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3.1 Introduction

Agricultural biomass refers to all the organic materials that are produced as  
by-products from agriculture activities, such as leaves, straws, husks, hulls, shells, and 
animal waste. Huge amounts of biomass are generated as by-products of agricultural 
(and wood) harvesting and processing activities every year, particularly in developing 
countries.

Agricultural biomass is the most abundant biomass found in nature. Its content in 
primary waste is about 30% [1], in forest biomass 40%–50% [2], secondary waste 
65%–70% [3], and in industrial crops more than 90% [4]. Globally, biomass waste is 
produced and unutilized in million metric tonnes annually [5]. Of this enormous pro-
duction, biomass waste is only a minor fraction of total biomass use for various appli-
cations in large-scale industries and community-level enterprises. Approximately 
10% of agricultural biomass waste is converted to raw biomaterial to provide future 
materials to obtain products with higher performance [6]. Sumanthi et al. [7] inves-
tigated the sustainability and advancement in utilization of oil palm biomass for 
value-added products. They showed that only 10% of oil palm biomass is used as an 
alternative raw material for various applications such as reinforcing agents in com-
posite materials, animal feed, fertilizer, chemical derivatives, and other applications.

In addition to the harvested crop itself, large quantities of wastes are generated 
in agricultural production systems. Industrial crops of kenaf, jute, abaca, ramie and 
other crops, and fruits such as coconut and oil palm generate considerable amounts 
of waste. These wastes constitute a major part of total annual production of biomass 
agricultural wastes and are an important source of biomaterial for industrial purposes.

Agricultural biomass is the most abundant resource and one that is also renew-
able. However, utilization of agricultural biomass has been based on the paradigm 
of a fossil resource-based society, and thus, it is critically important to establish a 
sustainable production and utilization system for agriculture resources, especially 
those in tropical regions where resources and biodiversity are plentiful. Therefore, it 
is becoming more and more important to establish sustainable and recycling-based 
societies dependent on renewable resources; otherwise, humankind cannot survive.  

3
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In addition, establishment of basic science and technology dealing with lignocel-
lulosic materials, including agricultural waste, is indispensable to promotion of the 
composite industries of Southeastern Asian countries.

Plenty of waste is produced due to the increased activity in the modern agricultural 
sector, representing a tremendous threat to the environment. Meanwhile, a declining 
supply of raw material is cause for concern and in this context the natural fiber can be 
seen as a good alternative material for local timber industries to produce value-added 
products, such as biocomposites. Utilization of natural fiber, especially agricultural 
waste fiber, needs further development as a long-term strategy to develop the tremen-
dous wealth of natural plant fiber that is currently underutilized. Agriculture waste 
can be obtained from plants such as oil palm, bagasse, corn stalks, coir, bamboo, 
pineapple, banana, as well as rice husk, and is extracted from different parts of the 
plant (stem, leaf, seed, fruit, stalk, and grass/reed) [8].

The renewable and biodegradable properties of cellulose found in agricultural 
waste offer biorefinery functions as cellulose fiber. Cellulose fiber itself is made from 
biomass-derived fiber that has been defibrated to the size level of several hundredths 
of a micron and smaller until nanometer-sized. Cellulose fibers exhibit a unique struc-
tural hierarchy derived from their biological origin. They are composed of nanofiber 
assemblies with a diameter that ranges from 2 to 20 nm, and a length of more than a 
few micrometers. Cellulose nanofibers (CNFs) have been proven to be a promising 
material for many fields, including high gas barrier packaging material, filter material, 
electronic devices, food, cosmetics, medicine, biocomposites, and health care, due to 
their morphology and physical properties.

Recent research on nanocellulose production uses cereal by-products such as 
wheat straw, soy hulls, soybean straw, sorghum fibers, and rice straw, as well as other 
crop residues such as cassava bagasse, banana stem, pineapple leaves, sugarcane 
bagasse, corn stalks, cornhusk, oil palm biomass, grape hulls, and orange bagasse. 
This biomass, the abundance of which is residue produced by agricultural industry, 
serves as the best biomaterial to obtain CNF. Study by Changsarn et al. [9] reported 
that CNF resulting from biomass presents a larger crystalline region and a higher 
specific surface area. These results suggested that this bionanomaterial is important 
for the development of nanocomposites for their applications. Furthermore, Lavoine 
et al. [10] and Durán et al. [11] considered that nanocomposites with CNF as filler 
enhance the barrier properties used for food packing.

On the other hand, the extremely rapid development of nanomaterials from bio-
mass and the use of nanoparticles have received much attention as a viable alternative 
for the development of metal nanoparticles. Many attempts have been made to manu-
facture bionanoparticles, such as Adam et al. [12], Hata et al. [13], Dungani et al. [14], 
and Rosamah et al. [15]. They suggested that the potential of nanoparticles for filler/
reinforcement in polymer composites is seen as highly promising, because bionano-
particles have marvelous and complex structures that are important in understanding 
their chemical applications.

In this chapter, first we will discuss the fundamental properties of different 
agriculture wastes as future materials. We will also concentrate our discussion on 
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technologies to produce bionanomaterials, and their use in polymer nanocomposites. 
After that, types of bionanomaterials such as nanocellulose and nanoparticles will 
be highlighted. At the end, some points regarding production of nanocomposites and 
their applications for various purposes will be discussed.

3.2 Overview of waste as green potential from biomass

Biomass is an essential part of the renewable portfolio; unlike other sources of renew-
ables, it can be used as biomaterial for various biocomposite products [16–20]. The 
biomass itself is derived from three principal sources: agricultural products, forestry 
waste, and biogenic waste. In general agricultural products consist of oil- and sugar-
containing plants; forestry products consist of wood, bark, branches, and stumps; 
while biogenic waste is derived from the agricultural, commercial, and household 
sectors. Furthermore, these sources of biomass exist in three forms: gaseous, solid, 
and liquid.

Recent advances in biomass waste development, conversion process technologies, 
and their products offer significant opportunities for an exploration and development 
of improved materials from these renewable resources. The major conversion tech-
nologies, such as twining, decortication, and tuxying, convert biomass waste to mate-
rials and their products such as biocomposites, pulp and paper, automotive, medical, 
packaging, construction, aerospace, marine, electronics, pharmaceutical, and biomass 
energy production [21].

Rapid increase in volume and types of agricultural biomass waste, as a result of 
intensive agriculture in the wake of population growth and improved living stand-
ards, is becoming a burgeoning problem. Furthermore, this waste is of high value 
with respect to material and energy recovery. Billions of tons of agro products are 
produced each year, of which the waste has potential for biomaterial resources (e.g., 
fibers). Assuming that 40% of the production is available as waste and at least 10% 
of the waste by weight can be obtained as fiber, millions of metric tons of fibers 
are available every year and the amount will increase annually. Table 3.2 shows the 
annual biomass-based natural fiber production from various sources.

Since the biocomposites market is growing rapidly, it becomes urgent to design 
superior strength biocomposites to exploit in particular applications. These wastes 
could be potential resources for reinforcing materials in biocomposite applications. 
The utilization of such resources will not only provide sustainable and less expensive 
material but will also contribute to waste disposal management as well as overcoming 
environmental problems. However, the agricultural waste fiber is classified as non-
wood fiber moderate quality [4]. In addition, its lack of good interfacial adhesion and 
hydrophilic nature have made its usage difficult [26]. Therefore, good understanding 
of the fundamental properties of agricultural waste fiber including its modification 
technologies are indispensable. Several treatment and modification processes can 
be applied to change its hydrophilic nature to hydrophobic in order to overcome the 
above-mentioned problems [27].
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3.3 Fundamental properties of various agriculture waste

Most basic of all in selecting agricultural waste is the characteristics of the fibers, i.e., 
the various properties by which a fiber may be evaluated. Physical, mechanical, and 
chemical properties of various agricultural waste-based fiber were examined to assess 
their suitability for various future applications. These fundamental properties will not 
only help in opening up a new avenue for these fibers, but also emphasize the impor-
tance of natural fibers from agricultural waste as future biomaterial. The following 
summarizes the properties of agricultural waste-based fiber and gives the specifics of 
these properties for each fiber source.

