RAHMAT GUNAWAN

KIMIA KUANTUM

MULAWARMAN UNIVERSITY PRESS

Copyright © 2023 Rahmat Gunawan

PUBLISHED BY MULAWARMAN UNIVERSITY PRESS

HTTP://WWW.UNMUL.AC.ID

Licensed under the Gadjah Mada University Press: you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.unmul.ac.id. Unless required by applicable law or agreed to in writing, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Samarinda, East Kalimantan, December 2023

Buku ini untuk mahasiswaku di Bumi Etam....

Daftar Isi

1 Sejarah Model Atom 21

11 <i>Control 1 Control </i>	1.1	Selayang	Pandang	Akhir	Era Klasik	22
---	-----	----------	---------	-------	------------	----

1.1.1 Fungsi Gelombang dan Fenomena Cahaya Maxwell 23

26

- 1.1.2 Fungsi Gelombang Maxwell 23
- 1.1.3 Fenomena Cahaya Maxwell 24
- 1.1.4 Teori Atom Dalton
- 1.1.5 Konsep Sinar Katoda Thomson 27
- 1.1.6 Konsep Massa Elektron Millikan 28
- 1.1.7 Konsep Sinar Kanal Rutherford 29
- 1.1.8 Pertikel radiasi Curie 30
- 1.2 Selayang Pandang Awal Era Modern 31
 - 1.2.1 Penelitian dasar energi terkuantisasi 32
 - 1.2.2Penelitian dasar mekanika kuantum33
- 1.3 Kemampuan Terkini Era Modern 33
 - 1.3.1 Instrumentasi Spektroscopi Molekul 34

37

- 1.3.2 Kimia Komputasi
- 1.3.3 Scanning Tunnelling Microscopy 38
- 1.4 Soal-soal Bab 1 38

2 Energi Terkuantisasi 39

- 2.1 Hukum Radiasi Blackbody Planck 41
 - 2.1.1 Planck's radiation law: Intuisi jenuis munculnya tetapan Planck 41
 - 2.1.2 Penentuan harga tetapan Planck 43
 - 2.1.3 Koreksi hukum klasik radiasi blackbody 44

2.2 Konsep Fotolistrik Einstein 45

- 2.2.1 *Pemahaman tentang hubungan foton dan elektron* 46
- 2.2.2 Pemahaman energi kinetik dan potensial elektron akibat adanya foton 47
- 2.2.3 Model frekuensi elektron akibat adanya foton 47
- 2.2.4 Persyaratan eksitasi elektron akibat adanya foton 48

2.2.5 Tingkat energi terkuantisasi elektron 48

- 2.2.6 Foton Einstein dan Tingkat Energi Atom 50
- 2.2.7 Konsep eksitasi elektron dan emisi foton 51
- 2.2.8 Tingkat energi elektron dalam kristal 52
- 2.2.9 *Gambaran umum teori foton Einstein* 53

2.3 Model Atom Bohr 56

- 2.3.1 Energi elektron Bohr 56
- 2.3.2 Momentum sudut Bohr 58
- 2.3.3 Energi elektron terionisasi Bohr 59
- 2.3.4 Model permukaan energi potensial 61
- 2.3.5 Pembuktian moel atom Bohr secara eksperimen 62
- 2.4 Spektra atom bukan Hidrogen 62
- 2.5 Soal-soal Bab 2 64

3 Mekanika Kuantum 67

- 3.1 Postulat & Gelombang de Brogliè 67
- 3.2 Prinsip Ketidakpastian Heisenberg 71
 - 3.2.1 Ketidakpastian Momentum dan Posisi 73
 - 3.2.2 Ketidakpastian Energi dan Waktu 75
 - 3.2.3 Big Bang & Hari Kiamat 77
- 3.3 Persamaan Gelombang Schrödinger 79
 - 3.3.1 Sejarah Singkat Penurunan Persamaan Schrödinger 80
 - 3.3.2 Cara membaca Persamaan Schrödinger 82
 - 3.3.3 Konsep Kebolehjadian Menemukan Partikel 83
- 3.4 Mekanika & Postulat Kuantum 84
 - 3.4.1 *Postulat* 1 85
 - 3.4.2 *Postulat* 2 86
 - 3.4.3 *Postulat* 3 89
 - 3.4.4 *Postulat* 4 90
 - 3.4.5 *Postulat* 5 91
- 3.5 Soal-soal Bab 3 93

4 Persamaan Schrödinger

dan Terapannya 95

- 4.1 Partikel dalam box Nol Dimensi 96
- 4.2 Partikel dalam Box 1 Dimensi 98
 - 4.2.1 Terapan Potensial Box 1 Dimensi 102

	4.3 Partikel dalam Box 2 Dimensi 104
	4.4 Partikel dalam Box 3 Dimensi 108
	4.4.1 Terapan Potensial Box 3 Dimensi 113
	4.4.2 Sifat magnetik molekul C_{60} 113
	4.4.3 Spestrokopi molekul C_{60} 115
	4.5 Komparasi Panjang Gelombang 115
	4.6 Energi Potensial Non-Box 1 Dimensi 117
	4.6.1 Potensial Osilator Harmonik 117
	4.6.2 Potensial Osilator An-Harmonik 118
	4.6.3 Potensial Sumur Berhingga 120
	4.6.4 Potensial Sumur Tak-berhingga 121
	4.7 Energi Potensial Tunneling 122
	4.7.1 Tunneling Pertama 124
	4.7.2 Tunneling Kedua 125
	4.7.3 Peluang Tunneling, χ 127
	4.7.4 Potensial Tunneling: Inversi Payung Amonia 128
	4.7.5 Potensial Tunneling: Rotasi Etana 129
	4.7.6 Potensial Tunneling: Peluruhan Partikel α 131
	4.7.7 Scanning Tuneling Microscope 132
	4.8 Soal-soal Bab 4 132
5	Atom Hidrogen 135
	5.1 Persamaan Schrödinger: Hidrogen 135
	5.2 Persamaan Phi, $\Phi(\phi)$ 138
	5.3 Persamaan Theta, $\Theta(\theta)$ 139
	5.4 Persamaan Sudut, $\Psi_{lm}(\phi, \theta)$ 140
	5.4.1 Komvarasi orbital Box 3 dimensi dan atom hidrogen
	5.5 Persamaan Radial, $R(r)$ 144
	5.6 Fungsi Gelombang Atom Hidrogen, $\Psi_{nlm}(r, \theta, \phi)$ 147
	5.7 Orbital Atom Hidrogen 148
	5.7.1 Orbital Sharp 149
	5.7.2 Orbital Principal 150
	5.7.3 Orbital Diffuse 150
6	Atom bukan Hidrogen 153
	6.1 Energi & Orbital Hartree 154
	6.1.1 Model Kulit Atom Hartree 154

6.1.2 Efek Perisai Energi Atom Hartree 157

6.2 Prinsip Larangan Pauli 158 6.2.1 Spin Elektron Atom 159 6.2.2 Postulat 6 160 Tingkat Energi elektron 6.2.3 160 6.2.4 Table periodik Pauli 162 6.3 Aturan Hund 162 6.4 Prinsip Aufbau 164 6.5 Efek Magnetik Zeeman 166 6.5.1 Pemisahan Spektral Zeeman 166 6.6 Energi Ikat Atom 169 6.6.1 Reaksi Fusi 170 6.6.2 Reaksi Fisi 170 6.6.3 Atom-atom Isotop 170 6.7 Energi Ionisasi 171 6.8 Energi Afinitas Elektron 172 6.9 Tabel Periodik Unsur-Unsur 173 6.9.1 Tabel periodik berbasis teori 173 Tabel periodik berbasis eksperimen 6.9.2 174 Struktur Molekul 175 7.1 Pendekatan Born-Oppenheimer 176 7.1.1 Ion Molekul H_2^+ 176 7.1.2 Molekul H_2 176 7.2 Pendekatan Heitler-London 176 7.3 Pendekatan Hartree-Fock 176 7.3.1 Metode Orbital Molekul LCOA 177 Valence-Shell Elektron Pair Repulsion 7.3.2 177 Molekul diatom 7.3.3 177 Molekul Poliatom 7.3.4 177 Self Consistent Field 7.3.5 177 7.4 Pendekatan Hückel 177 Spektroskopi Molekul 179 8.1 NMR 179 8.2 FTIR 180 8.3 AAS 180 8.4 UV-VIS 180 8.5 XRD 180 8.6 Gamma-Ray 180

7

8

9 Kimia Komputasi 181

- 9.1 Metode Komputasi 181
 - 9.1.1 Metode Fungsi Gelombang 182
 - 9.1.2 Struktur Kimia 182
 - 9.1.3 Biokimia 182
 - 9.1.4 Permukaan Energi Potensial 183
 - 9.1.5 Kimia Organik 183
 - 9.1.6 Spektroskopi 185
 - 9.1.7 Metode Teori Fungsi Kerapatan 185
 - 9.1.8 Distribusi Muatan 185

9.2 Tingkat Perhitungan Komputasi 185

- 9.2.1 Molecular mechanics 186
- 9.2.2 Semi-empiric 186
- 9.2.3 Ab Initio 186
- 9.2.4 Density Functional Theory 187
- 9.2.5 Docking Molecular 187

Bibliografi 189

Riwayat Akademik Penulis 191

Daftar Gambar

1.1 Diagram area kimia kuantum. 21
1.2 Diagram Sejarah fisika klasik model atom. 22
1.3Model energi tunggal suatu atom dalam konsep fisika klasik22
1.4 James Clerk Maxwell, penemu radiasi gelombang elektromagnetik
dan kecepatan cahaya, c. (Sumber: http://www.converter.cz) 23
1.5 Fungsi gelombang elektromagnetik Maxwell. 23
1.6 Instrumentasi Maxwell dalam penentuan kecepatan cahaya, c.
(Sumber: http://www.rutherfordjournal.org) 24
1.7 Daerah Maxwell: Panjang gelombang Maxwell dari Gelombang
elektromagnetik Radio hingga Gamma. 25
1.8 Gerak osilator harmonik yang menghasilkan bentuk ellips. 25
1.9 John Dalton, penemu konsep atom. (Sumber: http://www.biografiasyvidas.com)26
1.10 Model atom Dalton, atom diilustrasikan sebagai bola yang tidak da-
pat dibagi lagi. (Sumber: http://www.eoht.info/page/John+Dalton) 26
1.11 Joseph John Thomson, penemu konsep elektron. (Sumber: ht-
tps://www.fnal.gov/pub/science/) 27
1.12 Skema eksperimen tabung sinar katoda. 27
1.13 Model atom roti kismis Thomson. 27
1.14 Robert Andrews Millikan, penemu masa elektron. (Sumber: ht-
tp://www.corbisimages.com) 28
1.15 Ernest Rutherford penemu konsep inti atom. (Sumber: http://www.wellcomeimages.org)29
1.16 Skema eksperimen: <i>Rutherford canal rays.</i> 29
1.17 Rutherford planetary model 29
1.18 Model permukaan energi potensian hasil penyelesaian persamaan
1.20 30
1.19 Marie Skłodowska Curie, penemu konsep proton dan netron. (Sum-
ber: http://www.rsc.org/diversity) 30
1.20 Pertemuan ilmuwan fisika modern di Kota Solvay, Italia, 1927.
(Sumber: https://mostlyphysics.wordpress.com) 31
1.21 Jembatan antara era klasik menuju era kuantum 32
1.22 Diskusi ilmiah oleh Planck dan Einstein. (Sumber: http://astro-
canada.ca) 32

- 1.23 Diskusi ilmiah antara oleh Bohr, Heisenberg dan Pauli. (Sumber: http://astro-canada.ca) 33
- 1.24 Spektrum elektromagnetik Maxwell pada era modern. 34
- 1.25 Spektra dari spin proton H⁺ pada gugus ring aromatik dan gugus-OH dalam molekul fenol. 35
- 1.26 Spektra rotasi molekul *Cyclopropane carboxaldehyde* (Sumber: http://www.rsc.org/chemistryworld/ News/2008/May/16050801.asp).

1.27 Spektra vibrasi molekul etanol (Sumber: http://www.chemguide.co.uk /analysis/ ir/interpret.html). 36

1.28 Contoh analisa beberapa logam pada *Atomic Absorption Spectroscopy*, (Sumber:http://www.sdmiramar.edu). 36

 1.29 Spektra eksitasi elektron molekul C₇H₈O₃S (Sumber: http://www2. chemistry.msu.edu/faculty /reusch/virttxtjml/spectrpy/uv-vis/ spectrum.htm). 36

- 1.30 Spektra eksitasi elektron dari atom dalam padatan Hf₃N₄ (Sumber: http://www.esrf.eu/home/news/spotlight).
 37
- 1.31 Model orbital molekul C₆H₆ hasil perhitungan kimia komputasi. 37
- 1.32 Hasil citra STM: Susunan huruf IBM (*International Business Machines*) dari atom (Sumber: http://education.mrsec.wisc.edu/130.htm).38
- 2.1 Area Riset Dasar Energi Atom. 39
- 2.2 Jožef Štefan dan Ludwig Eduard Boltzmann (http://alunosonline.uol. com.br/fisica/lei-stefan-boltzmann.html).
 40
- 2.3 John William Strutt bergelar 3rd Baron Rayleigh dan Sir James Hopwood Jeans (Sumber: https://losmundosdebrana.word-press.com/ radiacion-de-cuerpo-negro-y-catastrofe-ultravioleta/). 40
- 2.4 Wilhelm Carl Werner Otto Fritz Franz Wien (Sumber: http://www.mlahanas.de/Physics/Bios/WilhelmWien.html). 40
- 2.5 Max Karl Ernst Ludwig Planck, penemu konsep energi terkuantisasi (Sumber: http://www.wikiwand.com/fr/Max-Planck). 41
- 2.6 Ilustrasi perluasan konsep energi elips Maxwell dan Planck. 42
- 2.7 Max Karl Ernst Ludwig Planck, penemu ide jenius: E = hv (http://www.intergalacticvault.com/max-planck-founder-of-quantum-mechanics-1918-physics-nobel-prize-winner/). 42
- 2.8 Perbandingan konsep energi klasik dengan energi Planck. 43
- 2.9 Tingkat energi elektromagnetik sinar tampak yang ditujukkan dengan perbedaan warna 44
- 2.10 Kurva radiasi blackbody: Rayleigh-Jeans, Wein dan Planck. 45
- 2.11 Albert Einstein, penemu konsep foton (Sumber: http://www. nytimes.com/topic/person/ albert-einstein).
- 2.12 Fenomena Fotolstrik ilmuwan fisika klasik. 46
- 2.13 Kurva linear konsep Efek fotolistrik Einstein. 47
- 2.14 Konsep Fotolistrik Einstein untuk dua tingkat energi foton. 48

35

2.15 Konsep eksitasi dan emisi elektron untuk da tingkat energi. 49 2.16 Fotolistrik Franck-Hertz 50 2.17 Hasil radiasi foton terhadap kristal Cr 51 2.18 Model tingkat energi potensial elektron Einstein 51 2.19 Konsep tingkat energi elektron suatu atom 52 2.20 Skema teori fotolistrik Einstein-Franck-Hertz. 53 2.21 Tingkat energi potensial elektron atom Neon, Ne (Sumber: DOI:10.1038/ncomms5069|www.nature. com/naturecommunications). 53 2.22 Tingkat energi potensial elektron, vibrasi molekul dan rotasi molekul. 54 2.23 Niels Hendrik David Bohr, penemu konsep energi terkuantisasi atom hidrogen. (Sumber: https://apchemcyhs.wikispaces.com/Bohr) 56 2.24 Energi potensial atom dan jarak inti-elektron, r. 56 2.25 Albert Einstein dan Niels Bohr membahas masalah energi terkuantisasi. (Sumber: http://www.uh.edu/engines) 57 2.26 Energi potensial ionisasi atom hidrogen. 59 2.27 Niels Bohr memberi kuliah kelas membahas masalah energi terkuantisasi yntyk atom hidrogen. (Sumber: http://www.phy.davidson.edu) 60 2.28 Model energi potensial ionisasi: Klasik dan Modern. 61 2.29 Deret Bohr: Deret Lyman, Deret Balmer, dan Deret Pachen. (Sumber: http://physics.dorpstraat21.nl/spectra) 62 2.30 Deret spektrum atom: H, He, O, C, N, dan Ne. (Sumber: http://locksmithnyc.info/keywords/02/neon-spectral-lines/) 63 3.1 Area Mekanika Kuantum. 67 3.2 Louis-Victor-Pierre-Raymond, 7th duc de Brogliè, penemu konsep panjang gelombang untuk mekanika kuantum. (Sumber: http://nautilus.fis.uc.pt/wwwqui/) 68 3.3 Postulat de Brogliè quantum condition, $n\lambda = 2\pi r$. 69 3.4 Postulat de Brogliè quantum condition, $n\lambda = 2\pi r$. 69 3.5 Ilustrasi energi translasi, vibrasi, rotasi dan eksitasi atom dari sebuah molekulyang memenuhi syarat de Brogliè quantum condition. 70 3.6 Ilustrasi tumbukan sebuah foton terhadap sebuah elektron dan sebuah bola 71 3.7 Werner Karl Heisenberg, penemu teori ketidakpastian posisi elektron dalam suatu dan/atau molekul. (Sumber: https://www.aip.org/history/heisenberg) 72 3.8 Posisi & momentum elektron yang diberi gangguan foton. 72 3.9 Kesetaraan antara posisi, Δx , dengan panjang gelombang $\Delta \lambda$. 73 3.10 Kaitan Δx dan $\Delta \lambda$ dalam prinsip ketidakpastian Heisenberg. 74 3.11 Kesetaraan antara frekuensi, Δv , dengan waktu $\frac{1}{\Lambda t}$. 75 3.12 Kaitan Δv dan Δt dalam prinsip ketidakpastian Heisenberg. 76 3.13 Model elektron Heisenberg dalam ukuran tertentu. 78

