features related to agriculture components captured from
sensors, and c) machine learning algorithms used to analyze
these features for each activities defined in the early stage of
ASC. This is done by
i Identifying the phases and tasks involved in the paddy
rice smart farming that require intelligent data processing
technologies.

ii Describing the main datasets or features captured and
used by intelligent data processing technologies in each
task identified in the paddy rice smart farming.

iii Elaborating the roles of machine learning technology in
paddy rice smart agriculture, by analyzing the applica-
tions of machine learning in various tasks and phases in
the paddy rice smart farming.

III. PHASES AND TASKS IN PADDY RICE SMART
FARMING
This paper focuses on the smart farming technologies used
in paddy growth and production. This section elaborates the
selected phases and tasks involved in the paddy rice smart
farming [16]. The applications of machine learning algo-
rithms and smart technologies in the agriculture supply chain
can be divided into 4 phases and include pre-production, pro-
duction, post-production and finally distribution phases [16],
[30], [31]. However, in this work, we focus on several
tasks that require intelligent data processing technologies that
can be fully utilized to improve the production of paddy
rice. Thus, this review focuses on the rice production and
post-production phases.

In the rice production phase, several activities are con-
ducted sequentially such as planting, managing water, mon-
itoring soil fertility, managing weed and finally managing
pests and diseases. Then, in the rice post-production phase,
the activities can be divided into harvesting, drying, storage
and milling and processing. Based on these phases and tasks,
we will look into the features or datasets that are applied
by machine learning algorithms in this rice production pro-
cesses. The SLR framework used for presenting the review
findings is presented in Fig. 5. Fig. 5 highlights two main
categories which are the paddy growing activities and the
smart farming activities associated with the paddy growing
activities. The paddy growing activities can be divided into
production and post-production phases. The first step in rice
production phase is planting. Rice crops can either be direct
seeded or transplanted. Next, ensuring the rice plant to get
adequate water is very important since rice is extremely
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FIGURE 5. Rice production and post-production phases in paddy rice smart farming.

sensitive to water shortages. Managing good practices for
smart paddy irrigation is very critical to maximize water
efficiency and yield. Smart irrigation for paddy rice deals
with maintaining a predetermined water height in paddy
fields automatically based on the growth stages of the paddy
rice [32], [33]. Managing weeds is crucial to reduce the
amount of weed pressure in the field. Next, monitoring soil
fertility is also very essential to optimize the growth of a
rice plant. At the same time, timely and accurate diagnosis
of paddy diseases and managing pests are highly required to
reduce loses. Monitoring paddy rice disease involves activ-
ities such as detection and recognition of diseases from
paddy plant leaf images [37], [39] or classifying, detect-
ing, and predicting infestation patterns of the Brown Plan-
thopper in rice paddies [40], [41]. Generally, monitoring
the growth of paddy rice involves analyzing the growth of
paddy rice based on climate data or remotely sensed data
and vegetation indices. This also includes developing an
approach for mapping rice-growing areas at field level using
phenology-based rice crop classification or paddy growth
stages classification [34]–[36]. Predicting paddy rice yield
estimation involves tasks such as yield assessment of paddy
fields usingmachine learning algorithms [42] ormapping rice
planted area using the hyperspectral data or remotely sensed
data and vegetation indices [43].

In the rice post-production phase, paddy harvesting activi-
ties include reaping, stacking, handling, threshing, cleaning,
and hauling. Harvesting paddy should be performed effi-
ciently as the speed of paddy harvesting showed a linear
relationship with grain loss [11]. When rice is harvested,
it will contain up to 25%moisture. Highmoisture level during
storage can lead to grain discoloration, encourage develop-
ment of molds, and increase the likelihood of attack from
pests. It can also decrease the germination rate of the rice

seed. Assessing the quality of paddy rice can be performed by
using any machine learning algorithms. Assessing the quality
of paddy rice usually involves activities such as assessing the
quality of the rice [44] or investigating the impact of climate
change on paddy rice production [45]. Next, drying process
will involve the process of drying paddy by using traditional
ormechanical systems. It is important to dry rice grain as soon
as possible after harvesting (ideally within 24 hours). After
that, these dried rice grain will be stored to prevent grain loss
caused by adverse weather, moisture, rodents, birds, insects
andmicro-organisms like fungi. Finally, the last activity in the
post-production phase is the milling process which remove
the husk and the bran layers, and produce an edible, white
rice. Paddy rice sample recognition and classification can
be applied to perform the milling process. In paddy rice
sample recognition and classification, the main task is to
separate and classify objects of rice sample based on color
and texture features with the help of image processing and
machine learning techniques [46], [47].

IV. APPLICATION OF BIG DATA AND MACHINE
LEARNING IN RICE PRODUCTION TASKS
A. BIG DATA USED IN RICE PRODUCTION TASKS
Data that are commonly used in paddy rice smart farming
can be categorized into sensor data, remotely sensed data and
vegetation indices, drone based data and finally paddy rice
leaf analysis data. Table 2 tabulates the types of data and
features used in paddy rice smart farming according to the
smart farming activities described in Fig. 5.

1) SENSOR DATA
Firstly, the typical types of sensor data captured that can be
used in monitoring paddy rice growth or yield estimation of
paddy rice are data related to meteorological.
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TABLE 2. Types of data and features used in paddy rice smart farming.