3.3.1 Types of agriculture waste

When managed on a sustainable basis, biomaterials available in primary products from 
industrial crop and agriculture wastes form an abundant, local, and environmentally 

Table 3.1 Cellulosic biomass waste conversion to materials and 
their products

Biomass waste Products

Pineapple leaves, sugarcane 
residues

Animal feed, industrial absorbents, additives for 
beverages and biocomposites

Wheat straw Wheat straw PP pelletized feedstock, fertilizer, 
biocomposites

Rice husk Silica, metal finishing, water soluble oil and synthetic 
lubricant

Sugarcane bagasse Lumber materials, biocomposites, paper and packaging 
materials, paper wares

Abaca leaves Fiber craft, cordage, textile and fabrics, pulp, and 
specialty papers

Coconut husk Coconut fiber rope and twine, brooms and brushes, 
doormats, rugs, mattresses and upholstery, often in 
rubberized coir pads

Sugar mill boiler ash from 
bagasse

Filtration materials and absorbent products

Oil palm fruit residues Biodegradable packaging materials, construction, pulp 
and paper, automotive components

Kenaf fibers, jute fiber Soundproofing systems, thermal insulators, automotive 
components, electronics, pharmaceutical

Abaca leaves Abaca leaf sheath, aerospace, marine, and electronics
Coconut coir Coconut twines
Banana stem Banana fiber, biocomposites, pulp and paper
Flax Biodegradable bags and covers, energy sports equipment
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friendly source of raw materials. In addition, the use of agricultural waste biomateri-
als for component material of composites contributes to income and employment  
in developing countries [28]. The ambitious policy developments combined with 
other associated benefits has led to a large increase in the use of agricultural bio-
materials for biocomposite products in many countries (European, Australia, and 
American) [23].

There are many different types of biomaterials based on agricultural biomass. 
Industrial crops are crops that have the potential to yield a wide range of products. 
Crops produce filamentous matter from the bast tissue or other parts of plants, and are 
processed to be used for industrial purposes. There are a number of different indus-
tries and products including bioenergy [29], industrial oil and starch [30], fiber [31], 
and rubber and related compounds [32]. Primary wastes are obtained directly from 
the agriculture operations, whereas secondary wastes are obtained as by-products 
of the industrial processes associated with agriculture products. Other sources of 
agricultural-based biomaterials include kenaf, jute, and tertiary wastes, which consist 
mainly of the palm oil industry. Forest biomass consists of woody materials gener-
ated by industrial processes (timber industries in particular) such as wood chips, bark, 

Table 3.2 Annual production of biomass-based natural 
fibers and sources

Fiber source World production  
(103 Tons)

Origin

Bamboo 10,000 Stem
Oil palm fruit 23,500 Fruit
Sugarcane bagasse 75,000 Stem
Banana 200 Fruit
Coir 100 Stem
Wood 1,750,000 Stem
Pineapple 1200 Leaf
Rice straw 28,900 Stem
Rice husk 26,750 Fruit/grain
Jute 2500 Stem
Kenaf 770 Stem
Flax 810 Stem
Sisal 380 Stem
Abaca 70 Stem
Kapok 100 Stem

Sources: From Taj SM, Munawar A, Khan SU. Natural fiber-reinforced polymer composites. 
Proc Pak Acad Sci 2007;44(2):129–44 [22]; John MJ, Thomas S. Biofibres and biocomposites. 
Carbohydr Polym 2008;71(3):343–64 [23]; Hambali E, Thahar E, Komarudin A. The potential 
of oil palm and rice biomass as bioenergy feedstock. In: I7th Biomass Asia Workshop; 2010 
[24]; Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 
2000–2010. Prog Polym Sci 2012;37(11):1552–96 [25].
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sawdust, shavings, chips, etc., or directly by logging residue (tree tops, branches, 
small stems, and deadwood). The use of forest biomass from forestry residues such 
as wood chips, bark, sawdust, timber slash, and mill scrap for biomaterial contributes 
to raw material of biocomposites such as particleboard, oriented strand board, and 
fiberboard [33,34].

At present, the largest share of biomaterial from agriculture comes from second-
ary wastes from the agricultural industries, namely, the coconut, coir, and oil palm 
industries. In this context, the use of industrial crop production is not enough for 
biomaterials; in secondary wastes, it represents a great potential source of raw mate-
rial to increase the use of agricultural biomass for various applications, independent 
of the large industrial processes [18,19,35]. Finally, biomass, which includes plant 
species and agricultural waste, is another source of biomaterial, and its contribution 
to the sustainability of raw materials is expected to increase in the future [36]. The 
classification of agricultural biomass as biomaterial for biocomposite components 
according to their origin is presented in Fig. 3.1.

Type of agriculture waste includes residues from fruit, leaf, seed shells, grass, 
stalks or trunk, bast and straw, and waste wood. Fig. 3.2 shows the classification of 
agricultural waste forms based on conversion of cellulosic biomass waste to biomate-
rials and their products. The figure illustrates the great potential of agricultural waste 
for conversion to a variety of biomaterials.

3.3.2 Structure and chemical composition

This part deals with the structure and chemical composition of biomass-based natural 
fibers. Natural fibers’ cell structures are basically the same, consisting of a primary 

Figure 3.1 Classification of biomaterial-based agricultural biomass.
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and secondary cell wall, lumen, and middle lamella [37]. The secondary wall consists 
of three layers (S1, S2, and S3) and determines the mechanical properties of the fibers 
[38]. Each fiber bundle contains individual fiber cells or filaments, and is made of cel-
lulose and hemicellulose, bonded together by lignin or pectin. Cellulose is a skeletal 
component in all plants and these polymers are organized in a cellular hierarchical 
structure. The primary structural component of cellulose cell walls contains many 
polar hydroxyl groups, which allow them to interact with adjacent molecules to form 
fibers. These fibers are structurally strong and resistant to chemical attack, so biomass 
products are widely used in various applications. Hemicellulose is similar in structure 
to cellulose, and is believed to be a compatibilizer between cellulose and lignin [39]. 
Lignin polymers are often found in most cell structures in association with cellulose; 
it is primarily hydrocarbon in nature and makes up a major portion of insoluble fiber.

The importance of biomaterials’ fiber dimensions (length, width, thickness, and 
lumen width) on the physical and mechanical properties of products is well docu-
mented. Basiji et al. [40] have shown that, under certain conditions, impact strength 
and modulus of rupture in wood–plastic (polypropylene, PP) composites depends 
strongly on fiber length, whereas Singh and Samanta [41] report that increase in 
raw material fiber length enhances the mechanical properties of the natural fiber-
reinforced composites. Using image analysis, Fidelis et al. [42] also found that the 
highest mechanical performance with tensile strength and Young's modulus in sisal 
and jute fibers could be accounted for by size of the cell walls and the real area of 
the fibers. Ghasemi et al. [43] have also suggested that the fiber cell wall thickness 
is an important parameter for biomass fibers to have excellent mechanical properties.

The revealing of cell structure and chemical composition of cellulosic fibers is 
important for assessing the suitability of various biomass fiber raw materials and 
ultimately can be useful in various applications of new biomaterials. In an extensive 

Figure 3.2 Classification of agricultural waste as a biomaterial.
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review of the literature, Abdul Khalil et al. [44] stressed that fibers have a wide range 
of variations in their properties, depending on various sources such as soil, genotype, 
climate, and agronomic practice. Moreover, Dittenber and Gangarao [45] investigated 
various factors affecting the fiber quality, such as plant growth, harvesting stage,  
and fiber extraction process. Norton et al. [46] suggested that chemical composition 
and cell structure of biomass fibers could be caused by soil component.

According to Rowell et al. [47], differences in cell structure in the biomass fiber 
will result in differences in physical properties. They reported that the physical prop-
erties of biomass fiber will be different because of differences in its morphology. 
A detailed overview of the morphological structure of biomass fiber by scanning 
electron microscopy (SEM) observation in this chapter will be useful to others in 
investigating fiber types.

Extraction is the process that separates the major components of biomass and 
converts it into fiber, lignin, and sugars for others to process into value-added prod-
ucts. This process separates the primary constituents of cellulosic biomass into three 
components (cellulose, hemicellulose, and lignin). This continuous process employs 
a cellulose extraction technique that removes lignin, resulting in a solid fraction con-
taining a relatively pure cellulose or fiber.

Due to their main chemical composition, biomass fibers are also called cellulosic 
or lignocellulosic fibers. Those constituents are scattered throughout the cell wall, 
which consists of a primary and secondary wall. The portion of these chemicals in 
the cell wall layer is affected by the fiber origin, climate condition during cultivation, 
and the extraction method [46,48], and influences the fiber properties chemically and 
physically [49,50].

The bagasse fiber bundles shown in Fig. 3.4 were mechanically separated from 
sugarcane stem residue. Fig. 3.4 shows the surface roughness from the raw fiber state. 
According to Hemmasi et al. [51], Satyanarayana et al. [52], and Driemeier et al. [53], 
the diameter of bagasse fibers ranges from 10.10 to 34.21 μm. The cell wall thickness 

Figure 3.3 Model of cell structure of biomass-based natural fibers.
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is reported to range from 4.85 to 5.64 μm. The cross-sections show fiber forms, with 
length of fibers ranging from 1.54 to 5.84 mm.