- 3.14 Erwin Rudolf Josef Alexander Schrödinger, penemu konsep funsi gelombang dan energi elektron (Sumber: https://plus.google.com/+PauloCruz/ posts/NS39kpXW4aB).
 80
- 3.15 Max Born, penemu konsep kebolehjadian menemukan partikel (Sumber: http://www.quotationof.com/max-eastman.html). 83
- 3.16 Konsep Box Max Born, box sebagai peluang menemukan partikel. 83
- 3.17 Diskusi tentang Postulat Mekanika Kuantum: Neils Bohr, Werner Heisenberg dan Wolfgang Pauli (Sumber: http://denstoredanske.dk /Sprog-religion-og-filosofi/Filosofi/ Menneskets-grundvilk-C3-A5r /natur). 85
- 3.18 Ewrin Schrödinger memberi Orasi Ilmiah tentang Postulat Mekanika Kuantum (Sumber: http://quotesgram.com/schrodingeratomic-quotes/). 88
- 3.19 Werner Heisenberg memberi kuliah kelas tentang Postulat Mekanika Kuantum (Sumber: https://plus.maths.org/content/ schrodinger-1). 89
- 3.20 Ewrin Schrödinger di ruang kerjanya dalam menyelesaikan Postulat Mekanika Kuantum (Sumber: http://www.suppose.de/texte/ schroedinger.html).
 90
- 3.21 Ewrin Schrödinger memberi kuliah kelas tentang Postulat Mekanika Kuantum (Sumber: http://www.hinduhistory.info/erwinschrodinger-vedantist-and-father-of-quantum-mechanics/). 91
- 4.1 Area persamaan Schrödinger dan terapannya. 95
- 4.2 Model energi potensial gerak partikel bebas. 96
- 4.3 Erwin Schrödinger, menjelaskan pentingnya mencari solusi persamaan dirinya (Sumber: http://www.giornalettismo.com/ archives/ 1062669/erwin-schrodinger-equazione-gatto-scatola-di-erwin-schrodinger-scatola/erwin-schrodinger-austrian-physicist-lecturing-at-the-blackboard-c-1950/). 97
- 4.4 Energi potensial box 1 dimensi. 98
- 4.5 Solusi persamaan Schrödinger box 1 dimensi. 101
- 4.6 1,3-butadiena suatu senyawa konjugasi lurus. 102
- 4.7 Skema Energi Potensial 1,3-butadiena: Teori dan Fakta. 102
- 4.8 1,3-butadiena suatu senyawa konjugasi lurus. 103
- 4.9 Energi potensial box 2 dimensi. 104
- 4.10 Solusi persamaan Schrödinger box 2 dimensi. 107
- 4.11 Siklo-butadiena suatu senyawa konjugasi silkus. 108
- 4.12 Skema Energi Potensial siklo-butadiena. 108
- 4.13 Energi potensial box 3 dimensi. 109
- 4.14 Solusi persamaan Schrödinger box 3 dimensi. 112
- 4.15 Model molekul bola sepak: C₆₀ 113
- 4.16 Pengisian elektron π molekul C₆₀ pada box 3 dimensi. 114

4.17 Proses interaksi fisika suatu logam ke dalam molekul C_{60} . 115 4.18 Tiga bentuk fungsi gelombang: (a). Box 1 dimensi, (b). Box 2 dimensi, dan (c). Box 3 dimensi. 116 4.19 Bentuk Energi Potensial Harmonik. 117 4.20 Bentuk Energi Potensial An-harmonik. 118 4.21 Bentuk Energi Potensial Sumur Berhingga. 120 4.22 Bentuk Energi Potensial Sumur Tak-berhingga. 122 4.23 Bentuk Energi Potensial Tunnelling. 123 4.24 Skema *tunnelling* pertama (Penentuan harga *A*). 125 4.25 Skema *tunnelling* kedua (Penentuan harga *E*). 126 4.26 Skema *tunnelling* total (Penentuan harga χ). 127 4.27 Perubahan bentuk NH₃ dari bentuk awal menjadi bentuk inversinya. 128 4.28 Bentuk energi potensial inversi payung NH₂. 128 4.29 Bentuk energi potensial inversi payung, dan perubahan bentuk molekul NH₂. 129 4.30 Bentuk Energi Potensial Rotasi Molekul Etana. 130 4.31 Bentuk Energi Potensial Peluruhan Partikel α . 131 4.32 Skema STM dan Model Energi Box 1 Dimensi Persamaan Schrödinger untuk STM. 132 4.33 Proses scanning STM untuk membuat corral dari atom Cr (Sumber: http://researcher.watson.ibm.com/ researcher/view-groupsubpage.php-id=4252). 133 4.34 Struktur senyawa annulena, $C_{18}H_{18}$ 133 5.1 Area Penurunan Hukum Atom Hidrogen. 135 5.2 Energi potensial atom hidrogen: 2 dan 3 dimensi. 136 Konversi koordinat: Cartesian ke Sferik. 5.3 137 5.4 Fungsi gelombang sudut atom hidrogen. 142 5.5 Perbandingan bentuk fungsi gelombang antara: (a). Box 3 dimensi, dan (b). Atom hidrogen. 144 5.6 Fungsi gelombang radial atom hidrogen. 146 5.7 Kurva Distribusi Probabilitas Radial Atom Hidrogen. 147 5.8 Perbandingan Tingkat Energi: Bohr dan Schrödinger. 148 5.9 Fungsi Gelombang orbital sharp Atom Hidrogen. 149 5.10 Fungsi Gelombang orbital principal Atom Hidrogen. 150 5.11 Fungsi Gelombang orbital diffuse Atom Hidrogen. 151 6.1 Area Konsep Pemahaman Atom Bukan Hidrogen. 153 6.2 Douglas Rayner Hartree, penemu teori konfigurasi elektron (Sumber: http://www.converter.cz/fyzici/hartree). 154 6.3 Perbandingan Distribusi Elektron: Schrödinger dan Hartree. 155 6.4 Perbandingan Distribusi Elektron Hartree. 156 6.5 Perbandingan Tingkat Energi: Schrödinger dan Hartree. 158

6.6 Wolfgang Pauli (Sumber: http://cds.cern.ch/record/42801). 159
6.7 Skema eksperimen <i>spin</i> elektron oleh Stern & Gerlach. 159
6.8 Wolfgang Pauli muda di kelas kuliah (Sumber: http://www.wpi.ac.at/).
6.9 Perbedaan energi potensial dalam perhitungan Pauli. 161
6.10 Penulisan spin elektron dalan satu sub orbital. 161
6.11 Skema tabel periodik unsur hasil perhitungan Pauli. 162
6.12 Skema tabel periodik unsur hasil perhitungan Pauli, tersusun
berdasarkan konfigurasi elektron valensi. 162
6.13 Friedrich Hermann Hund (Sumber:
http://prestonstimeline.weebly.com/). 163
6.14 Beberapa terapan aturan Hund: Pengisian elektron <i>spin-up</i> terlebih
dahulu untuk semua sub-orbital. 163
6.15 Beberapa terapan aturan Hund: Spin elektron searah memiliki
energi lebih rendah daripada <i>spin</i> elektron tidak searah. 164
6.16 Pertemuan ahli fisika di Chicago, USA, 1929, dalam rangka meru-
muskan konfigurasi elektron suatu atom. 164
6.17 Perhitungan energi Hartree sebagai dasar Prinsp Aufbau. 165
6.18 Konsep rekonstruksi Aufbau. 165
6.19 Pieter Zeeman, eksperimentalis tingkat energi elektron akibat med-
an magnet (Sumber: https://www.nobelprize.org/prizes/ physi-
cs/1902/zeeman/facts/). 166
6.20 Spektra elektron pada pengamatan Zeeman, dimana pada penga-
ruh medan magnet terjadi refleksi/split spektra untuk sub-orbital
atom <i>p</i> . 167
6.21 Refleksi/ <i>split</i> elektron pada orbital p menghasilkan spektra:
$p_x, p_z, \operatorname{dan} p_y.$ 167
6.22 Refleksi/ <i>split</i> elektron pada orbital d menghasilkan spektra:
$d_{x^2-y^2}, d_{xz}, d_{z^2}, d_{yz}, \text{ dan } d_{xy}.$ 168
6.23 Refleksi/split elektron pada orbital f menghasilkan spektra:
$f_{x(x^2-3y^2)}, f_{z(x^2-y^2)}, f_{xz^2}, f_{z^3}, f_{yz^2}, f_{xyz},$
dan $f_{y(3x^2-y^2)}$. 168
6.24 Kurva antara Energi ikat atom terhadap masa atom, dalam menen-
tukan seluruh energi ikat atom-atom. 169
6.25 Kurva antara Energi ionisasi atom terhadap nomor atom. 171
6.26 Kurva antara Energi afinitas elektron suatu atom terhadap nomor
atom. 172
6.27 Tabel Periodik Sistem. 173
6.28 Tabel Periodik Unsur-unsur (Sumber: https://www.thoughtco.com/how-
to-use-a-periodic-table-608807). 174
7.1 Area Konsen Pemahaman Molekul 175
7.2 Robert Oppenheimer (Sumber: https://www.governing.com/ context/the-
rehabilitation-of-i-robert-oppenheimer). 176
7.3 Konsep interaksi satu elektron pada molekul ion H ₂ ⁺ . 176

160

- 8.1 Area Konsep Pemahaman Interaksi molekul dengan cahaya. 179
- 9.1 Area Konsep Pemahaman Kimia Komputasi. 181
- 9.2 Yohanes A. Pople (Sumber: http://www.nobelprize.org/nobelprizes/chemistry/laureates/1998/). 182
- 9.3 Srtuktur kimia 3 dimensi Palladium-Alil. 182
- 9.4 Konsep komputasi Mioglobin dalam darah. 183
- 9.5 Landscape permukaan energi potensial dan perspektifnya sebagai kurva koordinat reaksi H₂+F. 184
- 9.6 Prediksi senyawa O₃ yang bereaksi dengan hidrokarbon. 184
- 9.7 Prediksi spektra dari molekul porfirin. 185
- 9.8 Walter Kohn (Sumber: https://www.washingtonpost.com/ national /health-science/walter-kohn). 185
- 9.9 Prediksi distribusi muatan dalam DNA. 186

Daftar Tabel

2.1	Data eksperimen <i>blackbody</i> pada unsur Li. 44
2.2	Data eksperimen Franck-Hertz pada unsur Cr. 50
3.1	Contoh Fungsi & Batasan Keadaan Kuantum. 86
3.2	Operator Klasik dan Kuantum yang terpenuhi. 87
5.1	Fungsi gelombang harmonik sferis atom hidrogen. 141
5.2	Fungsi gelombang radial: <i>Density</i> elektron atom hidrogen 145
5.3	Keadaan kuantum orbital <i>sharp</i> atom hidrogen. 149
5.4	Keadaan kuantum orbital <i>principal</i> atom hidrogen. 150
5.5	Keadaan kuantum orbital <i>diffuse</i> atom hidrogen. 151
6.1	Keadaan kuantum orbital Prinsip Larangan Pauli. 161

J Sejarah Model Atom

PARA ILMUWAN dalam bidang kimia dan fisika pada masa akhir era klasik dan masa awal era modern selalu ingin mengetahui banyak hal khususnya tentang: Partikel penyususn apa sajakah atom tersusun? Bagaimanakah energi elektron dalam sebuah atom? Seperti apakah energi sebuah molekul? Bila molekul membentuk ikatan kimia, bagaimana konsep energi ikatannya? Dan lain sebagainya.

Pertanyaan lain adalah: Bagaimana interaksi antara atom atau molekul dengan suatu cahaya? Bagaimana spektrum/radiasi yang dihasilkan dari suatu atom atau molekul tersebut? Gambar 1.1: Diagram area kimia kuantum. Atom, molekul dan ikatan kimia adalah konsep utama dari kimia modern. Penelitian tentang atom dan molekul sebagai sebuah cerita penelusuran panjang dimulai melalui ide spekulatif dari para filosof/ilmuan dari awal abad ke 18 dan pada abad ke 19 secara eksperimen dimulai oleh Dalton melalui *Dalton'atomic hypothesis*.

¹ Robert G. Mortimer. *Physical Chemistry*. Academic Press is an imprint of Elsevier, third edition, May 2008. ISBN 13: 978-0-12-370617-1

Gambar 1.3: Model energi tunggal suatu atom dalam konsep fisika klasik

Cerita bersambung hingga pada abad ke 21,¹ dimana dari data eksperimen pada hari ini menunjukkan bahwa atom dan molekul dapat dimanipulasi secara langsung dan dapat dideteksi secara individual dengan menggunakan STM (*Scanning Tunnelling Microscope*).

1.1 Selayang Pandang Akhir Era Klasik

Penelitian tentang atom dan molekul telah dimulai sejak abad ke awal 18-an dan sampai sekarang, sehingga dikenal dalam dunia sain sebagai dari era mekanika klasik dan era mekanika modern. Era klasik dimotori oleh empat peneliti cahaya utama, yaitu:

- 1. Maxwell melalui konsep Maxwell electromagnetic radiation theory.
- 2. Dalton melalui konsep Dalton'atomic hypothesis.
- 3. Thomson melalui konsep Thomson's cathode rays.

4. Rutherford melalui konsep Rutherford canal rays.

Namun pada era klasik ini, konsep yang diajukan oleh pada ilmuannya tidak mampu menjelaskan pertanyaan-pertanyaan di awal tentang bagaimana model atom, ikatan kimia dan respon atom/molekul bila dikenai cahaya? Kelemahan era klasik adalah diterapkannya konsep harga energi partikel yang kontinu atau energi tunggal. Konsep energi tunggal hanya cocok untuk penjelasan partikel makroskopik.

1.1.1 Fungsi Gelombang dan Fenomena Cahaya Maxwell

Masih pada era klasik, muncullah konsep dari J. C. Maxwell pada tahun 1865, yaitu *Maxwell electromagnetic radiation theory*, yang menjelaskan bahwa dari radiasi atom yang dihasilkan akan dapat memprediksikan model planet spiral suatu atom. Maxwell juga dapat menjelaskan adanya gerak gelombang dan sifat cahaya.

Namun secara matematis konsep ini menghasilkan suatu bentuk kehilangan energi secara kontinu oleh radiasi. Radiasi Maxwell yang dikemukakan meliputi daerah-daerah tertentu seperti pada gambar ini:

Konsep gerak gelombang dan cahaya didasari pada eksperimen radiasi elektromagnetik Maxwell, dimana telah berhasil menjelaskan konsep gelombang elektromagnetik. Konsep ini menggunakan mekanika klasik, yaitu:

Gambar 1.4: James Clerk Maxwell, penemu radiasi gelombang elektromagnetik dan kecepatan cahaya, *c*. (Sumber: http://www.converter.cz)

1.1.2 Fungsi Gelombang Maxwell

Fungsi gelombang yang secara matematis diungkapkan oleh:

$$\Psi_{electric}(x) \equiv E(x) = A \sin 2\pi \left(\frac{x}{\lambda} - \nu t\right)$$
(1.1)

$$\Psi_{magnetic}(x) \equiv H(x) = \sqrt{\frac{\varepsilon}{\mu}} A \sin 2\pi \left(\frac{x}{\lambda} - \nu t\right)$$
(1.2)

Gambar 1.5: Fungsi gelombang elektromagnetik Maxwell.

Fungsi gelombang matematika ini dapat memberi gambaran tentang adanya gelombang listrik, E(x), yang tegak lurus dengan gelombang

magnetik, H(x), yang merupakan gambaran dari radiasi elektromagnetik itu sendiri. Dari persamaan di atas dikenal adanya besaran energi, ε , panjang gelombang, λ , amplitudo, A, dan frekuensi, ν , yang bergantung pada waktu, t. Riset radiasi Maxwell di atas menghasilkan hubungan antara E(x) dan H(x), yaitu bahwa keduanya akan sama harganya bila:

$$\frac{x}{\lambda} - \nu t = 0 \tag{1.3}$$

Maka akan menghasilkan ungkapan berikut:

$$\frac{x}{t} = \lambda \nu \tag{1.4}$$

Ungkapan di atas tidak lain adalah rumus kecepatan radiasi, yang menempuh sejauh x dengan satuan meter dalam rentang waktu t dengan satuan detik. Kecepatan radiasi ini oleh Maxwell dikenal sebagai kecepatan cahaya dengan ungkapan:

$$\frac{x}{t} = c \tag{1.5}$$

sehingga didapat ungkapan:

$$=\lambda\nu$$
 (1.6)

Maxwell dalam eksperimennya telah mengukur besar harga *c* dalam keadaan vakum yaitu:

С

$$c = 2,9979 x 10^8 m s^{-1} \tag{1.7}$$

Persamaan Maxwell ini memberi pengertian bahwa cahaya dapat bersifat sebagai gelombang, yang memiliki frekuensi dan panjang gelombang.

1.1.3 Fenomena Cahaya Maxwell

Radiasi elektromagnetik memiliki energi total, ε , yaitu jumlah energi kinetik dan suatu energi potensial, dimana untuk energi kinetik diungkapkan oleh:

$$\varepsilon_{kin} = \frac{1}{2}(mv^2) \tag{1.8}$$

dimana v adalah kecepatan cahaya radiasi elektromagnetik dan m adalah massa partikel cahaya, sedangkan untuk energi potensial yang cocok dengan mekanika klasik adalah gerak kurva linear dan gerak osilator harmonik:

- 1. Gerak kurva linear cocok untuk benda makro
- 2. Gerak osilator harmonik cocok untuk menjelaskan radiasi.

