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Abstract. The Noetherian property of the generalized power series module can determine in
several ways. This paper uses the sub-exact sequence of modules over a ring R to determine
this property. This investigation not only determines the Noetherian property of the generalized
power series module but also the Noetherian property of its submodule. Furthermore, we give a
construction of R[[S]]-homomorphism between the generalized power series modules.
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1. Introduction

Ehe exact sequence of modules is one of the essential concepts in module theory [1], [2]. In [3],
Fitriani et al. introduced a sub-exact sequence of modules. This concept is motivated by the quasi
exact sequence established by Davvaz and Parnian-Garamaleky [4]. Furthermore, they use this
concept to generffize the generator of modules related to a family of modules over a ring R [5].
Moreover, using a generalization of a linearly independent set of modules [6], they obtained a basis
and free modules related to a family of modules [7].

Given ring R, monoid (§, <) with a strictly ordered, and a monoid homomorphism @ from S to
End(R). In 2019, Faisol and Fitriani gave some conditions for skew GPSM to be a T[[S, o]]-
Noetherian module over a ring R[[S, ®]] [8]. This sufficient condition is a generalization of the
previous results [9], which were obtained by applying the properties in [10], generalizing the sufficient
conditions in [11], and using the refffitions specified in [12].

Varadarajan [13] introduce the generalized power series module (GPSM). This module is a module
over the generalized power series ring (we call it by GPSR), introduced by Ribenboim [14]. Moreover,
the results of Ribenboim construction were generalized by Mazurek and Ziembowski [15] by utilizing
the monoid homomorphism used in the convolution multiplication operation. In addition to
constructing GPSM, Varadarajan [16] also provides necessary and sufficient conditions that GPSM is
a Noetherian module. In this paper, we give a method to determine the Noetherian property of the
generalized power series module. We use the concept of the sub-exact sequence to determine this
property. In this way, we also can determine the Noetherian property of its submodules. Moreover, we
give a construction of R[[S]]-homomrphism between the generalized power series modules.

gmtem from this work may be used under the terms of the Creative Commons Atiribution 3.0 licence. Any further distribution
=

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOL
Published under licence by [OP Publishing Ltd 1




ICASMI 20 10P Publishing
Journal of Physics: Conference Series 1751(2021) 012028  doi:10.1088/1742-6596/1751/1/012028

2. The Main Results
Let R be a commutative ring with 1z € R and S be a monoid with strictly ordered. Let Ny, N2, and N;
be three modules over ring R. The set Ni[[S]][@bnsists of all function y from § to Ni such that the
support of fis Artinian and narrow (we denote support of f'by supp(f). that is the set of s € §, where f
(s) is not equal to 0), for i = 1,2, 3. We can write the set as follow:
Nil[SI1={u : § —> N, | supp(u) is Artinian and narrow},

i=1,2,3.

Before[fe give a condition when a submodule L[[S]] of N-[[S]] is Noetherian R[[S]]-module, we
recall that if L is a submodule of N, then L[[S]] is a submodule of N2[[S]] as a module over R[[S]]. Let

L[[S]] = {p € N:[S]] | u(s) €L, for all s € S}.

ThaetL[[S]] is a submodule of N2[[S]].

Let K, L, M be R-modules and X be R-submodules of L. Recall that the triple (K, L, M] 1s said to be

X-sub-exact at L if there exist f and g such that the sequence K LX A M is exact. In the following
proposition, we give a condition when a submodule L[[S]] of N2[[S5]] is Noetherian.

7
Proposition 1. L.ﬂt R be a commutative ring with 1 € R and (S, <) be a monoid with a strictly ordered.
Let N;, N>, and N3 are R-modules, and L is a submodule of N> over R.
the triple (N[[S]], N2[[S1], Ns[[S]]) is L[[S]]-sub-exact as an R[[S]]-module, N,[[S]] and N;[[S]] are
Noetherian R[[S]]-modules, then L[[ S]] is a Noetherian R[[S]]-module.

Proof. Since the triple (N:[[S]1]. N:[[S1]. N:[[S1]) is L[[S]]-sub-exact, based on [3], we have the
following sequence of a module over R[[S]] is exact.

Ny[[ST] = LI[S]] — Ns[IS]] ()
Since (1) is exact, there are R[[S]]-homomorphism fand g, where f is an R[[S]]-homomorphism from
N{[[S]] to L[[S]]. g is an R[[S]]-homomorphism from L[[S]] to N;[[S]], and Im(f) = Ker(g). By
hypothesis, N;[[S]] and N:[[S]] are Noetherian modules over R[[S]]. Hence based on [17], we have
NI[[5]] is a Noetherian as a module over R[[S]].

Given three R-modules Ny, N2, and Ns. Fitriani et al. [3] construct a set o (N, N2, N3) that consists of
all submodules X of N> such that the triple (N1, N2, N3) is an X-sub-exact at N2, i.e.:

o (N1, Na, N3) ={X submodule of Nal (N, N2, N3) is an X-sub exact at N>}.
In this case, we construct the set o (Ni[[S]], N2[[S]], Ns[[5]]) that consist of all submodules X of
N-[[S]] such that the triaz of generalized power series modules (N,[[S]], N=[[S]], Ns[[S]]) is an X-sub
exact at No[[S1], i.e.; o (N [[SI], N2 [[ST], N5 [[S1]) ={X < N2 [[S]]l the triple (N1[[S]], N2[[S1], N:[[STD) is
an X-sub exact at N2[[S]]}.

As a direct consequence of Pmpositioﬁ we have the following result.