The percentage of chemical composition in bagasse fibers indicated a cellu-
lose content of 32.33%–48.49%, which was higher than hemicellulose content of 
19.25%–24.44%, while the whole bagasse contained lignin and ash at 17.3%–26.5% 
and 1.54%–5.35%, respectively [54,55].

In the longitudinal sections, the fiber bundles of rice straw have clean surface after 
the alkali and enzyme treatments [56]. There is still a great variety in shape and size 
of the bundles, as shown in the cross-sectional views. The fiber length ranges from 
0.55 to 0.57 mm [57]. Fiber width and cell wall thickness range from 6.75 to 9.45 μm 
and 4.55 to 5.64 μm, respectively [58].

Rice straw ranges from 38.72% to 40.74% cellulose, 25.34% to 26.20% hemi-
cellulose, 12.62% to 14.24% lignin, and about 16.33% to 16.99% ash [59,60]. 
Reddy and Yang [58] investigated fiber potential of rice straw, and reported that the 
cellulosic fiber formed by using alkali and enzyme treatment produced about 50% 
high-quality fibers.

Fig. 3.5 shows that pineapple fiber cross-section has a rougher structure, compact 
surface, and many fiber matrices [61]. Mishra et al. [62] investigated the microstruc-
ture of pineapple fiber through surface modifications by alkali treatment. They 
showed that these form fibers irregular cross section. Moya et al. [63] reported fiber 
diameter of 4.38–7.56 μm and a fiber length of 3.34–4.64 mm. Fig. 3.6 shows cell wall 
thickness in a range of ca. 1.46–2.30 μm [61,64].

Chemical constituents of pineapple fiber are composed of three main categories: 
cellulose (66.2%–74.3%), hemicellulose (19.5%–21.22%), and lignin (4.2%–10.5%), 
with some other small quantities (ash) at 2.0%–4.73% [61,65,66].

Fig. 3.6 shows coir fibers extracted from a coconut’s outermost husk. These fibers 
have length ranging from 0.30 to 1.00 mm. The SEM image cross-sections reveal that 
the diameters and the wall thickness of the coir fiber cells exhibited variations from 
8.90 to 19.33 μm and from 4.24 to 12.63 μm, respectively [35,52,67]. Based on Fig. 3.7,  

Figure 3.4 Scanning electron micrograph of morphological bagasse fiber: (A) raw material; 
(B) fibers after combined hydrothermal and alkaline pretreatment.
Source: From Guilherme A, Dantas PVF, Santos ES, Fernandes FAN, Macedo GR. 
Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar 
cane bagasse. Braz J Chem Eng 2015;32(01):23–33 [54].



Cellulose-Reinforced Nanofibre Composites54

Arsène et  al. [68] suggested that coir has a high lignin content, which helps make it 
resistant to burning [69], microbial attack [70], and moisture uptake/swelling [71].

Amount of cellulose in the coir was about 20.02%–22.90%, while hemicelluloses, 
lignin, and ash content were about 10.02%–14.70%, 44.75%–48.21%, and 1.00%–
1.103%, respectively [68,73].

Banana fiber is a multiple-celled structure (Fig. 3.7). These fibers has large 
lumens, rare and fiber tips pointed and flat, ribbon like individual. In Fig. 3.8, 
banana fibers appeared to be quite parallel, with cell wall thickness whose size 
ranges from 1.12 to 1.57 μm [74]. The banana fibers were embedded in each bundle  
(Fig. 3.7); the diameter of those fibers was approximately 20.70–23.70 μm and fiber 
length ranged from 1.26 to 2.54 mm [52,58,75].

Figure 3.5 Scanning electron micrograph of morphological pineapple fiber: (A) cross-section 
image; (b) surface morphology.
Source: From Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Awang H, Mohd Aripin A.  
Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical 
composition and morphological study. BioResources 2014;9(1):872–80 [61].

Figure 3.6 Scanning electron micrograph of morphological coir fiber: (A) raw material;  
(B) coir fiber–NaClO2 treated fiber.
Source: From Muensri P, Kunanopparat T, Menut P, Siriwattanayotin S. Effect of lignin 
removal on the properties of coconut coir fiber/wheat gluten biocomposite. Composites Part A  
2011;42:173–9 [72].
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Bilba et al. [76] characterized the chemical composition of banana. They reported 
that cellulose showed the highest value (27.87%–35.09%), followed by hemicellulose 
(12.95%–17.01%) and lignin (14.41%–15.73%). Ash content showed that the lowest 
value was about 8.62%–8.68% [68].

Fig. 3.8 shows a cross-sectional micrograph of a phloem fiber cap in a vascular 
bundle of a bamboo culm. It can be seen that the outer culm wall has high bend-
ing stiffness and strength [78]. Fig. 3.8 shows that these fibers are approximately 
12.91–42.32 μm in diameter [79]. The length value of the fibers is 2.98–5.63 mm and 
cell wall thickness was obtained from 2.41 to 13.32 μm [80–82].

The investigations by Li et  al. [84], Wang et  al. [85], and Shibata [79] showed 
that the chemical composition of vascular bundles of a bamboo culm with cellulose, 

Figure 3.7 Scanning electron micrograph of morphological banana fiber: (A) raw material; 
(B) bleached banana fiber.
Source: From Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, et al. 
Structure, morphology and thermal characteristics of banana nano fibers obtained by steam 
explosion. Bioresour Technol 2011;102:1988–97 [77].

Figure 3.8 Scanning electron micrograph of morphological bamboo fiber: (A) raw material; 
(B) alkaline-treated fiber.
Source: From Phong NT, Fujii T, Chuong B, Okubo K. Study on how to effectively extract 
bamboo fibers from raw bamboo and wastewater treatment. J Mater Sci Res 2012;1(1): 
144–55 [83].
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hemicellulose, and lignin as the major components comprising about 20.3%–61.5%, 
19.3%–21.4%, and 11.1%–32.2%, respectively. They also mentioned that ash content 
was 1.7%–5.1%.

As can be seen in Fig. 3.9, the cross-section of oil palm fiber is oval and fairly 
uniform in dimension. It contains various sizes of dimension such as length fiber of 
range from 0.33 to 50.31 mm, with fiber diameter and wall thickness of fiber cells 
varying between 8.30 and 20.50 μm and 2.83 and 4.35 μm, respectively [63,86,87]. 
The surface of oil palm fiber, shown in Fig. 3.10B, was relatively porous and rough; 
these fibers have silica-like bodies with rounded shape [88]. Abdul Khalil et al. [75] 
and Law et al. [88] suggested that the chemical composition of the oil palm varied. 
Cellulose, hemicellulose, and lignin contents were 14.3%–65.2%, 12.5%–38.7%, and 
17.3%–26.5%, respectively.

The length of sisal fiber is between 0.85 and 1.00 mm and the diameter is about 
100–300 μm, with wall thickness of fiber cells between 11.25 and 12.50 μm [90,91]. 

Figure 3.9 Scanning electron micrograph of morphological oil palm fiber: (A) raw material; 
(B) NaOH-treated.
Source: From Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Md. Zin Wan Yunus W, 
Chieng BW. Static mechanical, interfacial, and water absorption behaviors of alkali treated 
oil palm mesocarp fiber reinforced poly(butylene succinate) biocomposite. BioResources 
2015;10(1):123–36 [89].

Figure 3.10 Scanning electron micrograph of morphological sisal fiber: (A) fiber surface 
images; (B) acetylated sisal fibers.
Source: From Fávaro SL, Ganzerli TA, de Carvalho Neto AGV, da Silva ORRF, Radovanovic E.  
Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-
density polyethylene composites. eXPRESS Polym Lett 2010;4(8):465–73 [92].
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In principle, sisal fibers have considerable surface roughness (Fig. 3.10) and are 
microstructurally heterogeneous. The sisal showed the presence of cellulose, hemi-
cellulose, and lignin with 43.85%–56.63%, 21.12%–24.53%, and 7.21%–9.20%, 
respectively. This, to a great extent, is in agreement with investigation reported by 
Fávora et al. [92].

The surface morphology of jute fibers depended on their thickness, which was due 
to variation in fiber maturity [93]. The pores and voids could be decreased in num-
ber on the top portion of the fiber surface as compared to the surfaces of the middle  
and cutting portions. Jute fibers presented few fiber cells; cell wall thickness was 
2.5 μm [42], diameter of lumens 60.00–110.00 μm; and fiber length 3.00–3.50 mm 
[90] (Fig. 3.11).

According Mwaikambo [95], the presence of cellulose and hemicellulose in the 
raw jute was 69.21%–72.35% and 12.55%–13.65%, respectively. Lignin, the major 
element present, was quite higher, at 12.67%–13.21% [94].