Gambar 1.6: Instrumentasi Maxwell dalam penentuan kecepatan cahaya, c. (Sumber: http://www.rutherfordjournal.org)

Sehingga energi potensial untuk radiasi maxwell adalah energi potensial osilator harmonik yaitu:

$$\varepsilon_{pot,harmonic} = \frac{1}{2}(kq^2) \tag{1.9}$$

dimana k adalah konstanta gaya pegas bervibrasi harmonik, dan q adalah panjang pegas vibrasi. Kemudian, Maxwell menggunakan hukum kekekalan energi untuk menjelaskan kesesuaian di atas, yaitu dengan menjabarkan energi total radiasi elektromagnetik, menjadi:

$$\varepsilon_{total} = \varepsilon_{kinetik} + \varepsilon_{potensial}$$
$$= \frac{1}{2}(mv^2) + \frac{1}{2}(kq^2)$$
(1.10)

Bila momentum gerak adalah:

$$p = mv \tag{1.11}$$

maka energi kinetiknya menjadi energi kinetik osilator harmonik yaitu:

$$\varepsilon_{kin} = \frac{p^2}{2m} \tag{1.12}$$

Sehingga terjadi konversi bentuk pada model matematik radiasi elektromagnetik Maxwell dari bentuk linear menjadi harmonik, dan energi total radiasi Maxwell menjadi:

$$\varepsilon = \frac{p^2}{2m} + \frac{kq^2}{2} \tag{1.13}$$

Secara matematis, persamaan ini merupakan bentuk *ellips* dengan sumbu p dan q, dengan gambar sebagai berikut:

Bentuk Maxwell-Ellips akan memotong pada sumbu:

$$p = \pm \sqrt{2m\epsilon}$$
, dan
 $q = \pm \sqrt{\frac{2\epsilon}{k}}$ (1.14)

Gambar 1.8: Gerak osilator harmonik yang menghasilkan bentuk ellips.

Gambar 1.7: Daerah Maxwell: Panjang gelombang Maxwell dari Gelombang elektromagnetik Radio hingga Gamma.

Gambar 1.9: John Dalton, penemu konsep atom. (Sumber: http://www.biografiasyvidas.com)

kehilangan energi, bila persamaan Maxwell ini diterapkan pada model energi potensial sebuah atom.

Perhitungan Maxwell ini merupakan kesuksesan mekanika klasik karena dapat menjelaskan model energi harmonik, dimana model energi ini cukup sesuai dengan kebutuhan penjelasan mekanika cahaya, namun sekaligus kelemahan mekanika klasik karena hasil energi yang tunggal dan bersifat kontinu ini menyebabkan sebuah partikel akan kehilangan energinya, secara teori.

1.1.4 Teori Atom Dalton

Penjelasan model atom secara rinci dimulai dari ilmuan Inggris John Dalton, pada tahun 1808, melalui teorinya yaitu *Dalton's atomic hypothesis* dan *Dalton's atomic theory of matter*, disini Dalton menjelaskan tentang model atom yang berdasarkan hukum konversi massa dan hukum proporsi. Berikut adalah konsep teori atom Dalton:

- 1. Meteri terdiri dari atom yang tak dapat dibagi
- 2. Atom tidak dapat dihancurkan dan sifat selalu sama selama reaksi kimia
- 3. Semua atom dalam suatu unsur adalah sama sifat dan massanya
- 4. Unsur yang berbeda akan memiliki atom dan nomor atom yang beda, dan
- 5. Senyawa terbentuk dari unsur-unsur melalui penggabungan atomatom.

Kelemahan Dalton adalah tidak mampu menjelaskan adanya fenomena eksperimen tentang partikel yang bermuatan negatif dan tidak jelasnya tentang fakta molekul. Untuk memperbaiki teori di atas maka

Gambar 1.10: Model atom Dalton, atom diilustrasikan sebagai bola yang tidak dapat dibagi lagi. (Sumber: http://www.eoht.info/page/John+Dalton) Dalton memunculkan konsep *the law of multiple proportions*, konsep ini dapat menjelaskan fakta adanya molekul relatif, yang merupakan dasar dari hukum *stoichiometry*.

Peneliti dari ilmuwan generasi berikutnya akan memperbaiki kelemahan Teori Dalton, yaitu mulai dari penemuan elektron oleh Thomson, yang menjadi bagian dari atom. Fakta bahwa atom dapat dibagi lagi dan memiliki inti atom oleh Rutherford, yang dilanjutkan oleh penemu proton dan netron oleh Merie Curie, yang mana kedua partikel ini merupakan bagian dari inti atom. Bahkan di era terkini terdapat fakta bahwa proton dan netronpun dapat dibagi lagi menjadi quark dan muon.

1.1.5 Konsep Sinar Katoda Thomson

Ketiadaan konsep partikel negatif dalam teori Dalton diperbaiki oleh ilmuwan Inggris lain yaitu Joseph John Thomson, pada 1897, melalui konsep *Thomson's cathode rays apparatus*, yang memperkenalkan konsep partikel bermuatan negatif yang diproduksi oleh tabung sinar katoda.

Thomson menyebut partikel bermuatan negatif ini sebagai *electron,* atas penemuan elektron ini maka Thomson mendapat penghargaan Nobel bidang Fisika pada ahun 1906.

Gambar 1.11: Joseph John Thomson, penemu konsep elektron. (Sumber: https://www.fnal.gov/pub/science/)

Gambar 1.12: Skema eksperimen tabung sinar katoda.

Tahapan eksperimen Thomson, lihat Gambar 1.12, dapat dijelaskan secara sederhana sebagai berikut:

- 1. Elektron yang dihasilkan terjadi ketika suatu gas terionisasi.
- 2. Thomson mengamati bahwa adanya berkas kecil menjadi berubah ketika medan listrik maupun medan magnet diterapkan pada tabung sinar katoda tersebut.

Gambar 1.13: Model atom roti kismis Thomson.

Gambar 1.14: Robert Andrews Millikan, penemu masa elektron. (Sumber: http://www.corbisimages.com)

- Thomson menyimpulkan bahwa partikel ini selalu dipengaruhi oleh medan listrik dengan munculnya berkas partikel dan juga dipengaruhi oleh medan magnet dengan munculnya pembelokkan berkas partikel elektron.
- 4. Kemudian Thomson membuat konsep model atom yang dikenal sebagai 'model roti kismis', atau *pulm pudding model*, yang mana model ini tidak menunjukkan adanya partikel yang muatan positif.

Hasil eksperimen Thomson di atas, tidak dapat menentukan massa maupun muatan elektron, namun Thomson hanya bisa menentukan rasio massa terhadap muatan partikel tersebut, yaitu:

$$\frac{m_e}{e} = 6x10^{-12}kgC^{-1} \tag{1.15}$$

1.1.6 Konsep Massa Elektron Millikan

Kelemahan teori Thomson adalah tidak menjelaskan adanya partikel yang berlawanan muatannya dengan muatan elektron dan hanya menghasilkan ratio antara muatan dan massa elektron, e/m_e . Kelemahan ini diperbaiki oleh ilmuwan fisika dari Amerika Robert Andrews Millikan melalui metoda *Millikan's experiments*, yang menghasilkan harga perbandingan tersebut dan memperoleh harga muatan elektron, e dan massa elektron, m_e . Percobaan Millikan ini menggunakan tetesan minyak yang diberikan arus listrik menunjukkan bahwa tetesan minyak memiliki muatan e, yang merupakan kelipatan, (n), dari muatan elektron, Sehingga muatan elektron yang digunakan sekarang adalah:

$$e \approx n \times 1,5924 x 10^{-19} C$$

= -1,602177310⁻¹⁹ C (1.16)

dimana harga *n* di atas adalah sekitar:

$$n = 1,006139984$$

 ≈ 1 (1.17)

Massa elektron dihitung dari hasil percobaan Thomson dan Millikan, yaitu dari rasio massa elektron terhadap muatan elektron (Thomson) dan muatan elektron (Millikan)²:

$$m_e = (rasio massa terhadap muatan)x(muatan)$$

= $(6x10^{-12}kgC^{-1})(1,5924x10^{-19}C)$
= $9,1093819x10^{-31}kg$
= $5,485799x10^{-4}u$ (1.18)

² Robert J. Silbey. *Physical Chemistry*. John Wiley and Sons, Inc., fourth edition, April 2005. ISBN Ebooks Chemical Engineering/238197077030

Massa elektron ini adalah yang paling sering digunakan pada masa sekarang yaitu 9,109390 $x10^{-31}kg$ atau dengan satuan atom menjadi 5,485799 $x10^{-4}u$.

1.1.7 Konsep Sinar Kanal Rutherford

Adalah Ernest Rutherford, pada tahun 1911, yang membuat riset yang terkenal yaitu *Rutherford canal rays*. Melalui riset ini maka difahami adanya fenomena partikel bermuatan positif dalam setiap atom, kemudian mereka menyebutnya sebagai *nuclei*, atau +Ze. Dalam penjelasan lebih lanjut *Z* dikenal sebagai *atomic number* dari suatu unsur.

Rutherford dan *co-workers*nya memberi definisi dari inti atom ini yaitu: *proton* dan *neutron*. Proton sebagai partikel bermuatan positif dengan massa, yang lebih besar sekitar seribu kali dari massa elektron, sebesar:

$$m_{proton} = 1,67262x10^{-27} kg$$
 (1.19)

dan netron sebagai partikel yang tidak bermuatan namun bermassa sama dengan proton, lihat skema eksperimen Rutherford pada Gambar 1.16.

Gambar 1.15: Ernest Rutherford penemu konsep inti atom. (Sumber: http://www.wellcomeimages.org)

Gambar 1.16: Skema eksperimen: *Ruther- ford canal rays*.

Gambar 1.17: Rutherford planetary model

Dengan berhasilnya menjelaskan adanya partikel-partikel dalam sebuah atom, maka Rutherford mengusulkan model atom yaitu *Ru-therford planetary model*, yang mana model planet adalah ciri dan masih terpengaruh dengan mekanika klasik. Pada model ini masih terlihat adanya lintasan elektron yang mengelilingi inti atom dengan lintasan tertentu dan tanpa dasar perhitungan orbit secara matematik (Lihat Gambar 1.17).

³ F.R.S. E. Rutherford. *The Scattering of alpha and betta Particles by Matter and the Structure of the Atom.* Philosophical Magazine, vol. 21 edition, 6 1911. ISBN http://dbhs.wvusd.k12.ca.us/Chem-History/Rutherford-1911/Rutherford-1911

Gambar 1.18: Model permukaan energi potensian hasil penyelesaian persamaan 1.20

Gambar 1.19: Marie Skłodowska Curie, penemu konsep proton dan netron. (Sumber: http://www.rsc.org/diversity)

Secara matematis hasil rumusan Rutherford, suatu Energi potensial dari elektron yang mengelilingi inti atom , yaitu³:

$$V = Ne\left(\frac{1}{r} - \frac{3}{2R} + \frac{r^2}{2R^3}\right)$$
(1.20)

Persamaan 1.20 ini menghasilkan bentuk maka bentuk energi potensial seperti yang tampak pada Gambar 1.18. Pada bentuk potensial energi ini, maka elektron akan terjadi hal sebagai berikut:

- 1. Secara matematis, persamaann 1.20 ini menghasilkan model energi tunggal yang tanpa sekat-sekat energi.
- 2. Elektron akan memutar-mutar dan mendekati inti atom dan akan hilang secara kontinu dan memancarkan radiasi.
- 3. Tidak menghasilkan orbit elektron dan akan kehilangan energinya.
- 4. Elektron akan terperangkap oleh inti atom.

Hal ini disebabkan tidak adanya sekat atau tingkat tahapan energi. Hal ini tidak sesuai dengan fakta eksparimen, dimana elektron tetap berada pada daerah sekitar inti dan tidak kehilangan energi elektron dari suatu atom.

Walaupun konsep model atom Rutherford ini ada sisi kelemahannya khususnya energi elektron yang berharga tunggal serta tidak bisa diberlakukan untuk model atom, namun jasanya tentang konsep inti atom sangat berguna bagi kajian ilmu kimia. Pada tahun 1908, Rutherford dianugerahi hadiah Nobel bidang Kimia atas kontribusinya dalam menjelaskan adanya inti suatu atom dan terapan model inti atom pada suatu molekul/senyawa kimia.

Model inti atom Rutherford ini akan diperjelas lagi oleh koleganya yang bernama Marie Skłodowska Curie, yaitu bahwa inti atom adalah mengandung dua partikel utama yaitu proton dan netron.

1.1.8 Pertikel radiasi Curie

Marie Skłodowska Curie atau Curie, adalah ilmuwan fisika wanita yang berhasil mengungkap kandungan di dalam inti suatu atom. Curie menjelaskan bahwa inti atom terdiri dari partikel elementer proton dan netron. Proton adalah partikel elementer yang bermuatan positif sedangkan netron adalah partikel elementer yang tidak bermuatan atau netral. Kata netron berasala dari netral.

Curie meneliti tentang zat radioaktif melalui inti atom uranium (U) dan thorium (Th), dengan mengukur sifat radioaktivitasnya. Dari penelitian inilah Curie menjelaskan bahwa sifat radioaktif suatu atom adalah karena adanya peluruhan inti atom yaitu proton dan netron dari atom uranium dan thorium. Curie kemudian meneliti banyak atom yang bersifat radioaktif lainnya.

Kelemahan dari ketiga model atom di atas (Maxwell, Thomson, dan Rutherford) adalah hanya mampu menjelaskan tentang cahaya, energi, frekuensi dan panjang gelombangnya serta model atom dengan harga energi tunggal atau kontinu.

1.2 Selayang Pandang Awal Era Modern

Pemecahan masalah kelemahan konsep elektron, dan atom di atas menjadi awal masuknya era modern atau era kuantum, dimana hukumhukum Newton yang menjadi dasar semua gerak materi menjadi tidak berlaku bila membahas masalah cahaya, elektron dan atom.

- **Berdiri:** A. Piccard, E Henriot, P Ehrenfest, E.D. Herzen, T.H.D.E Donder, E. Schrödinger, E. Verschaffetl, W. Pauli, W Heisenberg, R.H. Fowler, L. Brillouin.
- **Duduk Tengah:** P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L.V. de Brogliè, M. Born, N. Bohr.
- Duduk Depan: I. Langmuir, M. Planck, Madame Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch.E. Guye, C.T.R. Wilson, O.W. Richardson.

Gambar 1.20: Pertemuan ilmuwan fisika modern di Kota Solvay, Italia, 1927. (Sumber: https://mostlyphysics.wordpress.com)

Gambar 1.21: Jembatan antara era klasik menuju era kuantum

Gambar 1.22: Diskusi ilmiah oleh Planck dan Einstein. (Sumber: http://astrocanada.ca)

Era Newton tersebut diabadikan sebagai era klasik, kerena mekanika Newton menjadi gugur bila diterapkan pada konsep cayaha, dan elektron. Pasca era klasik membutuhkan konsep tentang cahaya, energi, frekuensi dan panjang gelombangnya serta model atom dengan harga energi terkuantisasi atau diskontinu dan bukan harga energi tunggal atau kontinu.

Memasuki masa awal era kuantum, atau lebih dikenal sebagai era modern tersebut, para ilmuwan fisika modern sering berkumpul untuk konferensi atau seminar internasional, salah satunya di Kota Solvay Italia tahun 1927, (Lihat Gambar 1.20).

Pertemuan Solvay telah membahas masalah-masalah yang tidak bisa dipecahkan dengan hukum-hukum fisika klasik. Sampailah pada kesimpulan bahwa penjelasan model atom tidak lagi menghasilkan energi atom yang kontinu tetapi energi atom adalah diskontinu atau energi terkuantisasi.

Salah satu pembahasan pertemuan Solvay di atas adalah bahwa stabilitas suatu atom dan eksitenti ikatan kimia dapat dijelaskan hanya ketika teori mekanika kuantum telah dikembangkan. Bila mekanika klasik sukses menjelaskan dunia makroskopi misal orbit tatasurya dan galaksi, maka mekanika kuantum dapat menjelaskan dunia mikroskopi misal model orbital atom, molekul dan partikel dasar. Mekanika kuantum didasari oleh dua kunci percobaan yang menjelaskan:

1.2.1 Penelitian dasar energi terkuantisasi

Penelitian dasar energi terkuantisasi menjelaskan bahwa sistem mikroskopi tidak memiliki batas energi tetapi energi terdiri dari diskrit atau energi terkuantisasi atau juga disebut energi kuantum. Ungkapan ini dipelopori oleh tiga peneliti utama, dan akan dijelaskan lebih lanjut pada Bab 2, yaitu:

- 1. Max Planck melalui *Planck's radiation law,* yang menjelaskan konsep energi terkuantisasi dalam radiasi semua panjang gelombang elektromagnetik daerah Maxwell.
- 2. Albert Einstein melalui *Einstein photoelectric effect*, yang menjelaskan bahwa dalam atom terdapat tingkat energi potensial elektron yang berbada-beda dimana elektron akan tereksitas bila menyerap energi yang cukup melampaui energi kinetiknya.
- 3. Niels Bohr melalui *Bohr atomic model*, yang menjelaskan bahwa untuk atom hidrogen (H) yang hanya memiliki satu inti atom dan satu elektron, maka elektron tersebut dapat berada dalam tingkat energi tertentu mulai dari tingkat energi paling dasar (*ground state*) hingga ke tingkat energi eksitasnya (*excited state*).

1.2.2 Penelitian dasar mekanika kuantum

Penelitian dasar mekanika kuantum menjelaskan bahwa partikel mikroskopi tidak mengikuti arah/trayektori terdefinisi, tetapi dijelaskan melalui persamaan statistika yang memprediksikan *probability* atau kebolehjadian menemukan partikel pada suatu lokasi partikel, yang kemudian dikenal sebagai mekanika kuantum (*quantum mechanics*). Ungkapan ini dipelopori oleh empat peneliti utama, dan akan dijelaskan lebih lanjut pada Bab 3, yaitu:

- Louis de Brogliè melalui *de Brogliè waves and postulate*, yang menjelaskan bahwa panjang gelombang elektromagnetik memiliki sifat dua sifat yaitu bisa sebagai cahaya dan sebagai partikel, kemudian hal ini dikenal sebagai dualisme panjang gelombang.
- 2. Werner Heisenberg melalui *Heisenberg uncertainty principle*, yang menjelaskan bahwa kedudukan partikel yang terukur panjang gelombangnya adalah tidak dapat dipastikan posisinya.
- 3. Erwin Schrödinger melalui *Schrödinger equation*, yang menjelaskan kebolehjadian menemukan partikel serta tingkat energi partikel itu sendiri dimana ini sebagai jawaban atas prinsip ketidakpastian Heisenberg yang ada kepastian atas posisi suatu partikel. Percobaan Schrödinger juga dianggap sebagai "muara"fisika kuantum.
- 4. Wolfgang Pauli melalui *Pauli Exclusion Principle*, yang menjelaskan tentang konsep kedudukan pasangan elektron yang memiliki *spin* yang berbeda dalam satu keadaan energi suatu atom atau molekul

Pada penelitian dasar mekanika kuantum ini, maka persamaan Schrödinger inilah yang menjadi persamaan yang sangat berguna dan menjadi inti dari perkembangan ilmu kimia kuantum, diantaranya:

- 1. Persamaan Schrödinger sangat berguna dalam menjelaskan banyak fenomena kimia dan fisika (Bab 4).
- 2. Persamaan Schrödinger juga menjadi dasar pada penyusunan orbital atom hidrogen dan tingkat energi atom hidrogen (Bab 5).
- Persamaan Schrödinger juga menjadi dasar pada penyusunan orbital atom bukan hidrogen dan tingkat energi atom bukan hidrogen (Bab 6).
- Persamaan Schrödinger juga menjadi dasar pada penyusunan orbital molekul dan penjelasakan ikatan molekul sederhana hingga molekul lebih rumit (Bab 7).