Meteorological data (or climate data) can be used to
monitor paddy rice growth [45], [48] and disease [41].
For instance, Guruprasad et al. conducted a yield estimation
modeling paddy crop at different spatial resolution (SR)
levels based on weather and soil data as input features.
These features include day and night temperature (min, max,
mean), diffused irradiance, precipitation (cumulative), rela-
tive humidity, wind speed, rainfall, pH, soil moisture and
temperature (0-40cm) [48].

It was observed that the disease incidence on paddy rice
growth is also directly affected by the level of temperature,
wetness duration [50], [51]. Paddy rice production is also
affected by the level of precipitation. For instance, the paddy
rice production was found to be affected by the decreasing
post-monsoon precipitation as this time coincides with the
sensitivity of the paddy fruiting and ripening stages [54].
Besides that, windsmay also affect the growth and production
of paddy rice plants as strong winds are very detrimental to
the growth and production of rice plants, especially when they
occur during the flowering and ripening phases of rice [49].
Rainfall was found to be the main climate driver of the paddy
rice yield [111]. The suitable soil pH for rice cultivation is
at pH 6.0 [52] or 6.25 [53]. Analyzing the nitrogen level of
paddy rice can also be used to assess the quality of paddy
rice [105].

2) REMOTELY SENSED DATA AND VEGETATION INDICES
Secondly, remote sensing data or remotely sensed data and
vegetation indices can be used in different ways in estimating
paddy yield, monitoring paddy growth and diseases. Many
studies are based on the mapping of rice-growing are [35],
[43] [57], mapping cropping patterns [57]–[59], mapping
paddy vulnerability to flooding [58].

The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) sensors have a total of 36 spectral bands and

seven of them are related to vegetation and land surfaces that
include several ranges [60]. Seven of the most used spectral
bands includes
i) Red (620–670 nm) - Band 1
ii) Near Infrared One (NIR1) (841–875 nm) - Band 2
iii) Blue (459–479 nm) - Band 3
iv) Green (545–565 nm) - Band 4
v) Near Infrared Two (NIR2) (1230–1250 nm) - Band 5
vi) Shortwave Infrared One (SWIR1) (1628–1652 nm) -

Band 6
vii) Shortwave Infrared Two (SWIR2) (2105–2155 nm) -

Band 7
Based on these spectral bands, several measurements can

be derived and computed such as Land Surface Water Index
(LSWI), Enhanced Vegetation Index (EVI), Normalized Dif-
ference Vegetation Index (NDVI), Modified Normalized Dif-
ference Water Index (MNDWI), Leaf Area Index (LAI) (see
Table 2).

LSWI is sensitive to the total amount of liquid water in
vegetation and its soil background. LSWI was developed by
considering two bands of the shortwave infrared (SWIR) and
the NIR regions of the electromagnetic spectrum to compute
the estimation of water content of the land surface [61]. LSWI
is computed based on Eq. 1;

LSWI =
ρNIR− ρSWIR1
ρNIR+ ρSWIR1

(1)

where ρNIR is the reflectance in the NIR, ρSWIR1 is the
reflectance in the Shortwave Infrared One. LSWI can be used
to detect and classify paddy rice phenology in paddy fields
with complex cropping patterns [35], [62]. It was also used to
assess the damage of regional rainfed paddy rice after severe
floods [44] and monitoring rice growth [63]. Liou and Sha
found that the value of LSWI increases and becomes higher
that NDVI and EVI [44].
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EVI can be used to quantify vegetation greenness [64].
Son et al. have constructed a time-series EVI and LSWI data
in order to perform the phenology-based rice crop classifica-
tion [35]. EVI can be measured as follows;

EVI = G×
ρNIR− ρRed

ρNIR+ (C1 × ρred − C2 × ρBlue)+ L
(2)

where ρNIR is the reflectance in the NIR, ρRed is the
reflectance in the red, ρBlue is the reflectance in the blue, C1,
C2, and L are coefficients and G is the gain factor. The coef-
ficients adopted in the MODIS-EVI algorithm are; L = 1,
C1 = 6, C2 = 7.5, and G = 2.5. EVI is normally combined
with other vegetation indices (e.g., NDVI, LSWI) to predict
paddy rice yields’ estimation [35], [58] [59], [62], assess
damage of regional rainfed paddy rice [44] and monitor rice
growth [62], [63]. The results of applying MODIS-based
paddy rice phenological detection algorithm in classify-
ing paddy growth stages are found to be encouraging and
can be used to monitor paddy rice agriculture at a larger
scale [62], [63].

Indices that correlate with vegetation cover are also used in
estimating paddy yield and monitoring paddy growth such as
the NDVI, which is mostly used to predict paddy rice yields’
estimation [43], [57], [59], assessing damage of regional rain-
fed paddy rice [44] and monitoring rice growth [63]. NVDI
is used to measure the level of greenness and biomass of
vegetation. NDVI measurements are most often taken from
satellites in orbit around the Earth. NDVI can be computed
based on differences in the response patterns of vegetation in
the red and NIR ranges as follows [65];

NDVI =
ρNIR− ρRed
ρNIR+ ρRed

(3)

where ρNIR is the reflectance in the NIR and ρRed is the
reflectance in the red and this NDVI ranges between -1 (no
vegetation) and +1 (green vegetation). Both the NDVI and
EVI are most commonly used vegetation indices to monitor
the health of vegetation on the fields [35], [43], [57], [59],
[66]–[69]. However, some researchers have reported that
EVI is often preferred than NDVI as EVI is more respon-
sive to biophysical variables, such as LAI [35], [67]. For
instance, EVI is more robust in capturing the difference in
well-vegetated areas [67].