Fig. 3.12 shows abaca fibers. In the cross-section of the fiber bundle shown in  
Fig. 3.12A, there is a large lumen in the center of every cell. Fig. 3.12B shows that 
the surface of abaca fiber bundles is composed of polygonal cells of 18.56–21.69 μm 
in diameter with a cell wall thickness of 4.07–5.11 μm [96]. The fiber length as shown 
in Fig. 3.14B is 4.14–5.05 mm [97].

Cellulose and hemicellulose are the most essential chemical components found 
in lignocellulosic materials such as abaca. This was demonstrated by Del Rio and 
Gutiearrez [99] using energy-dispersive X-ray spectroscopy, which showed cellulose 
and hemicellulose contents as 69.23%–70.64% and 21.22%–21.97%, respectively. 
Other researchers reported that abaca contains lignin up to 5.87% [99,100].

The morphology of kapok fibers shows a hollow structure with a thin fiber wall 
and large lumen (Fig. 3.13A). These fibers have width, lumen diameter, cell wall 
thickness, and fiber length of 8.14–10.90, 12.10–16.90, 0.80–1.00, and 20–30 μm, 
respectively [101,102]. In their application, these fibers are good for stuffing beds, 

Figure 3.11 Scanning electron micrograph of morphological jute fiber: (A) raw material;  
(B) alkali-treated.
Source: From Baheti VK, Abbasi R, Militky J. Ball milling of jute fibre wastes to prepare 
nanocellulose. World J Eng 2012;9(1):45–50 [94].
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due to their light weight and the fact that they are too inelastic to be spun (Fig. 3.13B). 
Kapok normally consists of about 65.63%–69.87% cellulose and 5.46%–5.63% lignin 
[103]. According to Anigo et al. [104], kapok also contains 6.66%–10.49% hemicel-
lulose, and 2% ash.

Fig. 3.14B shows the structure of kenaf fibers is coarse morphology, where fibers 
are not uniform, and are round polygonal in shape. Meanwhile, the presence of lignin 
and impurities (silica nodules) is shown in Fig. 3.14B [106]. Single fibers of bast kenaf 
were bound in a bundle of approximately 5.74–26.59 μm diameter and 2.27–2.51 mm 
length fiber. The mean vessel diameter and cell wall thickness are 284 and 6.39 μm, 
respectively [17]. The cellulose content (37.50%–63.00%) is higher in the bast part 
than in the core of kenaf. The lignin varies on average from 18.00% to 24.30%, while 
hemicellulose content is 15.10%–21.40% [75,107]. Most wax is deposited in the epi-
dermis, where wax content affects the fiber properties of kenaf [108].

Figure 3.12 Scanning electron micrograph of morphological abaca fiber: (A) surfaces of 
abaca fiber bundles; (B) longitudinal sections.
Source: From Cai M, Takagi H, Nakagaito AN, Katoh M, Ueki T, Waterhouse GIN, et al. 
Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. 
Ind Crops Prod 2015;65:27–35 [98].

Figure 3.13 Scanning electron micrograph of morphological kapok fiber: (A) cross-section; 
(B) longitudinal view.
Source: From Rijavec T. Kapok in technical textiles. Tekstilec 2008;51(10–12):319–31 [105].
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3.3.3 Physical and mechanical properties

The physical and mechanical properties of biomass fibers are important and closely 
related to the structure of the biomass fibers themselves. The biomass fibers are basi-
cally natural organic fibers, and show high variability in their various properties. This 
poses different problems in characterizing the quality of fibers’ physical and mechani-
cal properties. The most important physical property is density, while the mechanical 
properties of single fibers are measured using value of modulus and tensile strength. 
It is important to mention biomass fibers as biomaterials for development and fabrica-
tion of polymer composites [110,111].

Finally, it is seen from literature that biomass fibers have the best potential for 
filler/reinforcement in polymer composites. A comparison of physical and mechanical 
properties of selected biomass fiber is given in Table 3.3.

3.4 Bionanomaterial from agricultural waste

Bionanomaterial from lignocellulosic biomass is rapidly growing with production of 
cellulose nanofibrils or nanoparticles. Both types of nanocellulose materials are used 
in various applications due to their low density, optical transparency, high mechanical 
properties, large surface area (aspect ratio), flexibility, specific barrier properties, low 
thermal expansion, biodegradability, and environmentally friendly nature [123–125]. 
The technique for the production of nanocellulose can be through mechanical, 
chemical, and chemomechanical treatment processes [126–132]. With the appropriate 
modification and characterization, nanocellulose could broaden the applications of 
biobased polymers to the great benefit of many industries, such as transparent films 
[133], strength enhancers in paper [134], reinforcements for polymer composite [135],  

Figure 3.14 Scanning electron micrograph of morphological kenaf fiber: (A) transverse 
section of bast fibers; (B) the raw kenaf fiber bundles.
Source of A: From Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K. Chemical 
composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast 
(Hibiscus cannabinus) pulp and nanofibers. BioResources 2009;4(2):626–39 [109]. Source 
of B: From Safinas A, Saad Md, Bakar AA, Ismail H. Properties of kenal bast powder-filled 
high density polyethylene/ethylene propylene diene monomer composites. BioResources 
2013;8(2):2386–97 [108].
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emulsions and oxygen barrier films for plastics packaging [136,137], and many  
others [138].

There are various studies on lignocellulosic biomass as filler or reinforcement in 
polymer composites, such as coir fiber in PP composite [139], bagasse fiber in thermo-
plastic composites [140], nanocellulose sisal fiber-reinforced polyolefin composites 
[141], carbonized jatropha seed shell as filler in vinyl ester biocomposites [142], 

Table 3.3 Physical and mechanical properties of selected 
agricultural waste fibers

Fiber source Density  
(g/m3)

Tensile 
strength  
(MPa)

Young’s  
modulus  
(GPa)

References

Oil palm 0.7–1.55 227.5–278.4 2.7–3.2 [86,51]
Bagasse 0.31–1.25 257.3–290.5 15–18 [53]
Banana 0.65–1.36 51.6–55.2 3.00–3.78 [64,112,113]
Coconut (coir) 0.67–1.15 173.5–175.0 4.0–6.0 [64,113]
Pineapple 1.25–1.60 166–175 5.51–6.76 [64]
Rice straw 0.86–0.87 435–450 24.67–26.33 [114,58]
Jute 1.3–1.45 300–700 20–50 [115,116,91]
Kenaf 0.15–0.55 295–955 23.1–27.1 [117,118,119]
Bamboo 0.6–1.1 360.5–590.3 22.2–54.2 [120]
Sisal 1.45–1.5 300–500 10–30 [115,116,91]
Abaca 1.42–1.65 879–980 38–45 [91]
Kapok 0.68–1.47 80.3–111.5 4.56–5.12 [103,121,122]