Gambar 1.23: Diskusi ilmiah antara oleh Bohr, Heisenberg dan Pauli. (Sumber: http://astro-canada.ca)

1.3 Kemampuan Terkini Era Modern

Hasil penelitian para ilmuwan di atas menghasilkan banyak ragam aplikasinya. Mulai dari kemajuan sain dan teknologi yang berguna bagi kehidupan manusia, baik berupa penelitian matrial baru maupun instrumentasi laboratorium yang secara berkelanjutan menghasilkan temuan-temuan baru, serta didukung dengan kemajuan teknologi komputasi dalam memprediksikan material baru di masa depan. Hingga mewujudkan mimpi ilmuwan yang ingin menyentuh sebuah atom atau molekul.

1.3.1 Instrumentasi Spektroscopi Molekul

Penerapan ilmu fisika dan kimia kuantum pada masa awal era modern, salah satunya, adalah maraknya pembuatan instrumentasi spektrometer yang bersesuaian dengan besarnya panjang gelombang foton dan hasil respon interaksi foton tersebut dengan elektron, atom atau molekul, seperti yang diungkap dalam Gambar 1.24.

Alat instrumentasi ini adalah aplikasi ilmu fisika modern, seperti yang terlihat pada Gambar 1.24 di atas, dan sangat penting dalam karakterisasi suatu atom, molekul berdasarkan eksitasi elektron pada tingkat energi tertentu dengan panjang gelombang tertentu, dan akan dijelaskan lebih lanjut pada Bab 8, diantaranya:

Gambar 1.24: Spektrum elektromagnetik Maxwell pada era modern. 1. NMR (*Nuclear Magnetics Resonances*), instrumen ini bekerja menggunakan panjang gelombang sinar Radio yaitu pada daerah panjang gelombang, λ , dari 300 mm sampai dengan 100 km, dan dengan energi dari $1, 2 \times 10^{-11}$ eV sampai dengan 4×10^{-6} eV. Sinar radio ini yang diperkuat oleh adanya medan magnet memberi respon tingkat-tingkat energi spin-spin pada proton (H⁺) atau isotop atom karbon (¹³C).

NMR dapat melakukan karekterisasi dengan puncak spektra dari spin proton H^+ dalam gugus suatu senyawa kimia organik. Sebagai contoh adalah analisa *spin* proton yang dimiliki oleh molekul fenol (C₆H₆O), pada Gambar 1.25, dimana terdapat puncak *Spin* dari 5 proton (H⁺) pada daerah *ring* aromatik dan 1 puncak dari proton milih gugus (-OH)

Perkembangan NMR berlanjut hingga memiliki kemampuan lebih yaitu:

- (a) NMR 3 Dimensi, memperbaiki kemampuan NMR sipn proton di atas
- (b) MRI, mendeteksi spektra spin proton (H⁺) yang dihasilkan dari sel kanker
- 2. MMS (*Microwave Molecular Spectroscopy*) instrumen ini menggunakan panjang gelombang pendek atau radiasi *microwave*, yaitu pada daerah panjang gelombang, λ , dari 0,3 mm sampai dengan 300 mm, dan dengan energi dari 4×10^{-6} eV sampai dengan 4×10^{-3} eV. Sinar *microwave* ini memberi respon berupa tingkat-tingkat energi rotasi pada suatu molekul.

Sebagai contoh, rotasi molekul Karboaldehid Siklopropana (*Cyclopropane carboxaldehyde*), yang menghasilkan molekul kiral pada posisinya masing-masing pada kedua tingkat energi rotasi tertingginya, seperti yang tampak pada Gambar 1.26.

MMS dapat melakukan karekterisasi dengan puncak tingkat-tingkat energi spektra dari setiap rotasi molekul dan dapat juga melakukan pemisahan molekul berdasarkan perbedaan spektra rotasinya masing-masing khususnya pada jenis rotasi senyawa kimia organik. Spektra MMS bisa berdasarkan:

- (a) Intensitas berbanding waktu, dimana setiap molekul menghasilkan watu yang berbeda pada rotasi molekulnya
- (b) Intensitas berbanding sudut molekul, dimana pada spektra ini dikhususkan untuk molekul tunggal dan mempelajari setiap rotasi gugus molekulnya.

Gambar 1.25: Spektra dari spin proton H⁺ pada gugus ring aromatik dan gugus -OH dalam molekul fenol.

Gambar 1.26: Spektra rotasi molekul *Cyclopropane carboxaldehyde* (Sumber: ht-tp://www.rsc.org/chemistryworld/ Ne-ws/2008/May/16050801.asp).

Gambar 1.27: Spektra vibrasi molekul etanol (Sumber: http://www.chemguide.co.uk /analysis/ ir/interpret.html).

Gambar 1.28: Contoh analisa beberapa logam pada *Atomic Absorption Spectroscopy*, (Sumber:http://www.sdmiramar.edu).

Gambar 1.29: Spektra eksitasi elektron molekul $C_7H_8O_3S$ (Sumber: http://www2. chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/uv-vis/spectrum.htm).

3. FTIR (*Fourier Transform Infrared Spectroscopy*) instrumen ini menggunakan panjang gelombang infra merah (IR) atau radiasi *infra red*, sinar ini memberi respon berupa tingkat-tingkat energi vibrasi setiap gugus-gugus pada suatu molekul.

Sebagai contoh adalah analisa tingkat energi vibrasi yang dimiliki oleh molekul etanol (C_2H_6O), pada Gambar 1.27, dimana terdapat puncak yaitu:

- (a) Vibrasi gunting pada daerah: 3300-3500 cm^{-1} dari gugus alkohol -OH, 2850-3000 cm^{-1} dari gugus metil -CH₃ dan metilena -CH₂-
- (b) Vibrasi tarik-ulur pada daerah: 1420 cm^{-1} dari gugus metil -CH₃ dan 1350 cm^{-1} dari gugus metilena -CH₂- serta 1010 cm^{-1} dari gugus alkohol -COH
- 4. AAS (*Atomic Absorption Spectroscopy*) Metode AAS berprinsip pada absorbsi cahaya oleh atom, atom-atom menyerap cahaya tersebut pada panjang gelombang tertentu, tergantung pada sifat unsurnya. AAS adalah suatu alat yang digunakan pada metode analisis untuk penentuan unsur-unsur logam dan metalloid yang pengukurannya berdasarkan penyerapan cahaya dengan panjang gelombang tertentu oleh atom logam dalam keadaan bebas. Metode ini sangat tepat untuk analisis zat pada konsentrasi rendah.

Teknik ini mempunyai beberapa kelebihan dibandingkan dengan metode spektroskopi emisi konvensional. AAS memiliki range ukur optimum pada panjang gelombang 200-300 nm. Untuk analisis kualitatif, metode fotometri nyala lebih disukai dari AAS, karena AAS memerlukan lampu katoda spesifik (*hallow cathode*). Kemonokromatisan dalam AAS merupakan syarat utama. Suatu perubahan temperature nyala akan mengganggu proses eksitasi sehingga analisis dari fotometri nyala berfilter. Dapat dikatakan bahwa metode fotometri nyala dan AAS merupakan komplementer satu sama lainnya.

5. UV-VIS Spectroscopy, instrumen ini menggunakan panjang gelombang pada daerah ultra-violet hingga sinar tampak (UV-VIS), sinar ini memberi respon berupa eksitasi elektron pada tingkat energi elektron valensi atau satu tingkat di bawah elektron valensi pada suatu molekul.

Sebagai contoh adalah analisa tingkat energi eksitasi elektron yang dimiliki oleh molekul ($C_7H_8O_3S$), pada Gambar 1.29, dimana terdapat puncak yaitu:

(a) Puncak pada daerah: 245 *nm* dari eksitasi elektron π pada gugus enon, ikatan kimia warna *orange*.
- (b) Puncak pada daerah: 300 *nm* dari eksitasi elektron π pada gugus diena, ikatan kimia warna *hijau*.
- 6. XRD (*X-Ray Diffraction*), instrumen ini menggunakan panjang gelombang pada daerah sinar X, sinar ini memberi respon berupa eksitasi elektron pada tingkat energi elektron yang dekat dengan inti atom pada suatu atom dari padatan.

Sebagai contoh adalah analisa tingkat energi eksitasi elektron yang dimiliki oleh padatan Hf_3N_4 , pada Gambar 1.30, dimana terdapat puncak yaitu:

- (a) Puncak-puncak 2θ daerah sinar X.
- (b) Puncak-puncak 2θ daerah sinar X.

1.3.2 Kimia Komputasi

Penerapan ilmu fisika kuantum yang lain adalah ilmu kimia komputasi yang menerapkan hukum-hukum fisika kuantum untuk memprediksikan sifat-sifat kimia dan fisika secara molekular dengan menyelesaikan persamaan Schrödinger dengan perhitungan pada komputer atau komputasi, yaitu:

$$\hat{H}\Psi = E\Psi \tag{1.21}$$

- Penggunaan komputer memainkan peranan yang sangat penting dalam perkembangan ilmu kimia pada khususnya dan ilmu pasti alam pada umumnya. Lazimnya, ilmu pasti alam kuhususnya ilmu kimia ditunjukkan oleh kaitan antara eksperimen kimia dan teori.
- Dalam eksperimen kimia, sistem yang di pelajari diukur dengan peralatan eksperimen di laboratorium dan hasilnya dinyatakan dalam bentuk pemodelan/produk kimia.
- Dalam kimia teori/kuantum, model tersebut umumnya disusun dalam bentuk himpunan persamaan matematik atau persamaan Schrödinger.
- 4. Dalam banyak hal, pemodelan persamaan Schrödinger ini diikuti oleh penyederhanaan permasalahan dalam rangka menghindari kompleksitas perhitungan dan diselesaikan melalui perhitungan komputasi.
- 5. Sehingga dapat menjelaskan model molekul dari sistem makroskopis, seperti sistem larutan, protein, dan yang lainnya.

Masalah ini akan dijelaskan lebih lanjut pada Bab 9.

Gambar 1.30: Spektra eksitasi elektron dari atom dalam padatan Hf₃N₄ (Sumber: http://www.esrf.eu/home/news/spotlight).

Gambar 1.31: Model orbital molekul C_6H_6 hasil perhitungan kimia komputasi.

Gambar 1.32: Hasil citra STM: Susunan huruf IBM (*International Business Machines*) dari atom (Sumber: http://education.mrsec.wisc.edu/130.htm).

1.3.3 Scanning Tunnelling Microscopy

Akhirnya di era modern sampailah pada era nano atau nano-teknologi, dinama dengan mengaplikasikan persamaan Schrödinger *box* 1 dimensi dapat mewujudkan suatu konsep mikroskop baru yang dapat menggeser satu buah atom.

Contoh perusahaan komputer Raksasa IBM, dapat membuat model *corral* huruf "IBM" dari atom-atom Cr, seperti yang tampak pada Gambar 1.32.

Bagaimanapun juga mekanika kuantum adalah hasil eksperimen manusia, sehingga kita harus membangun intuisi khusus untuk memahami sistem kuanta energi.

1.4 Soal-soal Bab 1

- 1.1 Emisi cahaya gamma (γ) oleh unsur ⁶⁰Co, dalam dunia kedokteran, dapat digunakan dalam perlakuan radiasi kangker kulit. Cahaya ini memiliki frekuensi sebesar 2,83x10²⁰s⁻¹. Hitunglah panjang gelombangnya, λ , baik dalam satuan meter ataupun Angstroms? (Gunakan: kecepatan cahaya, *c*=2,9979x10⁸ms⁻¹)
- 1.2 Jarak antara ikatan berwarna dalam suatu gelombang kimia dari suatu reaksi kimia berosilasi terukur adalah 1,2 cm, dan selalu menghasilkan gelombang kimia baru setiap 42 detik. Hitunglah kecepatan propagasi dari gelombang kimia tersebut?
- 1.3 Pada Teori Gelombang Kimia Maxwell, Polanyi, I., seorang ahli kimia osilasi, meneliti hewan kunang-kunang menghasilkan gelombang kimia pada proses metabolisme kimianya, dimana jarak antara hasil metabolisme bercahaya dengan redup adalah 7x10⁻¹cm, dan selalu menghasilkan reaksi kimia berosilasi baru setiap 0,5 detik. Hitunglah kecepatan gelombang kimia kunang-kunang tersebut?
- 1.4 Pada Teori Radiasi Kimia Maxwell, Zewail, A. H., seorang ahli *femtochemistry*, meneliti reaksi individual antara CH₄ dengan O₂. Molekul baru berupa CO₂ dan H₂O diamati dengan menggunakan laser yang memiliki panjang gelombang 488 nm. Hitunglah berapa frekuensi laser tersebut?

2 Energi Terkuantisasi

RISET dasar tentang adanya fenomena energi yang terkuantisasi telah dilakukan oleh baik oleh fisikawan klasik maupun fisikawan modern. Titik beda antara fisikawan klasik dengan fisikawan modern adalah terletak pada keberhasilan penggunaan matematika untuk menjabarkan energi terkuantisasi atau tidak terkuantisasi.

Beberapa ilmuwan fisika klasik yang berusaha menjelaskan fenomena radiasi *blackbody* suatu benda atau zat padat bila dipanaskan Gambar 2.1: Area Riset Dasar Energi Atom.

Gambar 2.2: Jožef Štefan dan Ludwig Eduard Boltzmann (http://alunosonline.uol. com.br/fisica/leistefan-boltzmann.html).

Gambar 2.3: John William Strutt bergelar 3rd Baron Rayleigh dan Sir James Hopwood Jeans (Sumber: https://losmundosdebrana.wordpress.com/ radiacion-de-cuerpo-negro-ycatastrofe-ultravioleta/).

Gambar 2.4: Wilhelm Carl Werner Otto Fritz Franz Wien (Sumber: http://www. mlahanas.de/Physics/Bios/ WilhelmWien.html).

maka melalui konsep gelombang elektromagnetik Maxwell. Ada empat kelompok ilmuwan besar tersebut, diantaranya:

1. Stefan-Boltzmann Radiation Law

Jožef Štefan dan Ludwig Eduard Boltzmann bersama-sama menyampaikan hukum radiasi Stefan-Boltzmann melalui rumus sebagai berikut:

$$R = \sigma e T^4 \tag{2.1}$$

dimana *R* adalah radiasi cahaya, σ adalah tetapan Stefan-Boltzmann yaitu sebesar 5,67.10⁻⁸ $Jm^{-2}K^{-4}s^{-1}$, dan *e* adalah parameter emisi (0 < *e* < 1), artinya bila benda itu sangat hitam, maka *e*= 1 (hitam sempurna). Pada masa awal tahun 19-an, terdapat banyak riset terhadap fenomena radiasi *blackbody* ini, yang menghasilkan radiasi elektromagnetik. Namun riset dari fisikawan klasik ini masih belum menghasilkan hukum-hukum yang dapat menjelaskan fenomena radiasi.

2. Rayleigh-Jeans Radiation-Prediction Law

Dua Fisikawan Inggris John William Strutt bergelar 3rd Baron Rayleigh dan Sir James Hopwood Jeans merumuskan hukum radiasi Rayleigh-Jeans, yang masih menggunakan kaidah-kaidah mekanika klasik, mengusulkan hukum prediksi pancaran cahaya *blackbody*:

$$\rho(\nu, T)d\nu = \frac{8\tau kT}{c^3}\nu^2 d\nu \tag{2.2}$$

hukum ini gugur, karena tidak berhasil menjelaskan radiasi pada tingkat radiasi tinggi, yaitu pada panjang gelombang yang sangat kecil atau pada energi yang tinggi menghasilkan intensitas cahaya/radiasi yang tidak berhingga. Kegagalan hukum ini diabadikan sebagai *UV-catastrophe* atau "malapetaka Ultraviolet", yaitu pada $t \rightarrow \sim$ atau $\lambda \rightarrow 0$.

3. Wien Displacement Law

Wilhelm Carl Werner Otto Fritz Franz Wien mengusulkan persaman hukum radiasi blackbody:

$$\lambda_{maks}T = 2,9x10^{-3}mK \tag{2.3}$$

Harga 2, $9x10^{-3}$ merupakan tetapan Wien. Hukum ini mampu menjelaskan suhu permukaan suatu bintang, misal: Kita bisa mengukur berapa temperatur permukaan matahari dan bintang Sirius, dimana pada pengamatan menghasilkan data bintang:

- (a) Matahari, λ_{max} = 500 nm, maka temperatur permukaan matahari adalah T_{matahari}= 5,8x10⁹K.
- (b) Sirius, λ_{max} = 2600 Å, maka temperatur permukaan matahari adalah T_{sirius}= 1,1x10¹¹K

Kegagalan riset tentang energi cahaya di atas diperbaiki oleh tiga fisikawa utama, yaitu Planck melalui *Planck's radiation law*, Einstein melalui *Einstein photoelectric effect* dan Bohr melalui *Bohr atomic model*.