MNDWI is computed based on differences in the response
patterns of vegetation in the green and SWIR1 ranges for the
enhancement of openwater features [70] and can bemeasured
as follows;

MNDWI =
ρGreen− ρSWIR1
ρGreen+ ρSWIR1

(4)

where ρNIR is the reflectance in the NIR, ρSWIR1 is the
reflectance in the Shortwave Infrared One. The integra-
tion of NDVI and MNDWI from Sentinel-2A image has
shown increased accuracy of predicting the paddy rice yield
estimation [57].

LAI is a dimensionless quantity that characterizes plant
canopies that typically can be defined as the ratio of one sided

leaf area per unit ground area (m2/m2) and can be considered
as a measure of paddy crop growth and productivity since it
characterizes plant canopy structure and gives an idea of the
amount of biomass available in a field. LAI can be measured
using a plant canopy analyzer [71]. Some works have been
conducted to estimate paddy rice LAI with a fixed point
continuous observation of near infrared reflectance using a
calibrated digital camera [71], [72]. Estimating paddy rice
LAI can also be done using machine learning methods [69]
and also statistical methods [73] based on hyperspectral data.
The leaf area index (LAI) and plant nitrogen concentra-
tion (PNC) were also used to estimate the nitrogen nutritional
index (NNI) in paddy rice [74].

Hyperspectral images (Red, Blue, Green and Near Infrared
One) can also be used to predict paddy rice yield estima-
tion [75]–[77], assess the quality of paddy rice [69], [71],
[72], [78], [79] and monitor paddy rice disease [80], [81].

Another remotely sensed data that is widely used in smart
farming called C-Band Synthetic Aperture Radar (SAR) data.
C-Band SAR data can be obtained from the Sentinel-1A
satellite which provides a collection of data in all-weather,
day or night. C-Band SAR data has been used in a wide
range of applications that include sea and land monitoring.
For instance, C-Band SAR has been used in predicting paddy
rice yield estimation [82], monitoring paddy rice growth [83]
and monitoring paddy rice disease [40].

3) DRONE BASED DATA
Next, drone based data include all imageries captured using
the drone technology. The high resolution images captured
using drone can be used to estimate the paddy rice yield [42],
[84]–[86], monitor paddy rice disease [37], [39], [87]–[92],
classify paddy rice samples [46], [47], [93]–[101] and also
assess the quality of paddy rice [102]–[104]. For instance,
a near real-time deep learning approach for detecting rice
phenology has also been designed based on high resolutions
images taken by using drones [86].

For instance, a SVM classifier can be used to perform
segmentation and classification of paddy rice samples [46].
The prediction of nitrogen deficiency of rice crop can also
be done to access the quality of the rice using deep learning
methods [104].

B. APPLICATIONS OF MACHINE LEARNING ALGORITHMS
IN PADDY RICE SMART FARMING
This section elaborates the roles of machine learning tech-
nology in paddy rice smart agriculture, by analyzing the
applications of machine learning algorithms and smart tech-
nologies in various scenarios in the paddy rice production
and post-production phases of the ASC. As mentioned ear-
lier, intelligent data processing technologies can be applied
in various scenarios in all the paddy rice production and
post-production phases of the ASC and these tasks include
smart irrigation for paddy rice, predicting paddy rice yield
estimation, monitoring paddy rice growth, monitoring paddy
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FIGURE 6. State-of-the-art for the tasks involved in the smart paddy rice farming.

TABLE 3. Applications of smart technologies (e.g., Internet of Things (IoT)) in various scenarios in the paddy rice pre-production and production phases of
the ASC.

rice disease, assessing quality of paddy rice, paddy rice sam-
ple recognition and classification.

The state-of-the-art for the tasks involved in the smart
paddy rice farming is illustrated in Fig. 6. First, all the
acquired data (Sensor, Remotely sensed data and vegetation
indices, and drone based data) will be cleaned, fusioned
or integrated. Then, the dimensionality of the data can be
reduced using feature selection, construction, transformation
and weighting processes [162]–[164]. Next, once the data
are prepared, then they will be divided into training and
testing data depending on the types of task (e.g., classifica-
tion, regression or clustering) or machine learning algorithms
(e.g., estimation, linear and non-linear methods) used to
model the data. Finally, model evaluation and interpretation
will be performed to extract knowledge that supports the tasks
in the smart paddy rice farming (e.g., PaddyYield Estimation,
Monitoring Paddy Growth, Assessing the Quality of Paddy
Rice, Determining Paddy Rice Classes andMonitoring Paddy
Rice Diseases).