Source: From Hemmasi AH, Khademi-Eslam H, Pourabbasi S, Ghasemi I, Talaiepour M. Cell morphology and 
 physico-mechanical properties of HDPE/EVA/Rice hull hybrid foamed composites. BioResources 2011; 6(3): 
2291–308 [51]; Driemeier C, Santos WD, Buckeridge MS. Cellulose crystals in fibrovascular bundles of sugarcane 
culms: Orientation, size, distortion and variability. Cellulose 2012; 19: 1507–15 [53]; Reddy N, Yang Y. Properties 
of High-Quality Long Natural Cellulose Fibers from Rice Straw. J Agric Food Chem 2006; 54(21): 8077–81 [58]; 
Alwani MS, Abdul Khalil HPS, Islam MN, Sulaiman O, Zaidon A, Dungani R. Microstructural study, tensile prop-
erties, and scanning electron microscopy fractography failure analysis of various agricultural residue fibers. J Nat 
Fibers 2015; 12: 154–68 [64]; Vijayalakshmi K, Neeraja CYK, Kavitha A, Hayavadana J. Abaca fibre. Trans Eng Sci 
2014; 2: 16–9 [91]; Chaiarrekij S, Apirakchaiskul A, Suvarnakich K, Kiatkamjornwong S. Kapok I: Characteristcs 
of kapok fiber as a potential pulp source for papermaking. BioResources 2011; 7: 475–88 [103]; Sumaila M, Amber 
I, Bawa M. Effect of fiber length on the physical and mechanical properties of random oreinted, nonwoven short 
banana (Musa balbisiana) fibre/epoxy composite. Asian J Nat Applied Sci 2013; 2: 39–49 [112]; Sakthivel M, 
Ramesh S. Mechanical properties of natural fiber (banana, coir, sisal) polymer composites. Sci Park 2013; 1: 1–6 
[113]; Bouasker M, Belayachi N, Hoxha D, Al-Mukhtar M. Physical characterization of natural straw fibers as aggre-
gates for construction materials applications. Materials 2014; 7: 3034–48 [114]; Alves C, Ferrao PMC, Freitas M, 
Silva AJ, Luz SM, Alves DE. Sustainable design procedure: The role of composite materials to combine mechanical 
and environmental features for agricultural machines. Mater. Design 2009; 30: 4060–8 [115]; Bongarde US, Shinde 
VD. Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innovat Technol 2014; 3: 431–6 [116]; 
Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 
2003; 63(9): 1259–64 [117]; Munawar SS, Umemura K, Kawai S. Characterization of the morphological, physical, 
and mechanical properties of seven non-wood plant fibre bundles. J Wood Sci 2007; 53(2): 108–13 [118]; Paridah M, 
Khalina A. 2009. Effects of soda retting on the tensile strength of kenaf (Hibiscus cannobnius L.) bast fibres. Project 
Report Kenaf EPU 14 (Suppl. 1), 2009: 21–28 [119]; Rathod A, Kolhatkar A. Analysis of physical characteristics of 
bamboo fabrics. Int J Res Eng Technol 2014; 03(08): 21–25 [120]; Mwaikambo LY, Ansell MP. The determination of 
porosity and cellulose content of plant fibers by density methods. J Mater Sci Lett 2001; 20: 2095–6 [121]; Mojica 
ERE, Merca FE, Micor JRL. Fiber of kapok (Ceiba pentandra) as component of a metal sensor for lead in water 
samples. Philippine J Crop Sci 2002; 27: 37–42 [122].
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nanocellulose fiber char in poly(vinyl acetate) formed composites [143], oil palm 
shell (OPS) nanoparticles as filler in polyester hybrid composites [15], etc. When 
incorporated in polymer matrices, nanosized cellulose could impart higher stiffness 
to the nanocomposites. It is an ideal reinforcement agent in polymer composites due 
to its large aspect ratio resulting from interconnected network structures through 
hydrogen bonding.

The morphology, dimension, crystallinity, and surface chemistry are key properties 
of nanocellulose for end use. A variety of cellulosic biomass other than wood fiber, 
such as oil palm, kenaf, rice straw, bamboo, bagasse, and pineapple have been utilized 
for the extraction of nanocellulose [77,144]. Selecting the cellulosic biomass depends 
on the availability of the fiber in a country, the chemical components for its applica-
tion, and economic considerations [37]. In spite of being the most abundant cellulose 
biomaterial on earth, the processing of cellulose into types of nanostructures has only 
recently received considerable attention. Over the past few decades, lignocellulosic 
biomass has attracted a great deal of scientists and researchers using biomaterials to 
isolate nanocellulose to fabricate diverse functional materials.

3.4.1  Properties and characterization of CNFs  
from agricultural waste

Many studies have been done on isolation from biomass and allowing different kinds 
of nanoscaled cellulosic fillers to be obtained. However, the biomass structure of 
agricultural waste consists of inherent properties, such as strong lignin layers, low 
cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit 
the digestibility of the biomass for cellulose extraction. Some biorefinery processes 
are necessary to deconstruct noncellulosic content in lignocellulosic biomass, while 
maintaining cellulose product for further hydrolysis into nanocellulose material 
[145,146]. Lignocellulosic plants first require the breakdown of the supramolecular 
cell wall structure, thus increasing accessibility to the polysaccharide components of 
the raw lignocellulose. The next step is to break down the cross-linked elements in the 
raw material (lignin, cellulose, pectin, and hemicellulose) to increase the accessibility 
to the cellulose microfibrils [147]. Nanocellulose extracted by processing conditions 
and different cellulosic source can be classified into nanofibrillated cellulose (NFC) 
and nanocrystalline cellulose (Fig. 3.15).

Generally there are two main families of CNFs, differing in size and crystallinity, 
which are cellulose nanocrystal (CNC) and NFC [127,148]. CNC is also known as 
nanowhiskers [150,151], nanorods [152], and rod-like cellulose crystals [152]. CNC 
is usually isolated from cellulose fibers through acid hydrolysis, using sulfuric acid, 
hydrochloric acid, etc. [153,154].

The nanoscale structure of nanocellulose was revealed by transmission electron 
microscopy (TEM). TEM images of the nanocellulose (CNC and NFC) suggest 
transverse cleavage of microfibril fibers into free and individualized nanocellulose 
(Fig. 3.16). Furthermore, diameter of nanocellulose had a gradual decrease due to 
the progressive removal of the amorphous portion of cellulose fiber with increase in 
process time [155]. Surface morphology from SEM analysis shows the form of the 
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smooth surface of the fiber and the individual in a bundle [156,157]. TEM images 
of the nanowhiskers suggest that amorphous regions from fiber are removed through 
transverse cleavage of microfibril fibers (Fig. 3.16A). On the other hand, NFC is flex-
ible and has an entangled network structure, matted and not individualized, therefore 
the total length cannot be determined, as seen in Fig. 3.16B.

A NFC is a fiber resulting from isolation process of lignocellulosic biomass with a 
diameter of 100 nm or less and length of several micrometers. Reported by Chao et al. 

Figure 3.16 TEM image of nanocellulose from agricultural waste: (A) TEM image of 
nanocrystal/nanowhiskers; (B) TEM image of NFC.
Source of A: From Saurabh CK, Dungani R, Owolabi AF, Atiqah NS, Zaidon A, Aprilia 
NAS, et al. Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm 
(Elaeis guineesis) fronds: morphology, chemical, crystallinity, and thermal characteristics. 
BioResources 2016;11(3):6742–55 [158]. Source of B: From Fatah IYA, Abdul Khalil HPS, 
Hossain MdS, Aziz AA, Davoudpour Y, Dungani R, et al. Exploration of a chemo-mechanical 
technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch 
as a reinforcing agent in composites materials. Polymers 2014;6:2611–24 [159].

Figure 3.15 The schematic principle of isolating noncellulosic content in lignocellulosic 
biomass into CNFs.
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[160], the treated cellulose nanofibril has diameter distribution in the range 15–35 nm, 
which was similar to that of the untreated CNF (about 15–40 nm). Processing this 
biomass presents a large crystalline region with 150 m2/g on specific surface area, 
also called microfibrillated CNFs. CNC has a perfect crystalline structure and high 
modulus, close to the theoretical modulus of cellulose [148].

There are various reports on isolation of nanocellulose from nonconventional agri-
cultural waste, including pineapple leaf fibers [161], grass [162], rice husk [163,164], 
rice straw [165], empty fruit bunches [129,166], etc. In these types of nanocellulose, 
after applying various pretreatments, tailor-made nanofibrils with specific morphol-
ogy and surface chemistry are produced. Different properties of these two types of 
nanocellulose will result in varying reinforcement of nanocomposites to the thermo-
plastic and thermoset of polymer matrices. As well as being completely renewable, 
safer to handle, and cheaper to produce, nanocellulose materials also possess excep-
tional physical and chemical properties.

Applications being developed for nanofibers include stimulating the production of car-
bon nanofibers, which can improve the performance of flame retardant in furniture [167]. 
Many methods have been made to isolate the cellulose fibers. Alemdar and Sain [168]  
imply that cellulose chains are packed in an ordered manner to form compact micro-
fibrils, which are stabilized by both inter- and intramolecular hydrogen bonding. 
CNC are very polar and attract each other by H bonding, so that treatment by acid 
hydrolysis formed separating individual crystals. Isolating the CNFs can be done by 
steam explosion method [169], high-intensity ultrasonication combined with chemical 
pretreatments [170], 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) method 
[10], acid treatment, ultrasonication method [171], and enzymatic hydrolysis [172].

In recent years, biological pretreatment using microorganisms has been strongly 
beneficial. The formation of CNF with microorganisms as tools gives various advan-
tages, such as nontoxicity, biodegradability, and low inhibitory factors. Some fungi, 
bacteria, and yeast have the ability to degrade cellulosic contents in plants using their 
enzymatic mechanism, and the resulting products can be used for nanofiber materials 
[173–177]. In the near future, the optimized use of microorganisms as pretreatment 
agents is expected to be an efficient method for cellulose degradation and will con-
tribute to the production of CNF.

The mechanical properties of CNC contain a small number of defects [178]. The 
axial elastic modulus is close to that derived from theoretical chemistry and is poten-
tially stronger than steel and similar to Kevlar [179]. The first report showed that 
Young’s modulus of CNC is 130 GPa [180], and then Zimmerman et al. [181] reported 
this value as 250 GPa. However, Eichhorn [182] showed that the modulus of tunicate 
cellulose nanowhiskers was 143 GPa. Menezes et al. [179] imply that experimentally 
the elastic modulus is around 137–167.5 GPa. CNC has higher strength than steel 
and higher stiffness than aluminum. It has elastic modulus and bending strength of 
138–167 and 10 GPa [183,184]. CNC has high availability, light weight, and high 
mechanical properties. It consists of slender parallelepiped rods, depending on its 
origin, and the lateral dimensions range from about 2 to 50 nm in diameter for length 
than can reach several tens of micrometers [185].