2.1 Hukum Radiasi *Blackbody* Planck

Max Karl Ernst Ludwig Planck, pada tahun 1901, mengusulkan *Planck's radiation law*, melalui hukum ini kita diperkenalkan bahwa bentuk energi itu tidak tunggal tetapi terbagi-bagi dan terkuantisasi. Penemuan energi terkuantisasi dari elektron ini dianugerahkan hadia Nobel Fisika tahun 1918. Planck menjelaskan perbandingan pemahaman tentang energi partikel, dimana model energi radiasi Planck menunjukkan adanya energi yang terkuantisasi.

Planck juga menjelaskan bahwa model energi klasik masih bergantung pada energi berharga tunggal. Sehingga perlu ide-ide jenius agar menghasilkan hukum-hukum yang sesuai dengan data eksperimen.

2.1.1 Planck's radiation law: Intuisi jenuis munculnya tetapan Planck

Pada penentuan hukum radiasi ini, Planck menggunakan konsep radiasi Maxwell dengan cara memperluas konsep Maxwell. Konsep radiasi Maxwell yang diperluas ini dianggap mampu mengatasi masalah "malapetaka UV"di atas¹.

Ide dari Planck adalah melalui tahapan berikut:

- Memperbaiki konsep elips maxwell menjadi elips yang berlapislapis, dimana Planck mengusulkan postulat bahwa selisih antar elips adalah sebesar *h*, dimana *h* adalah suatu satuan luas yang berharga tetap. Gambar 2.6 menggambarkan ilustrasi perluasan konsep Maxwell:
- 2. Energi radiasi Maxwell terkoreksi menjadi energi radiasi Planck:

$$\varepsilon = \frac{p^2}{2m} + \frac{kq^2}{2} \Longrightarrow \varepsilon_n = \frac{p_n^2}{2m} + \frac{kq_n^2}{2}$$
 (2.4)

3. Planck menjelaskan bahwa bentuk Planck-Ellips akan memotong

Gambar 2.5: Max Karl Ernst Ludwig Planck, penemu konsep energi terkuantisasi (Sumber: http://www.wikiwand.com/fr/Max-Planck).

¹ Anatol Malijevsky. *Physical Chemistry in Brief.* Faculty of Chemical Engineering, first edition, September 2005 pada sumbu pada

$$p_n = \pm \sqrt{2m\varepsilon_n}$$

$$q_n = \pm \sqrt{\frac{2\varepsilon_n}{k}}$$
(2.5)

4. Pada penurunan ini, Planck menggunakan konsep gerakan osilator harmonik, dimana frekuensi osilator harmonik untuk elips ke *n* adalah:

$$\nu_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{2.6}$$

5. Ide jenius Planck adalah menjelaskan intuisi tentang adanya selisih antara dua elips adalah sebesar suatu tetapan luas, katakanlah sebesar ΔA , dan bila luas elips ke *n* adalah:

$$A_n = 2\pi p_n q_n \tag{2.7}$$

6. Selanjutnya dengan memasukkan harga p_n , q_n dan ν_n didapat harga luas elips Planck sebesar:

$$A_n \equiv 2\pi\epsilon_n \sqrt{\frac{m}{k}} = \frac{\epsilon_n}{\nu_n}$$
(2.8)

7. Dengan demikian selisih dari setiap luasan elips Planck adalah selisih dari luasan ke *n* terhadap luasan ke (*n*-1), sehingada di dapat:

$$\Delta \mathbf{A} = (\mathbf{A}_n - \mathbf{A}_{n-1}) \tag{2.9}$$

8. Dengan demikian maka Planck memperoleh besaran luasan elips Planck yaitu:

$$\Delta A = \frac{\varepsilon}{\nu} \tag{2.10}$$

Gambar 2.6: Ilustrasi perluasan konsep

energi elips Maxwell dan Planck.

Gambar 2.7: Max Karl Ernst Ludwig Planck, penemu ide jenius: $E = h\nu$ (http://www.intergalacticvault.com/maxplanck-founder-of-quantum-mechanics-1918-physics-nobel-prize-winner/).

 Kemudian oleh Planck harga ∆A ini ditulis sebagai "tinta emas" yang sangat bersejarah dengan lambang *h* atau **tetapan Planck**. Sehingga Planck memberi rumus era kuantum yang pertama yaitu:

$$\Delta A \equiv h = \frac{\varepsilon}{\nu} \tag{2.11}$$

10. Untuk energi osilator yaitu dengan besaran *e*V (*electron Volt*), maka untuk setiap perubahan energinya ($\Delta \varepsilon$) sangat bergantung terhadap perubahan frekuensinya (Δv) yaitu dengan hubungan berbanding lurus, dan dapat diturunan rumus:

$$\Delta \varepsilon \equiv -e\Delta \mathbf{V} = h\Delta \nu \tag{2.12}$$

11. Energi radiasi Planck menghasilkan model energi diskrit atau terkuantisasi dan dikenallah energi kuanta atau kuantum, dimana *n* adalah disebut juga sebagai tingkat-tingkat energi terkuantisasi. Untuk elips ke *n* didapat harga energi radiasi sebesar

$$\varepsilon_n = nh\nu$$

= 0, hv, 2hv, 3hv, ... (2.13)

Gambar 2.8: Perbandingan konsep energi klasik dengan energi Planck.

2.1.2 Penentuan harga tetapan Planck

dengan harga n = 0, 1, 2, 3, ...

Penentuan harga tetapan Planck (*h*) dapat dilakukan secara teoritis maupun secara eksperimen. Kedua cara ini akan menghasilkan harga tetapan Planck yang sama.

Untuk cara eksperimen, Planck menggunakan unsur litium (Li), sebagai media *blackbody*, yang diradiasikan dengan suatu berkas cahaya dengan panjang gelombang terukur, (λ), dari keadaan dasar n= 1 ke keadaan tereksitasi n= 2, dan menghasilkan data-data energi potensial, (*eVolt*), dan tertuang dalam Tabel 2.1.

Tabel 2.1: Data eksperimen *blackbody* pada unsur Li.

Tingkat energi ke- <i>n</i>	Energi Potensial (eVolt)	Panjang gelombang, λ (Å)
1	1.83	3000
2	0.80	4000

Melalui Persamaan 2.12, maka dapat diturunkan sebagai berikut:

$$\begin{array}{lll}
-e(V_1 - V_2) &= h(v_1 - v_2) \\
&= hc\left(\frac{1}{\lambda_1} - \frac{1}{v_2}\right) \\
\end{array} (2.14)$$

Sehingga didapat harga *h* sebagai berikut:

$$h = \frac{1.03Volt}{2.49x10^{24}Hz}e$$

= 6.626x10⁻²⁷Js (2.15)

Dengan demikian didapat harga tetapan Planck adalah 6.626×10^{-34} Js.

Sehingga dari hipotesa dan penentuan harga tetapan Planck di atas dapat menjelaskan kelemahan prediksi pancaran cahaya yang telah diusulkan Rayleigh-Jeans, dan mengusulkan hukum bahwa dalam *blackbody* bila dipanaskan, terdapat gerakan osilator antar atom yang mempunyai energi terkuantisasi.

Planck mengusulkan hukum radiasi *blackbody* sebagai koreksi untuk rumus Rayleigh-Jeans, sebagai:

$$\rho(\nu, T)d\nu = \frac{8\pi hc}{\lambda^5} \frac{d\lambda}{e^{\frac{hc}{\lambda T}} - 1}$$
(2.16)

dan menghasilkan hukum yang setara dengan Wien, yaitu pada harga λ_{max} :

$$\lambda_{maks}T = \frac{hc}{4.965k} \tag{2.17}$$

Dari hasil eksperimen Reyleigh-Jeans tampak pada gambar di atas bahwa rumus *Rayleieh-Jeans prediction law* tidak berlaku pada temperatur tinggi, karena akan menghasilkan harga intensitas yang takberhingga dan ini tidak mungkin. Kemudian bila rumus ini diberlakukan akan menghasilkan "bencana UV".

Sedangkan dari eksperimen Planck tampak pada gambar 2.10 di atas bahwa rumus *Planck's radiation law*, yang telah memasukkan harga tetapan Planck *h*, tetap berlaku pada temperatur yang tinggi, dan pada keadaan ini tetap menghasilkan harga intensitas yang berhingga.

Gambar 2.9: Tingkat energi elektromagnetik sinar tampak yang ditujukkan dengan perbedaan warna

Selanjutnya fisikawan lainnya meneruskan spektrum lain yang dihasilkan dari *blackbody* yaitu: sinar X dan sinar gamma (γ). Dimana spektrum di atas sinar UV (sinar X dan sinar gamma (γ)) tersebut tetap sesuai dengan hasil eksperimen bila menggunakan rumus yang diturunkan oleh Planck.

Gambar 2.10: Kurva radiasi blackbody: Rayleigh-Jeans, Wein dan Planck.

Ini adalah bukti bahwa rumus Planck adalah cocok dengan fakta untuk semua radiasi elektromagnetik Maxwell. Maka berarti bahwa tetapan Planck (h) adalah jembatan menuju era kuantum atau era modern.

Cahaya hijau dan biru akan berhasil mengeluarkan elektron dari permukaan lempeng Kalsium. Dalam kasus ini cahaya mana yang memiliki: (a). Frekuensi, v, terbesar? (b). Energi kinetik yang paling besar? (Gunakan: data dari spektrum elektromagnetik, kecepatan cahaya, c, tetapan Planck, $h = 6,626X10^{-34}$ Js dan massa elektron, $m_e = 9,11x10^{-31}kg$).

Jawab:

Dari data spektrum elektromagnetik Maxwell, yaitu didapat: (a). Frekuensi cahaya biru lebih besar dari frekuensi cahaya hijau $\lambda_{biru} < \lambda_{hijau}$ dan $\nu_{biru} > \nu_{hijau}$. (b). Dari hukum radiasi Planck, bahwa $E = nh\nu$, sehingga tampak bahwa energi berbanding lurus dengan frekuensi, sehingga semakin besar frekuensi suatu cahaya maka semakin besar energi kinetik cahaya tersebut. Jadi Energi kinetik cahaya biru lebih besar dari cahaya hijau. Contoh Soal 2.1: Tentang fenomena radiasi Planck.

Gambar 2.11: Albert Einstein, penemu konsep foton (Sumber: http://www.nytimes.com/topic/person/ albert-einstein).

Gambar 2.12: Fenomena Fotolstrik ilmuwan fisika klasik.

2.2 Konsep Fotolistrik Einstein

Albert Einstein pada tahun 1905 mengusulkan *Einstein photoelectric effect*, melalui konsep ini Einstein memperkenalkan energi Planck *hv* sebagai *photon* atau (*photo electronic*), yang menjelaskan bahwa elektron dalam suatu unsur memiliki energi kinetik yang terkuantisasi serta konsep energi disosiasi (*dissociation energy*).

Einstein mampu menjelaskan fenomena fisika, yang saat itu belum mampu diungkap oleh fisikawan, yaitu mengapa berkas cahaya merah tidak mampu melapaskan elektron dari suatu sampel lempeng sedangkan berkas cahaya biru mampu melepaskan elektronnya. Einstein menunjukkan bahwa cahaya biru lebih tinggi energinya dibandingkan cahaya merah.

Einstein menjelaskan perbandingan pemahaman tentang energi elektron: Model energi klasik bahwa energi adalah berharga tunggal menuju model energi Einstein dari proses fotolistrik yang menunjukkan energi adalah terkuantisasi. Einstein adalah fisikawan yang berhasil mengembangkan konsep relativistik suatu materi, dengan rumus yang sangat terkenal yaitu:

$$E = mc^2 \tag{2.18}$$

persamaan ini menjelaskan adanya sifat materi/partikel dari suatu cahaya. Yang memperjelas adanya sifat gelombang yang telah dikembangkan dengan baik oleh Maxwell. Dualisme sifat cahaya ini memberi intuisi pada Einstein untuk menjelaskan teori fotolistrik, dimana ilmuan fisika klasik tidak mampu menjelaskan hubungan antara emisi partikel dengan intensitas cahaya.

2.2.1 Pemahaman tentang hubungan foton dan elektron

Pengamatan fenomena, yang belum difahami fisikawan klasik, pada lempeng kristal kromium, Cr, dimana sinar merah pada intensitas tinggi tidak mampu melepas satu elektron tetapi sinar biru dapat melepas satu elektron pada intensitas yang sama. Penjelasan gambar ini adalah:

- 1. Elektron akan teremisi dari suatu kristal bila mempunyai frekuensi *the thresh-old frequency* yang cukup.
- Kenaikan harga intensitas cahaya hanya menyebabkan kenaikan bilangan emisi, tetapi tidak berpengaruh terhadap energi kinetik elektron.
- 3. Kenaikan fekuensi cahaya sangat berpengaruh terhadap energi kinetik elektron suatu kristal. Einstein menjelaskan masalah ini dengan

usulan adanya photon.

2.2.2 Pemahaman energi kinetik dan potensial elektron akibat adanya foton

Einstein menggunakan hukum Planck, $h\nu$ dan didapat rumus foton dalam keadaan bebas:

$$E_{foton} = h v_{foton} \tag{2.19}$$

Dalam menjelaskan fenomena foton yang "menabrak"suatu kristal, Einstein memasukkan ide berupa²:

1. Adanya fungsi kerja energi ikatan, yang dimiliki oleh suatu unsur yang dikenai foton, yaitu:

 $\Phi = h\nu_0 \tag{2.20}$

yang kelak dikenal sebagai energi disosiasi (dissociation energy).

2. Elektron yang dikenai cahaya memiliki kinetic energy

$$\varepsilon_{kin} = \frac{1}{2}m_e v_e \tag{2.21}$$

2.2.3 Model frekuensi elektron akibat adanya foton

Sehingga secara lengkap Einstein mengusulkan implementasi Hukum Kekekalan Energi terhadap konsep *Einstein photoelectronic effect*, pada yaitu melalui tahapan:

 Melalui konsep Hukum Kekekalan Energi, yaitu energi total adalah penjumlahan dari energi kinetik elektron, (ε_{kin}), dan energi potensial atau fungsi kerja energi ikatan, (Φ), yang dimiliki, dan didapat:

$$h\nu = \varepsilon_{kin} + \Phi$$
 (2.22)

2. Bila Persamaan 2.20 dimasukkan ke Persamaan 2.22, maka didapat harga penentuan model kinetika foton Einstein, yaitu:

$$\varepsilon_{kin} = h\nu - \Phi$$

= $h(\nu - \nu_0)$ (2.23)

Persamaan ini mengisyaratkan adanya hubungan linear antara energi kinetik elektron (ε_{kin}) dengan fungsi kerja elektron dalam ikatan logam/kristal (Φ). Hubungan linear ini dapat diterangkan melalui kurva maematika pada Gambar 2.13 dengan memperjelas hasil temuan tetapan Planck, *h*, sebagai gradien garis linearnya. ² Romain Elsair. *Fundamental of Chemistry*. bookboon.com, first edition, March 2012. ISBN 978-87-403-0105-2

Gambar 2.13: Kurva linear konsep Efek fotolistrik Einstein.

2.2.4 Persyaratan eksitasi elektron akibat adanya foton

Selanjutnya Einstein menjelaskan syarat batas kondisi energi elektron, melalui tahapan:

1. Untuk elektron yang tidak tereksitasi, didapat bahwa bila:

$$\Phi > h\nu \tag{2.24}$$

maka elektron tidak akan terlepas dari atom dan energi kinetik elektronnya lebih kecil dari batar energi, yaitu

$$\varepsilon_{kin} \ll 0 \tag{2.25}$$

 Penjelasan yang lebih luas dari konsep Einstein ini, yaitu elektron yang terlepas dari atomnya, juga dapat mengakibatkan fungsi kerja transisi elektronik ikatan logam/kristal, yaitu:

$$\Phi < h\nu \tag{2.26}$$

elektron dapat terlepas dari atom dan energi kinetik elektronnya lebih besar dari batar energi, yaitu

$$\varepsilon_{kin} \gg 0$$
 (2.27)

Penjelasan Einstein ini sangat penting dan mendasar untuk konsep mekanika kuantum untuk proses eksitasi suatu elektron, seperti yang tampak pada Gambar 2.14.

2.2.5 Tingkat energi terkuantisasi elektron

Ungkapan ini memberi pemahaman bahwa di dalam senyawa memiliki tingkat-tingkat energi sebesar n atau energi terkuantisasi ke-n bila dikenai suatu foton. Tingkat energi terkuantisasi eksitasi elektron dapat dijabarkan sebagai berikut:

1. Einstein menjelaskan bahwa suatu elektron bertransisi, yaitu dari keadaan *ground state* ke keadaan tereksitasi *excited state*:

$$\varepsilon_1 \to \varepsilon_2$$
 (2.28)

 Selanjutnya akan menghasilkan emisi suatu foton dengan frekuensi tetap. Dengan kata lain bahwa:

$$\Phi \equiv h\nu_0 = \varepsilon_1$$

$$\varepsilon_{kin} = \varepsilon_2$$
(2.29)

Gambar 2.14: Konsep Fotolistrik Einstein untuk dua tingkat energi foton.

3. Persamaan 2.23 menjadi:

$$\varepsilon_2 = h\nu - \varepsilon_1 \tag{2.30}$$

4. Sehingga didapat besaran frekuensi foton Einstein, yaitu:

$$\nu = \frac{(\varepsilon_2 - \varepsilon_1)}{h} \tag{2.31}$$

5. Dari Gambar 2.15 dapat dijelaskan bahwa energi foton yang berasal dari sinar merah tidak cukup besar untuk melampaui tingkat energi (ε_2) , dan hanya menghasilkan energi vibrasi ikatan antara inti atom dengan elektronnya. Kondisi ini tidak menghasilkan emisi foton cahaya merah. Sedangkan untuk energi foton yang berasal dari sinar biru adalah cukup untuk melampaui tingkat energi (ε_2) , dan menghasilkan emisi foton cahaya biru serta mengakibatkan elektron tereksitasi keluar dari unsurnya.