1) SMART IRRIGATION SYSTEM FOR PADDY RICE
Automatic drip irrigation system requires a lesser amount
of water to maintain a predetermined water height in paddy
fields [32], [33] and this system can be controlled based
on the captured climate data (e.g., temperature, humid-
ity, light and rain) from sensors. Using a wireless sensor
and actuator network (WSAN) to build a smart irriga-
tion system for paddy fields can also conserve signif-
icant amount of water [106], [107]. Automatic irrigation
system can cause a significant increase of rice produc-
tion by making more arable land available for paddy rice
plantation [33].

Besides that, smart sensors for climate and soil
[36], [36], Radio-frequency identification (RFID), load
Sensor and Global Positioning System (GPS) are also
used in estimating paddy rice yield [113], [114]. Table 3
tabulates the applications of smart sensors (Internet of
Things (IoT)) in various tasks involved in paddy rice smart
farming.
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TABLE 4. Applications of machine learning algorithms in predicting paddy rice yield estimation.

2) PREDICTING PADDY RICE YIELD ESTIMATION
Most researches model the paddy rice estimation based on the
hyperspectral and climate data in predicting paddy rice yield
estimation (see Table 4). These studies conducted using var-
ious types of remotely sensed data and vegetation indices to
predict paddy rice yield estimation [34], [35], [57], [58], [67].
Thus, one of the issues is determining the best combination
of data obtained from remotely sensed data and vegetation
indices to improve the accuracy of predicting paddy rice
yield estimation. For instance, the integration of NDVI and
MNDWI from Sentinel-2A image with temporal backscatter
increased the accuracy by 0.08 [57]. Combining hyperspec-
tral data (e.g., NDVI and MNDWI) will also increase the
accuracy of estimating the paddy rice yield by using Clas-
sification And Regression Trees (CART) [57]. CART is one
of the variants of Decision Tree (DT) classifiers that can
be used for classification or regression predictive modeling
problems [57], [66], [144]. DT is one of important types of
algorithm for supervised learning, particularly in predictive
modeling [78], [81], [126]. DT are constructed via an algo-
rithmic approach that optimizes the splitting of a data set
based on different conditions of the data features. In addition
to that, using multi-features fusion method can also improve
the accuracy of predicting paddy rice yields using a deep
learning approach [112].

Partial Least Squares (PLS) algorithm can be found
in many researches conducted to estimate the paddy rice
yields [34], [35], [75]. For instance, short wave infrared

region was found to be very essential for estimating the paddy
yield using PLS algorithm [34]. PLS was developed based
on the principal component regression that can be used to
build models that can predict more than one dependent vari-
able [63], [69], [136]. PLS was also found to produce higher
R2 of 0.984 compared to Principal Components Regres-
sion (PCR) in predicting paddy rice yield estimation [75].
PCR is based on Principal Component Analysis (PCA) that
is used to analyze the multiple regression data that suffer
frommulticollinearity [132] (e.g., predicting paddy rice yield
estimation [75]). Before any modelling can be performed,
PCA can be used to extract features of the datasets [128].
PCA is a well-known technique used for reducing the dimen-
sionality of the datasets [129]. This is done to increase the
interpretability but at the same time minimizing information
loss [130], [131].

A few variants of deep learning algorithms have also
been used to predict paddy rice yield estimation based on
NDVI [109], climate data [48], [110]–[112], [155] and hyper-
spectral data (Bands 1 ∼ 4) [75]–[77] with higher accuracy
results. These deep learning algorithms include Artificial
Neural Network (ANN) [48], [77], [110], [111], Convolu-
tional Neural Network (CNN) [76], [109], [112], Recurrent
Neural Network (RNN) [155]). For instance, neural network
algorithms achieved better overall accuracy compared to Ran-
dom Forest (RF) and Support Vector Machine (SVM) using
either the hyperspectral or climate data [48], [109], [110].
Inspired by the way biological nervous systems, ANN is
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basically an information processing technique that works like
the way human brain processes information [150]. An ordi-
nary neural networkmay consist of hidden layers and weights
while CNN has filters which collectively make up the con-
volution layers. CNN is most commonly applied to analyze
images and it is a class of deep neural networks. CNN is
suitable to be used for spatial data such as images. In con-
trast, RNN is suitable to be used for temporal data which
is also called sequential data. Compared to ANN, RNN
is able to learn time-series data since it has a recurrent
connection on the hidden state and this looping constraint
ensures that sequential information is captured in the input
data [151], [155]. Although, deep learning algorithms are
known to be very effective and robust to forecast yields paddy
rice yield estimation, [76], [77], [109], [111], [155] they
require a large amount of time-series data to improve the
prediction performance [112].

RF requires two parameters namely the number of trees
and the number of features to split the data set based on dif-
ferent conditions [143]. RF has been found to be effective in
predicting paddy rice yield estimation and monitoring paddy
rice growth [48], [82]. Several works related to applying
SVM in paddy rice smart farming have been reviewed in this
paper [48], [109]. However, they produced lower accuracies
compared to deep learning algorithms. SVM is a supervised
machine learning model that can be used for binary clas-
sification tasks [146]. The objective of the SVM is to find
the optimum hyperplane in an N-dimensional space that can
distinctly classifies the data points.