Iwamoto et al. [186] evaluated the elastic modulus of single NFC using TEMPO 
oxidation and acid hydrolysis treatment. They showed elastic modulus values of  
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145.2 ± 31.3 and 150.7 ± 28.8 GPa, respectively. They considered that NFC has large 
surface area that increases its interaction with secondary materials at the nanolevel. 
Thus it can be concluded that crystalline domains of nanocellulose resulted in an 
increase in mechanical properties of nanocellulose-incorporated composites.

The thermal characterization of NFC was conducted using thermogravimetric 
and derivative thermogravimetric curves analysis. These were used to determine its 
potential use in high temperature applications. Thermal analysis showed that the 
weight loss of NFC was observed from 50 to 150°C; at this range of temperature, 
the moisture content evaporates [187]. The degradation behavior of agriculture waste 
started at 290°C [168] and 300°C [187]. The degradation temperature of CNFs of 
agriculture waste started at 300°C and continued up to 400°C [188]. Nuruddin et al. 
[187] showed that the degradation temperature for the microfibrils extracted from rice 
straw started at 332°C and continued up to 370°C, where all cellulose was pyrolyzed, 
the solid residues being of about 20%. In general, the sulfate groups, smaller fiber 
dimensions, and crystal structure of CNC prepared by sulfuric acid hydrolysis on the 
surface could promote the thermal degradation [189,190].

The physical characterization of NFC based on the morphology and dimension 
has been conducted with TEM and AFM analysis by different methods. Many studies 
have found a difference in characterization of NFC, from 1 to 50 nm in thickness and 
by several μm in length [146]. The results of TEM show that the NFC from agricul-
tural waste obtained after the chemomechanical treatment typically are 100–300 nm 
in length and 5–20 nm in width [191]. The dimensions of CNC depend on the sources; 
they depend strongly on the processing techniques and the prepared samples exhibited 
distinct features. With acid hydrolysis method, stronger acidity, higher temperature, 
and longer reaction time might yield shorter CNC [192].

The structure of CNC was studied using X-ray diffraction (XRD). XRD is used to 
investigate the effect of chemical and mechanical treatments on the crystallinity and 
crystal type of the NFC. In all cases, the cellulose crystal structure of nanocellulose 
fiber indicated that the native cellulose crystal structure was preserved [77,188]. With 
sulfuric acid hydrolysis method, strong acid hydrolysis usually resulted in removal of 
the amorphous areas and a higher crystallinity during hydrolysis [78,193]. However, 
TEMPO-mediated oxidation did not influence the crystalline structure of isolated cel-
lulose [194–196]. Furthermore, several researchers have reported the diffraction peak 
of CNFs at the 110, 200, 004 crystallographic plane [138,197] and the crystallinity 
index of CNFs between 70% and 80% [198].

3.4.2  Properties and characterization of nanoparticles  
from agricultural waste

Nanoparticles have one dimension that measures 100 nm or less. In other words, we 
can say that they are the collection of atoms bonded together with a structural radius 
of less than 100 nm. The properties of many conventional materials change when 
formed from nanoparticles. This is typically because nanoparticles have a greater 
surface area per weight than larger particles, which causes them to be more reactive 
to some other molecules. Nanoparticles are very ordinary in nature, for instance, 
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proteins exist in almost all biological systems. These can include, e.g., fullerenes, 
metal clusters, large molecules such as proteins, and even hydrogen-bonded assem-
blies of water molecules, which exist in water at ambient temperatures.

Until recently, metallic nanoparticles, especially silver nanoparticles, were con-
sidered as the most promising due to their large surface-area-to-volume ratio. The 
use of renewable plant material on synthetics of silver nanoparticles offers enormous 
benefits as a viable alternative for the development of metal nanoparticles because of 
their wide range of applications [199]. Agricultural wastes such as sesame husk [200], 
OPS [14], oil palm ash [201], and coconut shell (CS) [202] have been used to generate 
cellulose nanoparticles.

Many attempts have been made to use agricultural wastes to produce nanoparticles 
by a variety of chemical and physical methods. The combined action of chemical 
treatment and high-energy planetary ball-milling process is another effective method 
of nanoparticles synthesis [94]. The principle of this combined method is that chemi-
cal treatment removes lignin and hemicelluloses from cellulosic materials and then 
the ball-milling process further grinds the material into powder form, which is noth-
ing but cellulose nanoparticles. The principal properties of nanoparticles include size, 
shape, and surface structure, and processing tends to introduce surface imperfections 
(Fig. 3.17). These surface imperfections can significantly impact on the overall nano-
particle surface physicochemical properties [203,204].

Lignocellulosic biomass consists of polymeric materials that contain different 
amounts of oil. The presence of remaining oil within the lignocellulosic biomass such 
as oil palm, coconut, and jatropha is one challenge. The second challenge that was 
discovered was irreversible adsorption and aggregation of nanoparticles when sol-
vents were removed during purification, which led to significant loss of material and 
created a problem afterward [205]. Any impurity and contamination on the particle 
will lower the effect of this biomass for advanced applications such as composites 
[206], pulp and paper production, etc. The oil removal process is crucial to eliminate 
this problem, and could also benefit further applications. Several methods can be 

Figure 3.17 The schematic principle of pulverization of lignocellulosic biomass by high 
grinding energy to produce cellulose nanoparticles.
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used to separate oil from the lignocellulosic biomass; these include mechanical press-
ing, supercritical fluid extraction, and solvent extraction [207,208]. The successful 
extraction of oil removal of lignocellulosic biomass nanoparticles was reported by 
Sulaeman et al. [202]. Using an soxhlet extraction unit (Soxtec 2043, Foss, Hillerød, 
Denmark), which connected to a reaction flask containing 250 mL of n-hexane, the 
resulting nanoparticles showed a clear increase in size and the elimination of the 
remaining oil within the nanoparticle samples (Fig. 3.18).

As a filler, nanoparticles from agriculture waste could be made in the form of 
flour, carbon, fiber, etc. When the three dimensions of particulates are in the order 
of nanometers, they are called isodimensional nanoparticles. They include spherical 
nanoparticles, nanogranules, and nanocrystals [209]. The filler may be selected such 
as flours from CS [202], OPS [14], olive stone and pecan shell [210], wood bark 
[211], wood flour such as soft wood, hard wood, and free bark flours [212], and other 
cellulosic fillers.

The particle size and size distribution play a crucial role in property characteriza-
tion of nanoparticles. These properties are chemical, physical, electronic, thermal, 
magnetic, and mechanical. For example, a study on thermal properties of CS showed 
that CS nanoparticles had more thermal stability when the size reached to the nanom-
eter scale compared with raw CS [202]. Hence, the novel properties of nanoparticles 
do not prevail until the size has been reduced to the nanometer scale [213]. In other 
words, the functional properties of nanoparticles are significantly different from the 
properties of the bulk material having the same chemical composition. The parti-
cle size and size distribution of nanoparticles can be determined with microscopic 
techniques and utilizing the relationship between particle behavior and size. There 
are numerous commercially available instruments that can be used for determining 
particle size and size distribution of nanoparticles, such as TEM, SEM, dynamic light 
scattering (DLS), X-ray diffraction (XRD), photon correlation spectroscopy (PCS), 
AFM, Brunauer–Emmett–Teller (BET), etc. Many studies have been made on parti-
cle sizing of nanoparticles using different instruments. For example, Dungani et al. 
[214] investigated the particle size of OPS by TEM. They showed that OPS particle 

Figure 3.18 TEM images of nanoparticle CS. (A) Before extraction; (B) after extraction.
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size ranged from 10 to 50 nm with average of particle size close to 50 nm. They also 
reported that the average particle size was determined from X-ray diffraction peaks 
using XRD images, with the average size of OPS nanoparticles calculated to be 
31.75 nm. By comparing the results from different instruments, one can obtain extra 
information about the system. Fig. 3.19 shows the DLS and PCS techniques used to 
determine the average size and particle size distribution of nanoparticles.