Sebuah cahaya mempunyai panjang gelombang $\lambda = 2,5x10^{-7}m$ berhasil keluar dari lempeng kristal kromium (Cr) dalam proses fotolistrik. Bila fungsi kerja, $\Phi = hv_0$, yang dimikili oleh lempeng adalah 7,21 $x10^{-19}J$, maka tentukan: (a). Energi kinetik maksimum, $\frac{1}{2}m_ev^2$, dari emisi fotolistrik ini? (b). Kecepatan elektron, v_e , yang memiliki energi kinetik maksimum ini?

Jawab:

Dari persamaan spektrum Maxwell-Lorenzt, didapat frekuensi cahaya adalah:

$$\nu = \frac{c}{\lambda} = \frac{2,9979 \times 10^8 m s^{-1}}{2,5 \times 10^{-7} m} = 1,19916 \times 10^{15} s^{-1}$$

Dari teori efek fotolistrik Einstein, yaitu:

$$\varepsilon_{kin} = h\nu - \Phi = (6,626x10^{-34} Is)(1,19916x10^{15} s^{-1}) - 7,21x10^{-19} I$$

Jadi energi kinetik maksimum yang diperlukan oleh proses fotolistrik ini adalah 7,356x10⁻²⁰J (b). Kecepatan elektron didapat dari harga energi kinetiknya, $\varepsilon_{kin} = \frac{1}{2}m_e v_e^2$, sehingga didapat:

$$v_e = \sqrt{\frac{2\varepsilon_{kin}}{m_e}} = \sqrt{\frac{7,356x10^{-20}J}{9,11x10^{-31}kg}} \approx \sqrt{16x10^{10}m^2s^{-2}} = 4,0x10^5ms^{-1}$$

Jadi kecepatan elektron (v_e) keluar dari lempeng kristal adalah $4x10^5ms^{-1}$

Gambar 2.15: Konsep eksitasi dan emisi elektron untuk da tingkat energi.

Contoh Soal 2.2: Tentang fenomena foton Einstein.

2.2.6 Foton Einstein dan Tingkat Energi Atom

Einstein melanjutkan penjabaran persamaan linear di atas untuk proses emisi suatu foton dari atom dalam unsur. Riset foton Einstein dibuktikan secara eksperimental oleh fisikawan Franck-Hertz untuk mempelajari efek foton terhadap tingkat-tingkat energi atom suatu unsur dengan menggunakan sinar X.

Data eksperimen Franck-Hertz tersebut adalah data yang didapat dari eksperimen berupa harga tingkat energi ke-n untuk energi potensial, $(\varepsilon_{bind,n})$ dan energi kinetik, $(\varepsilon_{kin,n})$, masing-masing dalam satuan (*eVolt*) adalah:

label 2.2: Data eksperimen Franck-Hertz pada unsur Cr.	Data ke-n	Energi potensial (eVolt)	Energi kinetik (eVolt)
	1	-21,6	1232,0
	2	-48,4	1205,2
	3	-870,2	383,4

Selanjutnya Einstein mengusulkan konsep fungsi kerja elektron dianggap sebagai binding energy yaitu konsep pengikatan elektron oleh inti berdasarkan tingkat energi binding-nya. Einstein memberi penjelasan bahwa:

$$\Phi_n = \varepsilon_{bind,n} \tag{2.32}$$

Dari Persamaan 2.32 ini, Einstein mengusulkan pemahaman data eksperimen untuk memperluas konsep sebelumnya, seperti pada Gambar 2.16.

Einstein juga mengusulkan konsep fungsi kerja tersebut sebagai binding energy atau $\varepsilon_{bind,n}$, atau energi ikatan yang berlaku pada suatu kristal padatan, melalui tahapan berikut:

1. Energi ikatan yang terdapat dalam suatu molekul/kristal sangat dipengaruhi oleh adanya transisi elektronik ikatan kristal/molekul, yang bergantung pada tingkat-tingkat energi eksitasi elektronnya. Sehingga, dari 3 (tiga) data di atas, energi ikatan, ($\varepsilon_{bind,n}$), dapat dikembangkan menjadi:

$$\varepsilon_{bind,n} = \varepsilon_{bind,1}, \varepsilon_{bind,2}, \varepsilon_{bind,3}$$
$$= \varepsilon_{n_1}, \varepsilon_{n_2}, \varepsilon_{n_3}$$
(2.33)

2. Dari Gambar 2.16, dapat dikatakan bahwa pada pengukuran tingkat eksitasi hingga harga energi potensial sama dengan nol, maka didapat bahwa:

$$\varepsilon_{bind,\infty} = \varepsilon_{n_{\infty}} \to 0$$
 (2.34)

Gambar 2.16: Fotolistrik Franck-Hertz

Maka didapat bahwa:

$$\varepsilon_{bind,n} = \varepsilon_{n_1}, \varepsilon_{n_2}, \varepsilon_{n_3}, \dots, \varepsilon_{n_{\infty}}$$
 (2.35)

Dengan susunan tingkat energi elektron untuk setiap atom adalah:

$$n = 1, 2, 3, \dots, \infty \tag{2.36}$$

3. Persamaan efek fotolistrik Einstein, dimana setiap harga *n* menghasilkan hubungan antara energi ikatan dengan tingkat-tingkat energi elektronnya, yaitu:

$$\varepsilon_{kin,n} = h\nu - \varepsilon_{bin,n} \tag{2.37}$$

dimana n = 1 adalah keadaan *ground state* dan $n = \infty$ adalah keadaan *excited state*.

 Dengan demikian Persamaan 2.37 dapat digunakan untuk mencari frekuensi (ν) suatu berkas dari kristal, yaitu:

$$\nu = \frac{\varepsilon_{kin,n} + \varepsilon_{bin,n}}{h} \tag{2.38}$$

Tingkat transisi elektronik ikatan kristal ini setara dengan tingkattingkat energi yang didapat oleh konsep Einstein, seperti pada Gambar 2.17. Dengan demikian foton dan elektron sangat bergantung pada kuanta-kuanta yang memenuhinya.

2.2.7 Konsep eksitasi elektron dan emisi foton

Melalui konsep fotolistrik Einstein ini maka dapat diuraikan bahwa setiap atom baik atom dalam kondisi gas, cairan dan larutan, akan memiliki tingkat-tingkat energi elektronnya.

Einstein mengusulkan konsep model energi potensial untuk dua daerah energi yaitu daerah energi potensial elektron tidak tereksitasi (ε_1) dan daerah energi potensial elektron tereksitasi (ε_2), dapat dilihat pada Gambar 2.18, yang terurai pada keadaan berikut:

1. Tingkat energi vibrasi elektron dengan inti atom mulai dari tingkat energi *ground state* hingga ke tingkat energi tereskitasi *excited state*.

$$n = 1 \longrightarrow n = 2, 3, 4, \dots$$
 (2.39)

2. Tingkat energi untuk proses disosiasi mulai dari tingkat energi *gro-und state* hingga ke tingkat *excited state*.

$$n = 1 \longrightarrow n = \infty$$
 (2.40)

Gambar 2.17: Hasil radiasi foton terhadap kristal Cr

Gambar 2.18: Model tingkat energi potensial elektron Einstein

3. Tingkat energi untuk proses elektron lepas dari kristal dimulai dari tingkat energi daerah potensial hingga ke tingkat energi daerah kinetik.

$$n_{potensial} = 1, 2, 3, \dots \longrightarrow n_{kinetik} = 1, 2, 3, \dots$$
(2.41)

2.2.8 Tingkat energi elektron dalam kristal

Bila penjelasan di atas digabung menjadi satu rangkaian konsep ekstitasi elektron, Proses ini menghasilkan emisi foton yang dapat ditangkap oleh suatu detektor. Ungkapan ini dapat dirangkai dalam Gambar 2.19.

Gambar 2.19: Konsep tingkat energi elektron suatu atom

Uraian tersebut adalah sebagai berikut:

- 1. Data eksperimen mendukung rumusan Einstein tentang fungsi enegri potensial atau fungsi kerja ikatan elektron (Φ) dan fungsi energi kinetik elektron (ε_{kin}) bahawa keduanya mempunya hubungan linear dengan energi foton ($h\nu$)
- Kedua fungsi di atas menghasilkan daerah potensial (ε₁) dan daerah energi kinetik (ε₂) yang memiliki tingkat-tingkat energi vibrasinya masing-masing.
- Masing-masing daerah energi dapat diungkapkan sebagai energi potensial elektron bervibrasi atau elektron yang belum tereksitasi dan juga sebagai energi potensial untuk elektron tereksitasi
- 4. Muncullah konsep tingkat energi keadaan dasar (*ground state*) dan tingkat energi tereksitasi (*excited state*).
- 5. Foton warna merah tidak memiliki kemampuan untuk melepas elektron dari kristal dan hanya menghasilkan energi vibrasi ikatan antara elektron dengan inti atom. Sedangkan foron biru memiliki kemampuan untuk melepas elektron karena mampu mengeksitasi elektron ke tingkat *excited state*.

2.2.9 Gambaran umum teori foton Einstein

Dengan demikian, skema teori fotolistrik Einstein ini adalah konsep penjelasan yang sangat logis dari kasus fotoelektron yang pada masa sebelumnya masih belum terpecahkan. Elektron dalam suatu atom berada dalam tingkat-tingkat energi tertentu, mulai dari keadaan dasar n = 1 (*ground state*) hingga ke keadaan terdisosiasi $n = \infty$. Secara umum dapat dipaparkan Gambar 2.20.

Gambar 2.20: Skema teori fotolistrik Einstein-Franck-Hertz.

Tingkat transisi elektronik ikatan kimia Einstein ini setara dengan tingkat-tingkat energi yang didapat oleh Planck..Konsep fotolistrik Einstein ini menjadi peletak dasar dari ilmu:

- 1. Fisika, khususnya menjadi dasar bagi instrumentasi spektroskopi fotoelektrik, dalam mempelajari susunan elektron dari suatu padatan atau kristal murni.
- Kimia, khususnya bagi kajian instrumentasi spektroskopi, dalam mempelajari susunan elektron molekul yang lepas dari ikatan kimia atau elektron tersebut hanya tereksitasi ke tingkat energi lain dalam ikatan kimia tersebut.
- 3. Kimia Fisika, khususnya adanya eksitasi elektron untuk vibrasi ikatan antara elektron dengan inti atom, juga eksitasi elektron untuk vibrasi dalam ikatan antara atom dalam suatu molekul. Tidak hanya energi vibrasi, namun juga konsep fotoelektron Einstein ini dapat menjelaskan untuk eksitasi elektron yang energinya lebih rendah yaitu energi rotasi.

Dengan demikian foton dan elektron sangat bergantung pada kuantakuanta yang memenuhinya. Proses spektroskopi fotoelektrik dapat

Gambar 2.21: Tingkat energi potensial elektron atom Neon, Ne (Sumber: DOI:10.1038/ncomms5069|www.nature. com/naturecommunications).

terjadi tergantung momentum atau panjang gelombang yang digunakan, seperti yang tampak pada Gambar 2.22, yaitu:

- Defraksi sinar X menghasilkan energi eksitasi elektron bagian dalam (core), E_X.
- 2. Spektroskopi UV-VIS menghasilkan energi eksitasi bagian kulit terluar (*valensi*), R_{UV} dan E_{VIS} .
- 3. Spektroskopi *Infra* Merah menghasilkan energi eksitasi vibrasi elektron untuk vibrasi molekul, *E*_{*IR*}.
- Spektroskopi *Microwave* menghasilkan energi eksitasi rotasi elektron yang untuk rotasi molekul, *E_{MV}*.

Pada Gambar 2.22 terlihat hubungan energi sebagai berikut:

1. Perbandingan energi setiap fotoelektron:

$$E_X > E_{UV} > E_{VIS} > E_{IR} > E_{MW} \tag{2.42}$$

2. Perbandingan respon molekul dari setiap fotoelektron:

$$E_{eksitasi} > E_{vibrasi} > E_{rotasi} \tag{2.43}$$

Gambar 2.22: Tingkat energi potensial elektron, vibrasi molekul dan rotasi molekul.

Contoh Soal 2.3: Tentang fenomena foton Einstein pada unsur Ne.

Seorang kimiawan ingin meneliti tingkat-tingkat energi pada unsur neon, Ne, dengan menggunakan sinar *X*, yang memiliki panjang gelombang tertinggi yaitu $\lambda = 9,89x10^{-11}m$, dalam proses fotolistrik, dan menghasilkan urutan energi kinetik yaitu 12,63; 11,0; 8,0; 5,0; 3,0 *keVolt*, secara berurutan, hasil total analisa fotoelektron ini dapat dilihat pada Gambar 2.21. Tentukanlah (a). Buktikanlah harga energi kinetik elektron tersebut? (b). Jelaskanlah bagaimana perbandingan harga energi kinetik $\varepsilon_{kin,e}$ dengan harga energi potensial $\varepsilon_{binding,e}$ dari data ini? (dengan asumsi bahwa harga $\varepsilon_{binding,e}$ telah diketahui) **Jawab**:

(a) Untuk mengetahui energi kinetiknya terlebih dahulu ditentukan frekuensi foton dari sinar *X*, yaitu:

$$V_{foton} = \frac{c}{\lambda_{foton}} = \frac{2,9979 \times 10^8 m s^{-1}}{9,89 \times 10^{-11} m} = 3,03 \times 10^{18} s^{-1}$$

Kemudian ditentukan harga energi foton sinar X:

$$\varepsilon_{foton} = h\nu_{foton} = (6,626x10^{-34}Js)(3,03x10^{18}s^{-1}) = 2,01x10^{-15}J$$

Konversi ke satuan eVolt menghasilkan harga:

$$\varepsilon_{foton} = \frac{2,01x10^{-15}J}{1,6022x10^{-19}J(eVolt)^{-1}} = 12.545 \ eVolt = 12,545 \ keVolt$$

Harga ini hampir sama dengan 12,63 *keVolt*, hal ini karena adanya pembulatan dalam perhitungan.

- (b) Perbandingan harga:
 - (a) energi kinetik dibandingkan dengan harga energi potensial adalah slalu berharga positif,
 - (b) Hal ini karena harga energi potensialnya atau energi ikatannya berharga negatif.

Gambar 2.23: Niels Hendrik David Bohr, penemu konsep energi terkuantisasi atom hidrogen. (Sumber: https://apchemcyhs.wikispaces.com/Bohr)

2.3 Model Atom Bohr

Niels H. D. Bohr pada tahun 1913 mengusulkan *Bohr atomic model*, melalui hukum ini kita diperkenalkan bahwa elektron dari suatu atom memiliki energi yang terkuantisasi, E_n , dan juga konsep energi ionisasi (*ionization energy*).

Bohr menjalaskan perbandingan pemahaman tentang energi atom: Model energi atom klasik bahwa energi adalah berharga tunggal sesuai energi Coulomb menuju model energi atom Bohr yang menunjukkan energi atom adalah terkuantisasi. Model atom Bohr dapat menjelaskan spektrum atom hidrogen atau atom hidrogen-like atau ion atom: He⁺, Li²⁺, dan Be³⁺.

Penelitian Bohr dilandasi pada hasil eksperimen fisikawan klasik, Bohr menyusun konsep model atom Bohr, melalui penurunan rumus hukum kekekalan energi melalui tahapan-tahapan sebagai berikut:

2.3.1 Energi elektron Bohr

Bohr menurunkan persamaan energi elektronnya dengan melibatkan konsep energi potensial Coulomb elektron dan energi kinetik kecepatan elektron, yaitu:

 Dengan memasukkan hukum Coulomb, untuk antar elektron dengan inti, diasumsi bahwa harga energi potensial dimiliki oleh elektron dengan masa *m_e* bergerak mengelilingi inti dengan radius *r*, sebesar:

$$E_{pot} = -\left(\frac{Ze^2}{4\pi\epsilon_0 r}\right) \tag{2.44}$$

Kemudian memasukkan harga energi kinetik dari elektron mengelilingi inti, sebesar:

Gambar 2.24: Energi potensial atom dan jarak inti-elektron, *r*.

$$E_{kin} = \frac{1}{2}m_e v^2$$
 (2.45)

Sehingga energi total model atom Bohr, berdasarkan hukum kekekalan energi menjadi:

$$E_{total} = E_{kin} + E_{pot}$$
$$= \frac{1}{2}m_e v^2 - \left(\frac{Ze^2}{4\pi\epsilon_0 r}\right)$$
(2.46)

Dimana Z adalah besaran untuk nomor atom, dan untuk hidrogen, yaitu

$$Z = 1 \tag{2.47}$$

Sedangkan harga keadaan vakum adalah:

$$\epsilon_0 = 8,854x10^{-12} \ C^2 J^{-1} m^{-1} \tag{2.48}$$

2. Energi ini akan disederhanakan dengan mencari harga r dan v, melalui gaya Coulomb, yaitu:

$$F_{Coulomb} = \frac{dE}{dr}$$
(2.49)

Gaya pada gerak elektron mengelilingi inti atom atau harga gaya atom hidrogen adalah:

$$F_{Coulomb} = m_e a \tag{2.50}$$

dimana untuk gerak melingkar haga besaran percepatan a adalah

$$a = v\omega$$
 (2.51)

dan telah diketahui bahwa momentum kecepatan mempunyai harga

$$\omega = \frac{v}{r} \tag{2.52}$$

Sehingga Persamaan 2.50 menjadi:

$$F_{Coulomb} = \frac{m_e v^2}{r} \tag{2.53}$$

Gambar 2.25: Albert Einstein dan Niels Bohr membahas masalah energi terkuantisasi. (Sumber: http://www.uh.edu/engines)

3. Bila *E*_{total} pada Persamaan 2.46 diturunkan terhadap jarak (*r*), maka didapat harga:

$$\frac{d\mathbf{E}}{dr} = \frac{d}{dr} \left(\frac{1}{2} m_e v^2 - \frac{Z e^2}{4\pi\epsilon_0 r} \right)$$

$$= 0 + \left(\frac{Z e^2}{4\pi\epsilon_0 r^2} \right)$$

$$= \left(\frac{Z e^2}{4\pi\epsilon_0 r^2} \right)$$
(2.54)

2.3.2 Momentum sudut Bohr

Bohr menyelesaikan penurunan rumus di atas hingga melahirkan konsep jenius yaitu konsep momentum sudut elektron yang bergerak secara statis mengelilingi inti atom, yaitu:

1. Bohr memasukkan Persamaan 2.53 dan Persamaan 2.54 ke dalam Persamaan 2.49, maka didapat:

$$\frac{m_e v^2}{r} = \left(\frac{Ze^2}{4\pi\epsilon_0 r^2}\right) \tag{2.55}$$

Persamaan 2.55 ini menghasilkan dua persamaan utama, yaitu:

(a) Jejari elektron-inti atom dengan penurunan persamaan sebagai berikut:

$$\frac{(m_e vr)^2}{m_e r} = \frac{Ze^2}{4\pi\epsilon_0}$$

$$r = \frac{(m_e vr)^2 (4\pi\epsilon_0)}{m_e (Ze^2)}$$
(2.56)

(b) kecepatan elektron mengelilingi inti atom dengan penurunan persamaan sebagai berikut:

$$m_e v^2 r = \left(\frac{Ze^2}{4\pi\epsilon_0}\right)$$
$$v = \frac{1}{(m_e vr)} \left(\frac{Ze^2}{4\pi\epsilon_0}\right)$$
(2.57)

Pada kedua Persamaan 2.56 dan Persamaan 2.57 ini masing-masing menghasilkan ungkapan $(m_e vr)$ yang menjadi faktor penting untuk langkah Bohr selanjutnya.