Unsupervised learning algorithm can also be used to
predict the paddy rice estimation using the hyperspectral
data [58]. For instance, Iterative Self-Organizing (ISO) has
been used to generate paddy cropping pattern to predict
paddy rice yield estimation [58]. ISO is an unsupervised
learning algorithm that can be used to generate rice cropping
patterns [58]. The ISO algorithm is a modification of the
k-means clustering algorithm. The merging and splitting of
clusters are based on a predefined threshold by the user. If the
difference of distance in multispectral feature space is less
than the predefined threshold, the merging or splitting of
clusters will be performed [153].

There are several optimization approaches that produce
estimates of unknown variables or parameters based on a
series of measurements observed over time, such as the
Extended Kalman Filter (EKF), Unscented Kalman Fil-
ter (UKF) and Moving horizon estimation (MHE) [133], that
can be used to predict paddy rice yield estimation. Mov-
ing Horizon Estimator with Pre-Estimation (MHE-PE) is an
optimization-based estimator introduced and use an auxiliary
estimator to describe the dynamics of the state over the
horizon [134], [135]. MHE-PE is found to be more effective
compared to MHE [68] for crop start date estimation in
tropical area [68].

Some of the limitations found in these studies include
the resolution limitations, topographic effects and limited
and small size of time-series data that lead to estimation

errors. For instance, the low fractional coverage of small-size
rice paddies in the complex and hilly landscapes could also
lower the probability of identification using the OTSU’s algo-
rithm [108]. OTSU’s method is an image segmentation algo-
rithm that segments a gray level image with only one modal
distribution in gray level histogram [100], [148]. Stepwise
classification (SW) is another classification approach that
applies a strategy that combines two heterogeneous data sets
in a novel way, and this can be used in estimating rice yields
production [67]. Table 4 tabulates the applications of machine
various learning algorithms found in some of works to predict
paddy rice yield estimation.

3) MONITORING PADDY RICE GROWTH
Monitoring the growth of paddy rice can be performed by
mapping paddy rice and assessing the growth stages of the
paddy rice. One of the issues or challenges in monitoring
paddy rice growth using machine learning algorithms is to
determine the optimum features combination. With optimum
features combination, the overall accuracy of the classifica-
tion results can be improved [115]. For instance, the optimum
features combination can be achieved by using the robust
adaptive spatial temporal fusion model (RASTFM) [116].
NDVI [63], [66], [69], [115], EVI [63] and Hyperspectral
bands 1 ∼ 4 [73], [78] are the most commonly used in
monitoring the growth of paddy rice.

The Multilayer Perceptron (MLP) [63], a class of feed-
forward ANN, and RF [69], [115] algorithms show better
accuracies [69], [115] compared to PLS, SVM [63], [78], [83]
and Support Vector Regression (SVR) [69] in performing the
paddy growth stages classification. SVR is characterized by
the use of kernels, sparse solution, and the original control
of the margin and the number of support vectors [141]. SVR
trains using a symmetrical loss function, which equally penal-
izes high and low misestimates and it has been proven to be
an effective algorithm in estimating real-value [69].

Least-squares support-vector machines (LS-SVM) is
found to produce better results compared to Multiple Linear
Regression (MLR) and PLS, in estimating LAI of paddy
rice from optimal hyperspectral bands [73]. LS-SVMs are
least-squares versions of SVM which can be used for classi-
fication and regression analysis problems [73], [123], [140].
MLR is a statistical technique that uses several indepen-
dent variables to predict the outcome of the dependent
variable [34], [73], [111], [137]. Multiple regression is an
extension of linear (OLS) regression that applies only one
independent variable.

Besides remotely sensed data, vegetation indices, climate
and soil data obtained from smart sensors are also used in
monitoring paddy rice growth [36], [36] (see Table 3). Table 5
tabulates the applications of machine various learning algo-
rithms in monitoring paddy rice growth.

4) MONITORING PADDY RICE DISEASE
The color of the paddy rice leaves will change when they
are infected by any disease and these colored spots are
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TABLE 5. Applications of machine learning algorithms in monitoring paddy rice growth.

created on leaves. For that reason, most of the researches
used high-resolution images in monitoring the paddy rice
disease [37], [39], [41], [87]–[92], [117]–[120] and hyper-
spectral images [80], [81] to detect and assess the paddy
rice diseases. The ANN algorithm and its variants, CNN,
are found to be very effective in classifying task for
monitoring the paddy rice diseases [39]–[41], [81], [87], [88],
[90], [118]. For instance, the ANN achieved better classifica-
tion results compared to FC and SVM algorithms [39] and the
calibrated CNNmodel still showed good classification ability
in a small-scale sample set and it was selected as the best
classification model compared to DT, k-NN and SVM [81].
However, CNN requires a large number of samples for train-
ing purposes [88], [112]. In fuzzy classification (FC) appli-
cations, once a set of classes has been defined, one can
determine the degree of membership of every object x under
consideration [149]. Fuzzy classification allows object x to
belong to two or more classes.
k-Nearest Neigbour (k-NN) algorithm is also very effec-

tive in detecting diseases from paddy plant leaf images and
identifying Brown Planthopper in paddy field and other clas-
sification problems [37], [81], [92], [96], [117]. Given an
unknown sample, k-NN finds k samples that are nearest to
this unknown sample based on certain distance functions
(e.g., Euclidean or Cosine distance methods) and take the
average of the response variables from these k samples as the
label (class) of the unknown samples [145]. k-NN can be used
for paddy rice sample classification [59], [99], [103]. Com-
pared to SVM, k-NN produces better accuracy in detecting
and recognizing diseases from paddy plant leaf images [37].