Corollary 1. Let R be a commutative ring with 1 € R and (S, <) be a monoid with strictly ordered. Let
M,, M5, and M5 are modules over ring R. If N;[[5]] and (111 are Noetherian modules over R[[S]],
then a submodule X of N is Noetherian, for gyery X € o (Ni[[S]], N2[[S]], N3[[S1])-

Proof. Let X € o (Ni[[S]]. Na[[S]]. N:[[S1]). We have the following exact sequence of R[[S]]-modules:
N [[ST] — X — N3[[5]]
From Proposition 1, we have X is Noether.

In [18], Ziembowski gives a construction of a homomorphism of skew GPSR. Ejsed on his
construction, we construct a homomorphism of generalized power series modules in the following
proposition.

Proposition 2. Given a commutativefihg R with identity element 1. Given a monoid (<) with a
strictly ordered, an endomorphism @ of § such that for every subset Artinian and narrow T < S, @ (7)

(5]
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is Artinian, narrow, and h(w '(x)) = h(x). for every x is in §, and A is in R[[S]]. Let ¢ be an R-
homomorphism from N> to N3, where N>, N3 be R-modules. For y € N»[[S]], we define:
$: N,[1S1] - N, [[S]]
e L,
where
_1 . 3
e _[popewt(x) ;ifx € w(S),
A(x) [ 0 ; otherwise.

Then ¢ is an R[[S]]-homomorphism from N, [[S]] to N5[[S]].

Proof. Since supp(f) < w(supp (1)), we have g € N3[[S]]. Now, we will show that ¢ is a R[[S]]-
homomorphism from N, [[S]] to N3 [[ST]].
a.Let u, f € Ny[[S]], and x € §. By (1), we have:
H+BE) = go(u+p)ew™ (%)
= @(u+pB)e 0 (x))
P(u(w™ () + (0™ (X))
= ou(w™()) + e(Blw™1(x)))
=gpopow () +gofow(x)
=G0 +BC). )
This equation implies that y 4+ = g+ ., and hence ¢p(u+ ) = dp(u) + d(S). for every u. f
€ Na[[S]].

b.Let 4 € Na[[S]]. h € R[[S]], and x € §. By (1), we get:
hu(x) = @eo(hw) e (x)
A () (@™ (x)))
= ';O(E_Ht:w—'l(x) h(s) ﬂ(t))
Es+t=w"1(x) @(h(s).lu(t))
= Es+t=m_'1(x) h(s)e(u(t)
= Zm_l(u)-#m_'l(v):m_'l(x) h(w_l (u))@(ﬂ(w_l(v))) V8= w_l(u) dant = w_l(v)
= Zw"‘(u)+w"‘(u):w"‘(x]h(u)@(ﬂ (w_l(v))) ; h(w-l(u)) =h(u)

o Hu+r)=w1x)
u+v=x

= Zutv=x hW)(@ope 0™ (@)
= Eu+u:x h(u)ﬁ(v)

= hii(x). _
Hence, for every u € N2[[S]], h € R[[S]], we have ¢p(hy) = hy = hii = h ().

From a-b, we can conclude that ¢ is an R[[S]]-homomorphism from N, [[S]] to N3[[S]].

Given an R-module M, we recall that a submodule N of M is a direct summand of M if thermists
K<Msuchthat M=N@K, ie, M=N+K, and NN K = 0. In this case, every m € M can be
uniquely written as m = a + b, where @ € N, and b € K [17]. Next, we will use the construction of
R[[S]]-homomorphism in Proposition 2 to provide the Noetherian property of the GPSM.

Proposition 3. Given a commutative ring R with 1 € R and a monoid (§, <) with a strictly ordered. Let
Ni, N2, and N; are R-modules, and L[[S]] is a direct summand of N:[[S]] as an R[[S]]-module. If
(NILIST]. N=[LST1, N:ILSTD) is L[[S]]-sub-exact as an R[[S]]-module, N;[[S]] and N;[[S]] are Noetherian
R[[S]]-modules, then N>[[5]] is Noether.
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Proof. By hypothesis (N;[[S]]. N2[[S]]. N3[[S]]) is L[[S]]-sub-exact as an R[[S]]-module. Since N,[[S]]
and Ns[[S]] 48 Noetherian R[[S]]-modules, based on Proposition 1, we get L[[S]] is Noether.
Since L[[S]] is a direct summand, there exists a submodule K of N>[[S]] such that N,[[S]] = L[[S]] D
K. Then every it € Ma[[S]] can uniquely write as =’ +pu'" 2, where i’ € L[[S]],and it'" € K.
Besides that, the triple (N[[S]], N2[[S1], Ns[[S]]) is L[[S]]-sub-exact implies that there are two R[[S]]-
homomorphisms f and g such that the following sequence is exact.
f g

N [T 5 LIS S Ns[IsT].
ie., Im(f) = Ker(g).
Thus, we can define an R[[S5]]-homomorphism

r
g': N2 [[87] = Ns (S]],
where g’ = [QCu); ifu € L[[S]];
0 ; otherwise.

Hence, we get the following diagram of R[[S]]-module:

MIST —=> Liis)] —2> MalisT]

1
i
E“NW /

N2 [IS1]

Based on [3], the following sequence of R[[S]]-module is exact.

iof !
Ny [[51] = Na[1ST] S Na[[S]).
Since N[[S]] and Ns[[S]] are Noetherian, based on Proposition 1, N;[[S]] is Noetherian.

Conclusion

Based on the results, we can conclude that we can use the concept of a sub-exact sequence of modules
over R[[5]] to determine the Noetherian property of generalized power series modules. Besides that,
we also can determine the Noetherian property of its submodule.
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