2. Dengan memasukkan postulat Planck, Bohr mengusulkan *angular momentum posulate* yaitu (m_evr), yang mana bahwa momentum sudut suatu gerak elektron harus terkuantisasi dan sebanding dengan perkalian bilangan bulat $\frac{\hbar}{2\pi}$, sehingga didapat:

$$(m_e vr) \to (m_e vr)_n$$
 (2.58)

Sehingga didapat harga momentum sudut sebagai berikut:

$$(m_e vr)_n = n \frac{h}{2\pi} \tag{2.59}$$

dengan n = 1, 2, 3, ...

- 3. Substitusi momentum sudut (Persamaan 2.59) ini ke Persamaan 2.56 dan Persamaan 2.57 di atas menghasilkan:
 - (a) Jejari elektron elektron pada tingkat energi ke n, r_n :

$$r_n = \frac{(m_e v r)_n^2 (4\pi\epsilon_0)}{m_e (Ze^2)}$$
$$= \frac{\epsilon_0 n^2 h^2}{\pi Z e^2 m_e}$$
(2.60)

Pada tahap ini Bohr mengumpulkan semua harga tetapan menjadi satu yaitu dilambangkan dengan a_0 , yang kemudian dikenal sebagai *Bohr radius* dengan harga sebesar:

$$a_0 = \left(\frac{\epsilon_0 h^2}{\pi e^2 m_e}\right) \tag{2.61}$$

didapat harga a_0 adalah 0,529Å. Maka didapat harga r_n sebesar:

$$r_n = \frac{n^2}{Z} a_0 \tag{2.62}$$

(b) kecepatan elektron elektron pada tingkat energi ke n, v_n :

$$v_n = \frac{1}{(m_e v r)_n} \left(\frac{Z e^2}{4\pi\epsilon_0}\right)$$
$$= \frac{Z e^2}{2\epsilon_0 n h}$$
(2.63)

2.3.3 Energi elektron terionisasi Bohr

Bohr menemukan harga energi terkuantisasi dari elektron yang mengelilingi inti atom dengan tahapan:

1. Bohr memasukkan kedua harga r_n dan v_n dari Persamaan 2.60 dan dari Persamaan 2.63 tersebut ke dalam persamaan Energi total Bohr (Persamaan 2.46), maka didapat harga energi atom pada tingkat energi ke n, yaitu dengan berubahnya E_{total} menjadi E_n , sehingga

Gambar 2.26: Energi potensial ionisasi atom hidrogen.

didapat:

$$E_n = \frac{1}{2}m_e v_n^2 - \left(\frac{Ze^2}{4\pi\epsilon_0 r_n}\right)$$

$$= \frac{1}{2}m_e \left(\frac{Ze^2}{2\epsilon_0 nh}\right)^2 - \left(\frac{Ze^2}{4\pi\epsilon_0}\right) \left(\frac{\pi Ze^2 m_e}{\epsilon_0 n^2 h^2}\right)$$

$$= \frac{1}{2}m_e \left(\frac{Ze^2}{2\epsilon_0 nh}\right)^2 - m_e \left(\frac{Ze^2}{2\epsilon_0 nh}\right)^2$$

$$= -\frac{1}{2}m_e \left(\frac{Ze^2}{2\epsilon_0 nh}\right)^2$$

$$= -\left(\frac{e^4 m_e}{8\epsilon_0^2 h^2}\right) \frac{Z^2}{n^2}$$
(2.64)

dimana n = 1, 2, 3, ...

2. Bila dimasukkan harga tetapan-tetapan di atas maka didapat bahwa:

$$\frac{e^4 m_e}{8\epsilon_0^2 h^2} = 2,18x10^{-18}$$
 (2.65)

maka didapat bahwa:

$$E_n = -(2, 18x10^{-18}\text{J})\frac{Z^2}{n^2}$$
(2.66)

Konsep *Bohr's model interpretation* ini menghasilkan beberapa gambaran tingkat energi spektra atom, yang secara umum memberikan rumus frekuensi emisi spektra atom:

$$\nu = (3, 29x10^{15}s^{-1})Z^2 \left(\frac{1}{n_{akhir}^2} - \frac{1}{n_{awal}^2}\right)$$
(2.67)

Dari persamaan energi atom hidrogen Bohr ini, muncullah *ionization energy concept*, dimana atom hidrogen akan terionisasi melalui proses eksitasi elektron dari keadaan dasar, n = 1, hingga ke keadaan takhingga, $n = \sim$, yaitu keadaan elektron lepas dari intinya.

Dengan demikian harga energi ionisasi atom hidrogen, eksitasi elektron dari n = 1 ke $n = \sim$, adalah:

$$E_{ionisasi} = -(2, 18x10^{-18}\text{J})\left(\left[\frac{Z}{\sim}^2\right] - \left[\frac{Z}{1}^2\right]\right)$$

= -(2, 18x10^{-18}\text{J})(0-1)
= 2, 18x10^{-18}\text{J} (2.68)

Dengan demikian, adanya konsep energi ionisasi, maka membuat ilmuwan lain melakukan riset tentang fenomena *atomic spectra emission* dari atom hidrogen.

Gambar 2.27: Niels Bohr memberi kuliah kelas membahas masalah energi terkuantisasi yntyk atom hidrogen. (Sumber: http://www.phy.davidson.edu)

2.3.4 Model permukaan energi potensial

Model atom Bohr yang dipaparkan pada Gambar 2.28 dapat dibagi menjadi:

- (Atas). Perbandingan model energi potensial 2D klasil dan Bohr, dimana pada model Bohr, harga *n* menunjukkan tingkat-tingkat energi eksitasi elektron. Sedangkan untuk model klasik tidak terdapat tingkat-tingkat energi atau hanya merupakan energi tunggal.
- 2. (Bawah). Perbandingan model permukaan energi potensial klasik dan Bohr, dimana bagian Atas adalah dengan cara memutar kurva 2D terhadap sumbu energi didapat bentuk energi potensial 3D, dan pada model Bohr, harga *n* menunjukkan adanya kulit-kulit orbital elektron mengelilingi inti atom Hidrogen. Sedangkan untuk model klasik tampak bahwa bila terdapat suatu elektron menempati permukaan energi potensial dari atom hidrogen maka elektron tersebut akan tergelincir menutar menuju ke arah inti atom hidrogen.

Gambar 2.28: Model energi potensial ionisasi: Klasik dan Modern.

Pembuktian hukum-hukum Bohr dan model atom Bohr bahwa elektron pada atom hidrogen memiliki tingkat-tingkat energi tertentu, telah dilakukan oleh Theodore Lyman untuk emisi sinar *Ultra-Violet* (UV), Johann Balmer untuk sinar *Visible* (VIS), dan Friedrich Paschen untuk emisi sinar *Infra-Red* (IR).

Gambar 2.29: Deret Bohr: Deret Lyman, Deret Balmer, dan Deret Pachen. (Sumber: http://physics.dorpstraat21.nl/spectra)

2.3.5 *Pembuktian moel atom Bohr secara eksperimen*

Rumusan tingkat-tingkat energi model atom Bohr ini dibuktikan secara eksperimen oleh tiga dari beberapa ilmuwan fisika, yaitu dengan mengamati fenomena spektra emisi atom hidrogen, yang tampak pada Gambar 2.28, yaitu diantaranya adalah:

1. Theodore Lyman, meneliti spektra emisi atom sinar Ultraviolet, yaitu adanya emisi dari frekuensi, ν , cahaya Ultraviolet (UV) yang berakhir pada tingkat energi elektron pada $n_{akhir} = 1$. Sehingga Persamaan 2.67 menjadi:

$$\nu = (3, 29x10^{15}s^{-1})Z^2 \left(1 - \frac{1}{n_{awal}^2}\right)$$
(2.69)

dengan $n_{awal} = 2, 3, 4, ...$

Deret emisi ini dikenal sebagai Deret Lyman.

2. Johann Balmer, meneliti spektra emisi atom sinar Visibel (sinar tampak), yaitu adanya emisi dari frekuensi, ν , cahaya Visibel (VIS) yang berakhir pada tingkat energi elektron pada $n_{akhir} = 2$. Sehingga Persamaan 2.67 menjadi:

$$\nu = (3,29x10^{15}s^{-1})Z^2 \left(\frac{1}{4} - \frac{1}{n_{awal}^2}\right)$$
(2.70)

dengan $n_{awal} = 3, 4, 5, ...$

Deret emisi ini dikenal sebagai Deret Balmer.

3. Friedrich Paschen, meneliti spektra emisi atom sinar infrared, yaitu adanya emisi dari frekuensi, ν , cahaya Inframerah (IR) yang berakhir pada tingkat energi elektron pada $n_{akhir} = 3$. Sehingga Persamaan 2.67 menjadi:

$$v = (3,29x10^{15}s^{-1})Z^2\left(\frac{1}{9} - \frac{1}{n_{awal}^2}\right)$$
 (2.71)

dengan $n_{awal} = 4, 5, 6, ...$

Deret emisi ini dikenal sebagai Deret Pachen.

Dari beberapa epsperimen di atas, maka model atom Bohr sangat terbukti keakuratannya, khususnya untuk eksperimen atom hidrogen. Secara eksperimen juga model atom Bohr dapat digunakan secara pendekatan untuk atom selain hidrogen. Hanya secara matematika model atom Bohr hanya eksak terbukti benar untuk atom hidrogen, sehingga model atom Bohr sangat cocok untuk atom H dan *hydrogenlike* atau atomic ion.

2.4 Spektra atom bukan Hidrogen

Secara matematika model atom Bohr ini memiliki kelemahan yaitu tidak dapat menjelaskan selain hidrogen. Artinya untuk aton bukan hidrogen, yaitu:

$$Z = 2, 3, 4, \dots$$
 (2.72)

Model atom Bohr menjadi lemah dan menyimpang, hal ini karena model atom Bohr tidak memperhitungkan adanya interaksi antar elektron dalam atom bukan hidrogen.

Namun secara eksperimen terdapat kemiripan dengan model spektra atom hidrogen.

Dengan demikian baik atom hidrogen maupun atom bukan hidrogen memiliki spektra elektron yang sesuai dengan model atom Bohr dan eksperimen ketiga Deret Lyman, Deret Balmer, dan Deret Pachen di atas.

Hasil dari semua spektrum atom hidrogen dan atom bukan hidrogen dapat dilakukan secara eksperimen, dan memberi informasi bahwa:

- Tidak ada dua atom yang memiliki spektrum atom yang sama, dan selalu ditandai dengan hasil tingkat energi elektron yang berbedabeda.
- Perbedaan spektrum setiap atom ini adalah karena perbedaan jumlah elektron dan interaksi elektron yang menyebabkan perbedaan tingkat energi elektronnya.
- Semakin banyak jumlah elektronnya maka semakin berdekatan tingkat energi elektronnya.
- 4. Tingkat energi elektron tergantung pada:
 - (a) Nilai *n* sebagai tingkat energi utamanya
 - (b) Sub tingkat (sub-*n*) energinya.

Sebagai contoh dapat dilihat pada Gambar 2.30 yaitu perbedaan antara spektrum atom hidrogen (H), helium (He), oksigen (O), karbon (C), Nitrogen (N) dan Neon (Ne), dimana ada perbedaan tingkat energi elektron utama (n) dan sub-n dari tingkat energi elektronnya masingmasing.

Dari Gambar 2.30 tersebut juga tampak atom hidrogen (H) hanya menghasilkan garis-garis emisi yang lebih sedikit bila dibandingkan dengan spektrum atom helium (He), dan seterusnya hingga spektrum atom neon (Ne) yang menghasilkan lebih banyak emisi. Hal ini karena adanya lebih banyak interaksi elektron dan saling mempengaruhi

Gambar 2.30: Deret spektrum atom: H, He, O, C, N, dan Ne. (Sumber: http://locksmithnyc.info/keywords/02/ neon-spectral-lines/)

tingkat energi (*n*) dan sub tingkat energi (sub-*n*) di dalam atom-atom tersebut.

Dengan demikian semakin besar harga *Z* maka semakin banya elektron yang berinteraksi dan menghasilkan garis-garis emisi yang lebih banyak.

$$Z > 1 \longrightarrow \begin{cases} \text{jarak } n \text{ semakin rapat} \\ \text{jarak sub-} n \text{ semakin rapat} \end{cases}$$
(2.73)

Hal ini menunjukkan juga bahwa di dalam atom maka elektronnya akan berada pada tingkat-tingkat energi tertentu (n) dan tingkat-tingkat sub energi (sub-n). Hal ini sekaligus membuktikan bahwa konsep radiasi Planck dan fotoelektron Einstein adalah sesuai dengan data eksperimen.

Model atom Bohr dapat digunakan untuk menjelaskan model atom ion Li_2^+ . Bila elektron dari ion Li_2^+ berada pada keadaan tereksitasi n = 2, maka hitunglah dengan menggunakan model Bohr: (a). Jari-jari orbit elektron, r_n , ini? (b). Kecepatan, v_n , elektron ini? (c). Energi, E_n , pada keadaan ini? (Gunakan: tetapan Planck, h, m_e , dan jari-jari Bohr, $a_0 = 0,529\text{\AA}$, nomor atom, Z, Li= 3)

Jawab:

(a) Dari postulat momentum sudut Bohr didapat persamaan jari-jari model atom Bohr untuk n = 2:

$$r_n = \frac{n^2}{Z}a_0 = \frac{2^2}{3}(0,259\text{\AA}) = 0,705\text{\AA}$$

(b) Didapat juga harga kecepatan elektron model atom Bohr untuk n = 2:

$$v_n = \frac{nh}{2\pi m_e r_n} = \frac{2(6,626x10^{-34} Js)}{2(3,14)(9,11x10^{-31} kg)(0,705\text{\AA})} = 3,28x10^6 m s^{-1}$$

(c) Sedangkan energi elektron model atom Bohr:

$$E_n = -(2, 18x10^{-18}\text{J})\frac{Z^2}{n^2} = -(2, 18x10^{-18}\text{J})\frac{3^2}{2^2} = -4,9x10^{-18}\text{J}$$

Jadi dari model atom Bohr dapat menjelaskan Model ion Li_2^+ pada keadaan n = 2, yaitu menghasilkan: jari-jari ion 0,705Å, kecepatan elektron mengelilingi inti 3,28 $x10^6 ms^{-1}$ dan energinya $-4,9x10^{-18}J$

Contoh Soal 2.4: Tentang model atom Bohr.

2.5 Soal-soal Bab 2

- 2.1 HUKUM PLANCK. Cahaya hijau dan biru akan berhasil mengeluarkan elektron dari permukaan lempeng Kalsium. Dalam kasus ini cahaya mana yang memiliki: (a). Frekuensi, ν , terbesar? (b). Energi kinetik yang paling besar? (Gunakan: data dari spektrum elektromagnetik, kecepatan cahaya, *c*, tetapan Planck, *h*=6,626×10⁻³⁴ Js dan massa elektron, *m*_e=9,11×10⁻³¹ kg)
- 2.2 BLACKBODY PLANCK. Pada senyawa berupa larutan bercahaya, CdSe, yang biasa dikenal sebagai *quantum dot*, akibat diberi sinar. Benda ini dapat memancarkan emisi radiasi *blackbody* berupa merah, jingga, hijau. Terangkan masalah ini?
- 2.3 FOTON EINSTEIN. Seorang ahli kimia bekerja pada jajaran kepolisian, dia bertugas untuk mendeteksi hamburan logam akibat ledakan bom, dengan menggunakan sistem alarm deteksi logam fotosel. Berapa panjang gelombang cahaya yang digunakan dalam sistem alarm fotosel logamnya adalah Al, yang memiliki fungsi kerja, Φ , sebesar 4,41x10⁻¹⁹J? (Gunakan *h*= 6,626x10⁻³⁴Js)
- 2.4 MODEL ATOM BOHR. Seorang mahasiswa kimia ingin membuat kembang api terbaru, yaitu kembang api yang dapat memancarkan sinar pelangi dan sinar infra merah secara simultan. Bahan yang digunakan adalah ion atom B_4^+ . Tentu harus dibuat dahulu model atom Bohr, dimana senyawa ion atom B_4^+ diberi energi sehingga terjadi emisi-emisi. Jelaskan tingkat-tingkat energi barapa emisi ion atom B_4^+ menghasilkan sinar pelangi dan infra merah?