Some combined approaches show promising results that
involve deep learning approaches [40], [41] and SVM algo-
rithms [40], [91]. For instance, a combination approach of
two machine learning algorithms (e.g., CNN + SVM) has
been used to identify the cultivated paddy regions (e.g., Using
CNN), and to detect areas damaged (e.g., Using SVM)
by Brown Planthopper attacks [40]. Other works include

building a semantic framework that models an ontology
related to rice plant knowledge and applying this framework
to help farmers to identify rice diseases, receive early warn-
ings of possible spreadable diseases, and receive treatments
based on multiple observations [121].

Minimum Distance Classifier (MDC) achieved better
accuracy compared to k-NN in classifying high-resolution
images for monitoring paddy rice disease [117]. MDC classi-
fies unknown sample data to classes which minimize the dis-
tance between this sample data and the class in multi-feature
space [147]. One of the works reviewed has applied MDC to
classify images in the task of monitoring and controlling rice
diseases using Image processing techniques [117].

There are also researches conducted on developing
expert systems using optimized fuzzy inference system
(OFIS) [122] and forward chaining [89] for monitoring paddy
rice disease. Table 6 tabulates the applications of machine
various learning algorithms in monitoring paddy rice disease.

5) ASSESSING QUALITY OF PADDY RICE
The quality of paddy rice can be assessed using the
hyperspectral data [74], [79], climate and soil data [105]
and also high-resolution images of the paddy rice [93], [104],
[123]. SVM and CNN algorithms are the twomost commonly
used machine learning algorithms for assessing the quality of
paddy rice [79], [93], [104], [105], [123]. CNN is found to
be more effective compared to SVM algorithm in assessing
the quality of the paddy rice [93]. However, a combination
of classical artificial neural networks and SVM also has been
used to predict nitrogen deficiency of rice crop [104].

Fuzzy c-means (FCM) has also been used to assess the
quality of the paddy rice. FCM is a method of clustering
which allows one piece of data to belong to two or more
clusters [74], [154]. Table 7 tabulates the applications of
machine various learning algorithms in assessing quality of
paddy rice.
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TABLE 6. Applications of machine learning algorithms in monitoring paddy rice disease.

TABLE 7. Applications of machine learning algorithms in assessing quality of paddy rice.

6) PADDY RICE SAMPLE CLASSIFICATION
Machine learning algorithms are normally combined with
computer vision techniques to perform paddy rice sam-
ple classification with more effectively. Applying computer
vision andmachine learning techniques to recognize and clas-
sify rice varieties is a method that can be used to increase the
accuracy of classification process in real applications. Several
studies have been conducted that apply and examine several
morphological and textural features of rice seeds’ images to

evaluate their efficacy in identification of rice varieties [97]
and classification of paddy rice adulteration levels [96].
In most studies related to the application of machine learning
algorithm for paddy rice sample classification, deep learning
algorithms are found to be very effective in classifying rice
samples [94]–[97], [99], [101], [124].

The classification of the paddy rice samples
can be improved with PCA-based reduced features [96],
[103], [124]. PCA can be combined with other classifiers to
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TABLE 8. Applications of machine learning algorithms in paddy rice sample classification.

FIGURE 7. Mapping of big data, machine learning and paddy rice smart farming tasks.

improve the accuracy of paddy rice sample classification [96],
[103], [124] and also to perform qualitative analysis in mon-
itoring paddy rice disease [80].

Deep learning algorithms (e.g., BPNN, CNN) produced
better accuracy compared to SVM algorithm [46], [101] in
classifying paddy rice samples [95], [96]. When the label
or number of varieties are not available, an unsupervised
learning algorithm, such as clustering algorithm, can also be
used to cluster paddy rice samples. For instance, k-Means
clustering algorithm provides clusters with considerable sep-
arability as measured using separability indexmeasures [103]
based on the PCA-based reduced features. In k-means clus-
tering, n observations are partitioned into k clusters in which
each observation is assigned to the nearest cluster centroid.

The k-means clustering is also known as a method of vector
quantization [152]. By using the k-means clustering method
in paddy rice sample classification, the H channel data can
provide clusters with considerable separability as measured
using separability index measures [103]. k-means clustering
also can be used as part of the approach to classify the
annual cropping patterns of paddy crop based on k number
of classes [59].

Adaptive Boosting (AdaBoost) has been used to clas-
sify paddy rice samples. AdaBoost algorithm combines
multiple weak classifiers to form a single strong classi-
fier [91], [95], [142]. AdaBoost is also known as ensem-
ble method as it consists of multiple weak classifiers.
However, deep learning algorithms are found to be more
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superior than AdaBoost algorithm in classifying paddy rice
samples [91], [95].