Nanoparticles possess a variety of morphologies and their names are character-
ized by their different shapes. These morphologies sometimes arise spontaneously 
as an effect of a templating or directing agent during synthesis. Ghaedi et al. [216] 
investigated the surface morphology of the activated carbon-derived nanoparticles 
from medlar wood. They showed that a surface morphology could be achieved that 
is homogeneous and relatively smooth and dense with a large number of pores and 
cavities in different sizes and shapes. They also observed that the adsorbent exhib-
ited nearly narrow pore size distribution in the mesoporous domain with average 
pore diameter lower than 10 nm. The functional properties of nanoparticles highly 
depend on the surface morphology of the particles, so precise measurements of a 
particle’s morphology enable reliable characterization of the nanoparticle’s proper-
ties. Controlling the morphology of nanoparticles is of key importance for exploiting 
their properties. For example, surface functionalization of silica nanoparticles with 
coating polymer by brushes [217] and a thin polymer film [218] is very important 
as the polymer coating alters the interfacial properties, and thus the mechanical and 
thermal properties of the matrix polymers can be altered by the compatibility of the 
nanoparticles within the matrix.

SEM analysis was employed to visualize the size and shape of nanoparticles. From 
the SEM analysis, it was found that silica nanoparticles from agricultural waste have 
their own shape and size arrangement [219]. These results suggested that the waste 

Figure 3.19 Particle size distribution of the nanoparticles. (A) DLS image; (B) PCS image.
Source of A: From Mollick MdMR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B,  
Maity D, et al. Studies on green synthesized silver nanoparticles using Abelmoschus 
esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. 
Arabian J Chem 2015;doi: 10.1016/j.arabjc.2015.04.033 [215]. Source of B: From Akbari B, 
Tavandashti MP, Zandrahimi M. Particle size characterization of nanoparticles—a practical 
approach. Iran J Mater Sci Eng 2011;8(2):48–56 [213].
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materials are converted to ash by sintering at 900°C and silica powders character-
ized by SEM showed bamboo leaf-like particles. However, the groundnut shell ash 
shows uniform spherical particles. They also observed that rice husk ash has a fiber-
like appearance, whereas, sugarcane bagasse ash was highly porous on its structure. 
Hariharan and Sivakumar [220] studied the waste material bagasse ash as a material 
from which to obtain nanosilica. They reported nanosilica with various sizes and 
prismatic and spherical geometry (Fig. 3.20A). SEM imaging on CS nanoparticles 
found a structure with angular, irregular, and crushed shapes [202]; the authors also 
reported that these structures broke down after high-energy ball milling (Fig. 3.20B).

TEM is employed to determine the morphology, shape, and size of nanoparticles. 
Fig. 3.21 shows the TEM images of silica nanoparticles of rice husk ash. Fig. 3.21A 
shows that the particles are dispersed (heterogeneity). Fig. 3.21B shows that the 
majority of particles are in the 60–70 nm size range and there are some larger particles 
in the 105–112 nm range [221].

Fourier transform infrared spectroscopy (FTIR) is used to examine the surface 
chemistry as the organic functional groups that are attached to the surface of nanopar-
ticles. Ghorbani et al. [222] and Chen et al. [223] investigated the organic functional 
group of silica nanoparticles of extracted rice husk at combustion temperatures of 
600°C and 700°C, respectively. FTIR analysis has detected that the vibration signals 
at 1075, 780, and 665 cm−1 are typical of Si–O–Si bands, which confirms the pres-
ence of silica nanoparticles [224]. These three peaks are the main indices of silica 
materials, which represent successful production [222]. Synthesis of nanoparticles 
has been developed from banana peel [225], which show characterization of FTIR 
was a shift in the 2930–2924, 2353–2344, 1732–1726, 1640–1630, 1532–1533 and 
1445–1451 cm−1. They also reported that the main surface function groups present as 
amide group; amino group; and methyl, methylene, and methoxy groups. The main 
surface functional groups in CS nanoparticles obtained by ball milling process pre-
sent as a combination of hydroxyl (OH), methylene groups (C–H), carbonyl groups 
(C=O), and ethers (C–O–C) [202].

Figure 3.20 SEM micrographs of ground silica powder (A) bagasse ash; (B) CS.
Source of A: From Hariharan V, Sivakumar G. Studies on synthesized nanosilica obtained 
from bagasse ash. Int J ChemTech Res 2013;5(3):1263–6 [220]. Source of B: From Sulaeman 
A, Dungani R, Islam MN, Abdul Khalil HPS, Sumardi I, Hermawan D, et al. Preliminary 
study of characterization of nanoparticles from coconut shell as filler agent in composites 
materials. MAYFEB J Mater Sci 2016;1(2016):1–9 [202].
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3.5 Various applications of bionanomaterial

Nanotechnology represents a major opportunity for wood and plant-based materials 
to improve their performance and functionality, develop new generations of products, 
and open new market segments in the coming decades. Research on nanocellulose and 
commercial development for sustainable utilization of biomass is ongoing, mainly in 
Japan, North America, and Europe. The current market situation continues to grow as 
the worldwide demand for new products on the market. As the worldwide demand for 
fiber grows, so does the demand for sustainable resource management and efficient 
industrial utilization. This means that nanocellulose is a prime candidate for use as 
sustainable and recycling-based material in industries such as packaging, automotive 
components, biocomposites, etc.

With improvement techniques of the selected biomass fibers and extraction tech-
nologies, as well as modification and characterization, nanocellulose can be applied 
to composite-based products. Applications of surface-modified nanofibrillar cellulose 
are for advanced materials such as high-performance nanocomposite materials and 
films, medical, pharmaceutical, cosmetics, automotive, electronic industries, aircraft 
manufacturers, and paper and printing industries. Numerous works are underway 
regarding nanocellulose-based products from various cellulosic sources and their 
applications [226].

The market for nanomaterials in various products such as structural components 
continues to grow, mainly driven by the demand for materials that have a high 
strength-to-weight ratio. Researchers have found that adding natural cellulosic to 
polymer composites may result in stronger/stiffer components than polymer com-
posites using a similar weight of carbon nanocellulose [182,227–231]. This property 
could result in the manufacture of components with higher strength-to-weight ratios 
for such uses as aircraft components.

Figure 3.21 TEM image of silica nanoparticles of rice husk ash. (A) The particles are 
dispersed; (B) a heterogeneity in size.
Source: From Djangang CN, Mlowe S, Njopwouo D, Revaprasadu N. One-step synthesis of 
silica nanoparticles by thermolysis of rice husk ash using non toxic chemicals ethanol and 
polyethylene glycol. J Appl Chem 2015;4(4):1218–26 [221].
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In the last decade, considerable efforts have been made to develop bionanomaterials. 
In addition bionanomaterials play an important role in many recent applications. 
Novel bionanomaterials are leading to new, multifunctionalities for packaging, fillers 
to improve mechanical and barrier properties of biocomposites, automotive compo-
nents, medical devices, and other applications. The next section shows that bionano-
materials from agriculture waste have applications in several sectors.

3.5.1 As a reinforcing agent in composites materials

Over the past two decades, there has been a growing interest in the use of bio-
nanomaterials as a reinforcement for polymer composite materials [25,232]. These 
materials include cellulose fibers and particles that possess desirable specific prop-
erties. Cellulose fibers for use as reinforcing elements in composite materials are 
an interesting alternative to synthetic fibers, such as glass fibers, because of their 
competitiveness in terms of weight and mechanical properties [117].

However, certain drawbacks such as incompatibility with the hydrophobic poly-
mer matrix, a tendency to form aggregates during processing, and poor resistance to 
moisture absorption reduce the potential of these fibers for use as a reinforcement 
of thermoplastic matrices. Several strategies have been reported based on physical 
treatments in order to improve fiber/polymer compatibility and interfacial adhesion 
[233,234] and chemical modification of fibers to reduce their polarity and hydrophi-
licity [235,236].

There is a wide variety of different biomaterials that can be applied as reinforc-
ers or fillers. A nanocomposite is a matrix to which nanoparticles have been added 
to improve a particular property of the material. Reinforcement is a simple method 
to reduce defects. The reinforcement of polymer composite materials depends on 
reinforcing agents such as fibers and nanoparticles [237]. Nanoscale additives, such 
as carbon black and silica nanoparticles, have been commonly used as polymer rein-
forcing agents [238]. The properties of nanocomposites have caused researchers and 
companies to consider using this material in several fields [25,127,159,239].

There has been wide application of bionanomaterial from agriculture waste in 
industrial applications. Bionanomaterials in reinforcement in polymers, such as in 
thermoset and thermoplastic polymers, have been used in many applications such as 
electronics, thermal insulators, aerospace, automotive, building materials, construc-
tion, and sports [168,240,241]. In terms of electronic devices, CNFs have low den-
sity, high specific modulus, high electrical conductivity, and large surface area, and 
are highly valuable in the field of super capacitors, nanooptoelectronic components, 
etc. [242].