A multi-classifier cascade based rice spike detection
method has also been proposed that consists of SVM,
CNN and k-Means algorithm [99]. Other works include
training machine learning algorithms to predict weight
and size of rice kernels [125], application of machine
learning algorithm in detecting adulterated admixtures
of white rice based on mass spectrometry data [126]
and classifying organic rice samples using original rice
elements [127]. Table 8 tabulates the applications of
machine various learning algorithms in paddy rice sample
classification.

V. RESULTS AND CONCLUSION
Based on the reviews of several works in this paper, a new
framework is proposed that maps three entities that include
big data, machine learning and paddy rice smart farming
tasks. In this review, the types of machine learning algorithms
used are highly dependent on the availability of data. At the
same time, the type of data required depends directly on the
type of tasks stated in each production and post-production
phases of paddy rice smart farming. These machine learning
algorithms are used to perform the intelligent data processing
that will assist farmers in various tasks mentioned in the
production and post-production phases. Based on the find-
ings summarized in the previous sections, machine learning
algorithms and smart technologies can be used to improve
the overall efficiency of the paddy rice production system.
The potential benefits lead to an improvement in the return
of investment (ROI) for all paddy rice production systems
by minimizing the losses or costs involved in the production
of paddy rice. As a result, we use these findings found in
the literature to map these three components (e.g., datasets,
machine learning algorithms and tasks stated in the pro-
duction of paddy rice) and develop a Big Data-ML-Task
applications framework that can be used by the practitioners.
The proposed framework shown in Fig. 7 has three main
components, the types of datasets, types of ML algorithms,
the types of tasks in paddy rice smart farming and paddy rice
supply chain performance.

With smart irrigation system, the usage of water can be
reduced and at the same time fully utilized to increase the
paddy rice yield [32], [106], [107]. Automatic irrigation sys-
tem also may cause a significant increase of rice produc-
tion by making more arable land available for paddy rice
plantation [33].

The task of estimating the yield of paddy rice precisely
is very important for national food security and develop-
ment evaluation. The development of an integrated aerial
crop monitoring solution using an Unmanned Aerial Vehi-
cle (UAV) has motivated researchers to apply vegetation
indices retrieved from hyperspectral images to estimate
paddy rice yield [77]. Several studies have estimated the
paddy rice yield based on time-series climate data [48],
[110]–[112], [155]. Rainfall was found the main climate

driver of the rice yield [111]. Other studies considered hyper-
spectral data to estimate the yield of paddy rice [34], [35],
[57], [58], [67], [68], [75], [76], [108], [109]. Deep learning
algorithms were found to be more effective compared to
other machine learning algorithms for modeling paddy rice
yield [48], [76], [77], [109]–[112], [155]. Maximum quality
of paddy rice harvested can be obtained by using sensors to
monitor humidity, temperature, pH, soil moisture and light
intensity in real [113], [114].

Monitoring the growth of paddy rice is critical for under-
standing the growing status and yield estimation of paddy
rice. For instance, the self-sufficient level (SSL) for paddy
rice in Malaysia is only 70%. As the world population is
increasing, intensifying paddy rice farming ismore preferable
over the expansion of agriculture land due to limited arable
land [156]. Monitoring the growth of paddy rice is difficult
for traditional farmers due to climate change, soil conditions,
age of the farmers and time consumed to monitor the whole
area. With remotely sensed data, creating paddy rice crop
growth map is possible using the hyperspectral images [66]
and synthetic aperture radar (SAR) data [83], [115]. For
example, the paddy rice growth based on rice growth param-
eters (e.g., rice height and biomass) can be monitored with
the backscattering coefficient from RADARSAT-2 data [83].
The paddy rice leaf chlorophyll contents can also be retrieved
from the rice canopy hyperspectral imagery to analyze the
paddy rice plant growth [63]. Leaf area index (LAI) is com-
monly used as a surrogate for productivity in precision agri-
culture (PA) and is widely used in plant growth [69], [73].
In short, the applications of machine learning algorithms have
enabled us to timely and accurately monitor paddy rice plant-
ing area for national food security and management [115].
Using smart sensors to monitor soil pH, lux and temperature
also provides insight in understanding the stages of paddy rice
growth [36], [36].

Due to the lack of knowledge and awareness of suitable
management to rectify rice plant leaf diseases, the rice pro-
duction is being reduced in recent years [157]. The manual
detection of plant diseases based on naked eye observation of
experts is very time consuming, expensive and sometimes it
produces an error when identifying the disease type [158].
Machine learning (ML) algorithm can be used to provide
early warnings to anticipate rice blast and detect its presence,
thus supporting the applications of biocidal chemical com-
pounds or biological organisms used to kill parasitic fungi
or their spores. Based on several studies reviewed in this
paper, the applications of ML, in detecting the presence of
rice blast, has also provided suitable solutions for preventive
remedial actions targeting the mitigation of yield losses and
the reduction of fungicide use [159]. This review will be
beneficial for modelers, farmers and stakeholders, to guide
them in model development and selection for the most suit-
able models for the effective paddy rice disease detection and
forecasting. The identification of paddy diseases may also
assist farmer in providing them the remedies based on the
types of disease [160].
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The quality of paddy rice production depends highly on
the quality of soil properties. These soil properties include
soils’ pH and moisture, nitrogen and organic carbon content
of the soil. For instance, a CNN produced promising results
in assessing the nitrogen deficiency of paddy rice crop [104].
These soil properties can be captured using sensors or
retrieved from the hyperspectral images [74]. SVM and CNN
are the two most common machine learning algorithms used
in assessing the quality of paddy rice. Compared to SVM,
CNN produced better assessment accuracy [93]. Besides soil
properties [105], some studies have conducted the assessment
of the paddy rice quality based on the high-resolution images
of the paddy rice leaf [93], [104], [123] and the hyperspectral
images of the paddy rice field [74], [79].