Silica-reinforced polymer composite prepared via various processes is promising 
and has been widely used. Masoodi et al. [241] has studied how CNFs are used as 
reinforcing agents in the form of layered films in a bioderived resin. Silica nanopar-
ticles have been developed for several applications such as electronic substrates, thin 
film substrates, electrical insulators, thermal insulators, and humidity sensors [243]. 
The quality of some of these products is highly dependent on the size and size distri-
bution of the silica particles.
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3.5.2 Packaging applications

In line with development of research in the nanotechnology field and concern for 
reducing environmental impact, cellulose-based materials have gained much more 
consideration for the development of alternative packaging materials. Studies by 
several researchers, such as Singh et al. [244], De Moura et al. [245], Youssef et al. 
[246], and Kalia et al. [247], have reported the use of natural cellulose-based nano-
composites for packaging applications.

Lignocellulose packaging has been used for a wide range of food categories, such 
as dry food products, frozen or liquid foods, beverages, and even fresh foods [246]; 
furthermore, it can be used in packaging of nonfood materials, such as medical and 
pharmaceutical packaging [248,249].

Packaging is being designed as a health system to provide positive impact on con-
sumer health by integrating functional ingredients in the structure of the packaging 
[250]. Applications being developed for packaging material are durable, can be con-
tinuously recycled and reused, and do not contaminate [251]. Researchers have found 
that the adding nanocellulose to polymeric composites may result enhancement in gas 
barrier properties and heat stability on polymer composites nanocellulosic-based mate-
rials [125,127,247,252–254]. Efforts have been made to reduce poor mechanical and 
barrier properties of food packaging biobased materials with incorporation of reinforc-
ing structures and matrices such as nanocellulose [255–257].

Studies have reported that the use of cellulosic materials may maximize the 
mechanical and barrier properties of product packaging materials [37]. Active food 
packaging systems include the concept of sustainable packaging, which must contain 
several properties such as protecting food products, enhancing food quality (stability), 
and releasing active compounds onto food surface [256,258]. According to Kumar 
and Münstedt [259], antimicrobial could used for a variety of applications, which 
include fabrication of food packaging materials. The use of antimicrobial agents 
is its have broad antimicrobial spectrum, good processability and high temperature 
stability.

3.5.3 Medical application

Recent advances in biocomposites have been supported by producing biofibers, 
microfibrillated, or nanosize fibers. Reinforcing cellulosic nanofibers offer potential 
advantages such as high performance of biofiber-based biocomposites [260]. John 
and Thomas [23] reported that CNFs combined with biodegradable polymers as 
biofiber-based nanocomposites proved to be very versatile in wide range of medical 
applications such as cardiac devices, scaffolds for tissue engineering, repair of articu-
lar cartilage, vascular grafts, urethral catheters, mammary prostheses, blood bags, 
penile prostheses, adhesion barriers, and artificial skin. The development of compos-
ites from these biofibers has increased commercial prospects for medical applications.

Many studies have been made on the development of biomaterials from agri-
cultural waste to fabricate various versatile medical implants, such as pineapple 
leaf fibers and polyurethane [169]. In these studies, addition of 5 wt% of cellulose 
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nanofibrils to polyurethane increased the strength and stiffness. Millon and Wan 
[261] report that the polyvinyl alcohol reinforced bacterial cellulose fibers will form 
biocompatible nanocomposites similar to that of cardiovascular tissues. Development 
of nanocellulose polyurethane vascular grafts [262], and micro- and nanofiller in 
polyurethane composites [263] have been reported. There have been various uses of 
bionano materials reported for the cosmetics and medical product industries, including 
pharmaceutical [187,264,265], medical [266], veterinary medicine [267], and dental 
[268] applications; furthermore, they can be used in drug delivery [175], medical 
implants [269–271], wound healing dressings [242,272,273], tissue engineering, and 
cellular culture [171,274,275].

3.5.4 Automotive industry application

Improvement in the performance of automobiles is of great importance for meeting both 
consumer needs and regulatory requirements in the automotive industry. Nanotechnology 
and nanomaterials have received great attention in the automobile industry to meet their 
performance needs [276]. Nanocellulose based materials are increasingly being used in 
thermoplastics matrix in the automotive industry over the last several years [277]. These 
plastic composites reinforced with cellulose fiber being used in automotive applications 
for front-ends, bumper beams, dashboards, and under body shields.

Cellulose-based materials such as natural fiber are emerging as a realistic alterna-
tive to glass-reinforced composites for application in automotive components. Natural 
fiber composites can deliver high-performance, nonbrittle fracture. Moreover, they 
are considerably cheaper to produce. The use of nanofiber-reinforced plastic compos-
ites in the automotive industry has grown significantly in recent years because of their 
low weight, design flexibility, corrosion resistance, and cost effectiveness [277]. The 
most common composites in automotive application are in the exterior body panel 
and are also an important requirement in the passenger compartment [139,278].

Natural fiber like hemp, jute, abaca, banana, kenaf, flax, and sisal have had success as 
reinforcing fibers in polymer composite from PP, polyethylene, nylon, or thermoplastic 
polymers for other automotive applications [278–282]. Furthermore, automakers now 
have been using natural fiber composite thermoset matrices for automotive components 
(seat backs, package trays, door panels, dashboards, headliners, and interior parts). Many 
auto companies have been utilizing cellulose fibers composites in their automobile prod-
ucts. Shinoj et al. [283] suggested that Mercedes Benz utilize coconut fiber-based rubber 
latex composites for seat parts. They also reported that flax/sisal fiber mat-reinforced 
epoxy have been utilized for door panels. Suddell and Evans [284] reported that Audi 
uses flax/sisal mat-reinforced polyurethane composite as door trim panels. Ford has 
been utilizing kenaf-reinforced PP composites for producing door panels [285].

3.5.5 Other applications

Several studies reported other applications of nanobiocomposites such as sporting 
goods, industrial rubber applications, aerospace components, etc. Most materials 
used for the sporting goods market are still glass and wooden materials. Efforts have 
been made to produce biocomposites in their manufacture, including development of 
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biobased materials from agricultural waste. Some cellulose fiber materials like hemp, 
flax, coir, jute, etc., have been used effectively in sporting goods application. The 
carbon-reinforced composites have been used successfully to replace wood, glass, and 
metal in various applications for sporting goods such as fishing rods, ski equipment, 
tennis racquets, golf clubs, spars/shafts for kayak paddles, windsurfing masts, and 
bicycle handlebars [286,287].

Many researchers are concerned with the production of carbon black, activated car-
bon, and silica from biomass and agriculture-based residues, as they can be used for 
many applications. Nanoscale additives have been studied for the use in both natural 
and synthetic polymer reinforcing [288]. Silica-reinforced natural rubber prepared 
via a sol–gel process is promising and has been widely used [289]. Other researchers 
have focused on carbon black-reinforced elastomer composites to manufacture auto-
motive components such as tires [290], as well as gloves [291] and nanobioceramic 
composites [292,293].

Polymer composites are widely used in the aerospace industry. Plants and crops 
from agricultural waste-reinforced composites have been used in polymer composites 
for making aerospace components. Wu and Radovic [294] reported that reinforced 
nanoparticles of carbon in epoxy matrix have found use in applications such as nose 
cones of the space shuttle, rocket nozzles, and aircraft brake discs. They also consid-
ered that additional these fillers have been improve the thermal, mechanical, chemical 
and physical properties.

3.6 Conclusion

Agriculture-based residues are of notable economic and cultural significance all 
over the world, especially in South Asia, Southeast Asia, and East Asia, being used 
for various applications such as building materials, as a decorative product, and as 
a versatile raw product. Agriculture-based residues also have significant potential 
in composite making due to their high strength, environmentally friendly nature, 
low cost, availability, and sustainability. Development of basic science and novel 
technologies for effective utilization of agriculture-based residues is the most sig-
nificant aim of collaboration between research, development, and commercialization. 
Bionanocomposites are a fairly new idea in high-strength composite production, with 
extensive applications utilizing biomaterial in nanometer dimensions as reinforce-
ment. Typical examples of CNF-reinforced nanocomposites can be seen in packaging, 
automotive components, medical, aircraft components, and other applications.

The properties of natural fiber as reinforcement in polymer composites influence 
their composites’ performance, hence, it is essential to understand the properties of 
natural fiber, including their physical, mechanical, and morphological properties, as 
well as their chemical composition. These biomaterials offer many of the advantages 
associated with nanosized materials, such as larger interface, flexibility in surface, and 
reduction in flammability. Furthermore, bionanocomposite production has superior 
mechanical performance. Overall, it can be concluded that isolated CNF from pineap-
ple leaf, bagasse, kenaf, oil palm, jute, bamboo, banana, etc can be a suitable alternative 
reinforcing agent or filler in functional composite for various engineering applications.
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