Improving the management and productivity of the paddy
rice farming is important to strengthen the food security
initiatives. Due to variation in economic value of different
varieties of rice, rice quality identification is very important in
the international and national rice market [97], [100], [101].
The quality of the rice is used to evaluate the
milling process. Rice sample may consist of full rice, broken
rice, damaged rice, paddy, stones and foreign objects. Image
processing and machine learning techniques can be used to
separate and classify objects of rice sample [46]. Other than
hyperspectral images [98], most of the studies related to
paddy rice sample classification use high-resolution images
and apply machine learning techniques such as SVM [46],
[96], [98]–[100], [127] and deep learning algorithms
[94]–[98], [101], [124]. Combining efficient feature extrac-
tion method (e.g., PCA) [103] with neural network algorithm
(e.g., Back-propagation Neural Network (BPNN)) shows
better accuracy results in paddy rice sample classification
[96], [124] and also better clustering results for paddy rice
grade identification [103]. Other image pre-processing such
as histogram of oriented gradients (HOG) also affects the
performance of the classifiers [94], [99]. Combining features
in paddy rice sample classification also improves the classi-
fication accuracies [96].

Multi-classifier cascade can also be used to improve the
performance of the paddy rice sample classification [99].
In order to get a good model, low bias and variance are
required in order to have high accuracies or lower errors.
An optimal balance of bias and variance would never overfit
and underfit the model. Reducing variance of the final classi-
fier model can be achieved by fitting multiple final models
or using hybrid approaches [99], [103], [124] or increase
the training size. In addition to that, example of low-bias
machine learning algorithms include DT, k-NN and SVM.
Based on the findings of this review, the performance of all
these three machine learning algorithms are very competi-
tive in predicting paddy rice yield estimation [109], moni-
toring paddy rice growth [78], [83], monitoring paddy rice
disease [37], [40], [81], [91], [117], [119], [120], assessing
quality of paddy rice [79], [104], [123] and paddy rice sample
classification [46], [98], [99], [127].

VI. CONCLUSION
This paper provides a structured overview of the recent appli-
cations of machine learning algorithms and smart devices for
paddy rice smart farming. In addition to that, this paper has
proposed a framework that maps big data, machine learning
and paddy rice smart farming tasks. The review study reveals
considerable benefits to the production of paddy rice that have
applied the machine learning techniques and smart devices
in the paddy rice smart farming. As with any research, here,
we also summarize the following guidelines based on the
findings obtained from this review for future works.

First, there is a need to explore further the capability of
ensemble models or hybrid models based on deep learning
methods using multi-source data, as these have been shown
to improve the performance of the base model. However,
deep learning methods require large number of samples to
come up with efficient models. For instance, in predicting
paddy rice yield and monitoring paddy rice disease using the
deep learning approach, a large amount of time-series data is
required to improve the prediction performance [88], [112].
Since most of the studies conducted for paddy rice sample
classification are based on image processing, the optimization
of the classification accuracy (e.g., using hybrid or ensemble
approach) is another issue that requires more explorations.
For instance, more works on the variety of wavelet transforms
for texture analysis and different classification techniques
(decision tree, random forest) for paddy rice sample classi-
fication can be explored [96].

Second, a limited number of investigations conducted in
the area of the application of machine learning algorithm
based on multi-sources data as the findings from existing
studies have shown that a more comprehensive understanding
can be obtained by integrating multi-sources data or deter-
mining the optimum features combination. We can produce
better modelling results comprehensively by analysing these
complex relationships among multi-sources data or by find-
ing the optimum features combination. For instance, using
only spectral reflectance, shape and texture of paddy rice will
not provide better results and additional ground truth data
is required in order to classify and differentiate paddy rice
accurately [161]. Using multi-features fusion (e.g., combin-
ing Landsat and SAR Time Series Data) can also improve the
accuracy of predicting paddy rice yield using a deep learning
approach [112]. Limited works are found in exploring and
combining multiple sources of data (e.g., Sensored data (cli-
mate and soil properties), Remotely sensed data, vegetation
indices and drone-based data (e.g., high-resolution images))
to improve the modelling of data for smart irrigation for
paddy rice, predicting paddy rice yield estimation, monitor-
ing paddy rice growth, monitoring paddy rice disease, assess-
ing quality of paddy rice, paddy rice sample classification.

Finally, a more comprehensive analysis needs to be con-
ducted to investigate the efficiency of processing software
to perform image preprocessing for modelling. For exam-
ple, Monitoring the growth of paddy rice based on spectral
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reflectance has limitations of the processing software and
the complicated steps to process the images [66]. More
researches need to be conducted to acquire high resolutions
remotely sensed time series imagery data in both time and
space through effective and efficient image segmentation
process using data blending approaches [108].
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