<mark>З</mark> Mekanika Kuantum

MEKANIKA KUANTUM menjadi tujuan lanjutan dari penelitian mendasar tentang energi terkuantisasi dari cahaya dan pertikel telah ditata dengan baik oleh Planck, Einstein dan Bohr. Perumusan metode mekanika kuantum tersebut segera disusun dan dimotori oleh tiga konsep fisikawan utama yaitu: de Brogliè melalui *de Brogliè waves and postulate*, Heisenberg melalui *Heisenberg particle and uncertainty principle*, dan Schrödinger melalui *Schrödinger equation*.

Gambar 3.1: Area Mekanika Kuantum.

Mekanika kuantum ini juga menghasilkan postulat-potulat kuantum yang berguna secara filosofis dalam menjelaskan fenomena elektron dan foton.

Gambar 3.2: Louis-Victor-Pierre-Raymond, 7th duc de Brogliè, penemu konsep panjang gelombang untuk mekanika kuantum. (Sumber: http://nautilus.fis.uc.pt/wwwqui/)

3.1 Postulat & Gelombang de Brogliè

Louis-Victor-Pierre-Raymond, 7th duc de Brogliè pada tahun 1926, mengusulkan *de Brogliè waves and postulate*, melalui postulat ini kita diperkenalkan adanya panjang gelombang yang cocok dengan ukuran radiasi cahaya dan juga tingkat-tingkat energi terkuantisasi, *n*, tersebut haruslah bilangan bulat.

Perbandingan pemahaman tentang panjang gelombang suatu elektron, yang mana menjelaskan suatu keharusan kelipatan dari bilangan bulat agar elektron orbit pada intinya:

- 1. Panjang gelombang orbit elektron dengan kelipatan bilangan n=4
- 2. Panjang gelombang elektron tidak pada orbitnya dengan kelipatan bilangan desimal *n*=4,5.

de Brogliè menjelaskan adanya kuantisasi gelombang untuk menerangkan teori atom Bohr (yang diperluas), yaitu dengan mengusulkan panjang gelombang, λ , de Brogliè.

Tahap-tahap penurunan λ de Brogliè, melalui penggabungan beberapa hukum Planck dan Einstein, yaitu:

1. Partikel dianalogikan bergerak dengan energi partikel dari penurunan Planck:

$$\Xi = h\nu \tag{3.1}$$

sedangkan bahwa gerak partikel ini cocok dengan foton Einstein, dan karenanya akan sesuai dengan teori relativitas Einstein

$$E = mc^2 \tag{3.2}$$

sehingga didapat:

$$h\nu = mc^2 \tag{3.3}$$

2. Dari teori radiasi Elektromagnetik Maxwell, bahwa

$$\nu = \frac{c}{\lambda} \tag{3.4}$$

maka didapat:

$$\lambda = \frac{h}{mc} \tag{3.5}$$

3. Persamaan ini menjadi dasar de Brogliè untuk menerangkan adanya partikel dengan massa m dan kecepatan v akan mempunyai λ baru sebagai panjang gelombang de Brogliè sebesar:

$$\lambda = \frac{h}{mv} \tag{3.6}$$

4. Bila momentum suatu partikel adalah

$$p = mv \tag{3.7}$$

maka didapat panjang gelombang, λ , dan momentum, p, de Brogliè, yaitu:

$$\lambda = \frac{h}{p} \text{ atau } p = \frac{h}{\lambda}$$
(3.8)

Gambar 3.3: Postulat de Brogliè quantum condition, $n\lambda = 2\pi r$.

5. Melalui postulat momentum sudut Bohr yaitu:

$$mvr = n\frac{h}{2\pi}$$
(3.9)

Gambar 3.4: Postulat de Brogliè quantum condition, $n\lambda = 2\pi r$.

maka panjang gelombang de Brogliè mempengaruhi model atom Bohr, yaitu dengan cara memasukkan persamaan momentum di atas, sehingga menghasilkan ungkapan

$$mor \equiv pr = n \frac{h}{2\pi} \tag{3.10}$$

n= 9/2

sehingga didapat:

n=4

$$\frac{h}{\lambda}r = n\frac{h}{2\pi} \tag{3.11}$$

Energi rotasi

Gambar 3.5: Ilustrasi energi translasi, vibrasi, rotasi dan eksitasi atom dari sebuah molekulyang memenuhi syarat *de Brogliè quantum condition*.

atau

$$n\lambda = 2\pi r \tag{3.12}$$

dimana n = 1, 2, 3, ...

r

6. Ungkapan $n\lambda = 2\pi r$ dikenal sebagai *de Brogliè quantum condition*, yang mensyaratkan bahwa: Sebuah elektron dapat mengelilingi inti hanya dalam orbit yang mengandung bilangan bulat, *n*, kali panjang gelombang de Brogliè. Sedangkan ungkapan $2\pi r$ tidak lain adalah ungkapan adri panjang keliling lingkaran dengan *r* adalah jari-jari lingkarannya.

Kondisi atau syarat kuantum de Brogliè, menghasilkan kestabilan fungsi gelombang suatu gerak elektron:

1. Bila *n* bilangan bulat, maka orbilal elektron mengelilingi inti atom akan stabil

$$n = 1, 2, 3, \dots$$
 orbital atom (3.13)

2. Bila *n* bukan bilangan bulat, maka orbilal elektron mengelilingi inti atom akan tidak stabil dan berarti tidak ada orbital.

$$u = \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \dots$$
 tidak ada orbital atom (3.14)

Fungsi gelombang elektron, pada Gambar 3.4, dengan kuantitas 4λ sebagai fungsi *x* pada sumbu *x*-linear, memiliki kondisi kuantum de Brogliè, yaitu:

$$n\frac{\lambda}{2} = x \tag{3.15}$$

Fungsi gelombang elektron dengan kuantitas 4λ dan sumbu *x*lingkaran sepanjang $2\pi r$. Tampak bahwa untuk *n* bilangan bulat, fungsi gelombang akan kontinu dan menghasilkan orbital elektron yang stabil mengelilingi inti atom dengan jari-jari orbir sebesar *r*.

Fungsi gelombang elektron dengan kuantitas $\frac{9}{2}\lambda$ dan sumbu *x*-lingkaran sepanjang $2\lambda r$. Tampak bahwa untuk *n* bukan bilangan bulat, fungsi gelombang akan diskontinu dan tidak menghasilkan orbital elektron yang stabil atau instabil.

Postulat gelombang dan penjang gelombang de Brogliè ini memberi pemahaman konsep bilangan kuantum yang selalu berupa bilangan bulat. Akibatnya tingkat-tingkat energi kuantum apapun, misal tingkat energi eksitasi molekul, tingkat energi vibrasi molekul, tingkat energi rotasi molekul dan tingkat energi translasi molekul, akan selalu merupakan kelipatan dari bilangan bulat *n*, seperti yang diilustrasikan pada Gambar 3.5 diantaranya:

Energi eksitasi elektron (*E_e* : *E_{n1}*, *E_{n2}*, *E_{n3}*,...), dengan urutan besar energi: *E_{n1}* < *E_{n2}* < *E_{n3}*

- Energi translasi vibrasi molekul (*E_{vib,e}* : *E_{vib,n1}*, *E_{vib,n2}*, *E_{vib,n3}*,...), dengan urutan besar energi: *E_{vib,n1}* < *E_{vib,n2}* < *E_{vib,n3}*
- Energi translasi rotasi molekul (*E_{rot,e}* : *E_{rot,n1}*, *E_{rot,n2}*, *E_{rot,n3}*,...), dengan urutan besar energi: *E_{rot,n1}* < *E_{rot,n2}* < *E_{rot,n3}*
- Energi translasi atom atau molekul (*E*_{trans,e} : *E*_{trans,n1}, *E*_{trans,n2}, *E*_{trans,n3},...), dengan urutan besar energi: *E*_{trans,n1} < *E*_{trans,n2} < *E*_{trans,n3}

Pada kesempatan lain de Brogliè juga menyatakan bahwa mekanika kuantum adalah gangguan terhadap sesuatu harus setara antara ukuran yang diganggu dengan momentum penggangunya. Seperti yang terlihat pada Gambar 3.6 yang menjelaskan tumbukan sebuah foton hanya efektif bila terhadap sebuah elektron sedangkan terhadap bola tidak efektif.

Hitunglah panjang gelombang de Brogliè dari: (a). Sebuah elektron yang bergerak dengan kecepatan $v = 1,0x10^6ms^{-1}$? (b). sebuah bola kasti yang bermassa, m = 0,145kg dan berkecepatan $v = 30ms^{-1}$? (c). Kemudian berilah komentar anda tentang: penting atau tidaknya panjang gelombang de Brogliè ini bagi bola kasti? (Gunakan: tetapan Planck, *h*, dan m_e).

Jawab:

Dari postulat panjang gelombang de Brogliè, didapat: (a). Panjang gelombang de Brogliè untuk elektron:

$$\lambda = \frac{h}{p} = \frac{h}{m_e v} = \frac{6,626 \times 10^{-34} Js}{(9,11 \times 10^{-19} kg)(1,0 \times 10^6 m s^{-1})} = 7,3 \times 10^{-10} m = 7,3 \text{Å}$$

(b). Panjang gelombang de Brogliè untuk bola kasti:

$$\lambda = \frac{h}{m_{bola\ kasti}v} = \frac{6,626x10^{-34}Js}{(0,145kg)(30ms^{-1})} = 1,5x10^{-34}m = 1,5x10^{-24}\text{\AA}$$

(c). Komentar: Panjang gelombang de Brogliè yang didapat di atas menjadi sangat kecil untuk diteliti bila dibandingkan dengan ukuran bola kasti, sehingga sangat sulit untuk mengetahui sifat gelombangnya. Jadi panjang gelombang de Brogliè untuk bola kasti adalah tidak penting untuk diukur. Sedangkan untuk gangguan terhadap elektron, maka panjang gelombang de Brogliè menjadi sangat penting untuk diukur. Masalah ini bermakna bila kita hendak mengukur besaran suatu benda maka kita harus menggunakan alat ukur yang setara dengan bendanya.

Gambar 3.6: Ilustrasi tumbukan sebuah foton terhadap sebuah elektron dan sebuah bola

Contoh Soal 3.1: Contoh Soal tentang fenomena panjang gelombang de Brogliè.

Gambar 3.7: Werner Karl Heisenberg, penemu teori ketidakpastian posisi elektron dalam suatu dan/atau molekul. (Sumber: https://www.aip.org/history/heisenberg)

3.2 Prinsip Ketidakpastian Heisenberg

Werner Karl Heisenberg pada tahun 1927 mengusulkan *Heisenberg particle and uncertainty principle,* melalui prinsip ini kita diperkenalkan bahwa pada setiap energi yang terkuantisasi di atas maka posisi dan momentum/panjang gelombang suatu partikel/elektron tidak dapat ditentukan secara bersamaan.

Perbandingan pemahaman tentang panjang gelombang de Brogliè bila diterapkan pada suatu benda: Panjang gelombang de Brogliè tidak berpengaruh pada bola dan panjang gelombang de Brogliè berpegaruh pada elektron. Akibat konsep ini muncul konsep bahwa pengamatan terhadap suatu posisi partikel (atom atau elektron) harus diberi gangguan energi berupa panjang gelombang (atau momentum). Pengertian ini memunculkan prinsip ketidakpastian Heisenberg di posisi dan momentum/panjang gelombang suatu elektron tidak dapat ditentukan secara bersamaan, sedangkan pada bola kita dapat secara pasti menentukan posisinya bila diberi energi.

Dalam fisika klasik, kita dapat menetapkan harga posisi dan momentum secara benar, misal lemparan bola kasti. Tetapi dalam Kuantum, akibat dari postulat de Brogliè, kita tidak dapat menentukan posisi dan momentum suatu partikel secara simultan. Artinya kita dapat menentukan momentum suatu elektron tetapi tidak dapat menentukan lokasi secara benar.

Heisenberg menjelaskan bahwa pengamatan terhadap partikel mikro, misal elektron, tidak mungkin dilakukan tanpa memberi gangguan terhadap elektron tersebut. Gangguan yang diberikan berupa foton, hv, yang memiliki penjang gelombang, λ , setara ukurannya dengan elektron.

Pada gambar 3.8 dapat dipelajari bahwa foton yang memiliki λ kecil akan menghasilkan momentum, p, yang besar dan lintasan elektron akan berubah, sedangkan foton yang memiliki λ besar akan menghasilkan momentum, p, yang kecil dan lintasan elektron tidak akan

Gambar 3.8: Posisi & momentum elektron yang diberi gangguan foton.
berubah.

3.2.1 Ketidakpastian Momentum dan Posisi

Pengukuran momentum foton dan lokasi elektron ini, yang oleh Heisenberg, memberi intuisi fisika berupa ketidakpastian menentukan momentum dan lokasi partikel. Prinsip ketidakpastian ini dikenal sebagai prinsip ketidakpastian Heisenberg. Adapun tahap-tahap prinsip ini adalah:

1. Dari postulat kondisi kuantum de Brogliè, yaitu:

$$n\lambda = 2\pi r \tag{3.16}$$

maka bilangan gelombang atau panjang gelombang adalah setara dengan jarak r. Jarak r, adalah satuan panjang yang merupakan kumpulan posisi, Δx , dengan demikian didapat ungkapan

$$\Delta x \sim \Delta \lambda$$
 (3.17)

Gambar 3.9: Kesetaraan antara posisi, Δx , dengan panjang gelombang $\Delta \lambda$.

- Bila partikel diganggu oleh oleh foton yang memiliki *group* panjang gelombang maka juga akan didapat persamaan seperti persamaan 3.17. Hal ini memberikan pemahaman untuk beberapa kasus berikut, pada Gambar 3.9:
 - (a) Bila group fungsi gelombang memiliki amplitudo, *A*, sebesar o, maka Persamaan 3.17 berubah dan menghasilkan nilai sebesar:

$$\Delta x = \Delta \lambda \tag{3.18}$$

(b) Bila group fungsi gelombang memiliki amplitudo, *A*, lebih besar dari o (> 0), maka Persamaan 3.17 berubah dan menghasilkan nilai sebasar:

$$\Delta x > \Delta \lambda \tag{3.19}$$

(c) Maka bila Persamaan 3.18 dan Persamaan 3.19 digabung, secara umum, akan didapat:

$$\Delta x \ge \Delta \lambda \tag{3.20}$$

atau menghasilkan ungkapan:

$$\frac{\Delta x}{\Delta \lambda} \ge 1 \tag{3.21}$$

3. Arti fisika dari persamaan 3.21 adalah seperti yang tampak pada Gambar 3.10.

Gambar 3.10: Kaitan Δx dan $\Delta \lambda$ dalam prinsip ketidakpastian Heisenberg.

Dari gambar 3.10 ini dapat dijelaskan hal-hal sebagai berikut:

- (a) Pada λ besar dan Δp sangat kecil, maka momentumnya secara tepat dapat diukur, tetapi pada daerah ini memiliki Δx lebar sehingga tidak mungkin secara tepat menentukan posisi partikel.
- (b) Pada daerah Δx sempit, maka posisi partikel akan secara tepat dapat diukur, tetapi pada daerah ini memiliki λ sangat kecil dan Δp sangat besar, sehingga tidak mungkin dapat secara tepat mengukur momentum partikel.
- 4. Dengan menggunakan panjang gelombang de Brogliè, yaitu:

$$\lambda = \frac{h}{p} \tag{3.22}$$

maka di dapat group panjang gelombang de Brogliè, yaitu:

$$\Delta \lambda = \frac{h}{\Delta p} \tag{3.23}$$

sehingga ungkapan Persamaan 3.21 menjadi:

$$\frac{\Delta x \Delta p}{h} \ge 1 \quad \text{atau} \tag{3.24}$$

$$\Delta x \Delta p \ge h \tag{3.25}$$

Ungkapan ini dikenal sebagai prinsip ketidakpastian Heisenberg bagi posisi dan momentum partikel, dan hal ini memberi konsep kerapatan pertikel, yang nantinya digunakan dalam konsep kerapatan elektron, yaitu bahwa elektron tidak dapat ditentukan posisinya tetapi yang bisa hanya kerapatannya, yaitu seluas *h*. Dengan demikian antara Δx dengan Δp memiliki luas keratapan (*density*) pertikel sebesar *h*.

Ketidakpastian dalam posisi dan momentum suatu partikel ini berpengaruh pada ketidakpastian dalam kecepatan partikel tersebut. Konsep ketidakpastian kecepatan ini dapat diturunkan dari persamaan momentumnya, yaitu p=mv, sehingga didapat:

$$\Delta p = m \Delta v \tag{3.26}$$

Ketidakpastian kecepatan ini sebanding dengan ketidakpastian momentum partikel, bila partikel berada dalam luasan yang cukup, maka momentum dapat diamati, dengan demikian kecepatan partikel juga dapat diamati. Maka sebaliknya bila posisi dapat secara tepat teramati, momentum tidak dapat teramati, dengan demikian kecepatan partikel tidak dapat teramati dengan pasti.

3.2.2 Ketidakpastian Energi dan Waktu

Heisenberg juga mengusulkan hal lain yaitu prinsip ketakpastian energi dan waktu yang menjelaskan adanya ketidakpastian waktu terhadap ketidakpastian pengukuran energi suatu pertikel. Adapun tahap-tahap prinsip Ketidakpastian Energi dan Waktu ini adalah:

1. Dari hukum radiasi Planck, yaitu:

$$E = h\nu \tag{3.27}$$

maka frekuensi ν menghasilkan harga yang berbanding terbalik dengan waktu t. Frekuensi ν adalah satuan kemampuan putaran terhadap waktu, t, dan merupakan kumpulan berbagai puratan, $\Delta \nu$, dengan demikian didapat ungkapan:

$$\Delta \nu \sim \Delta(\frac{1}{t}) \tag{3.28}$$

Bila partikel memiliki *group* frekuensi maka juga akan didapat bahwa:

$$\Delta \nu \sim \frac{1}{\Delta t} \tag{3.29}$$

Gambar 3.11: Kesetaraan antara frekuensi, Δv , dengan waktu $\frac{1}{\Delta t}$.

Persamaan 3.29 ini juga memberikan pemahaman untuk beberapa kasus berikut seperti yang tampak pada Gambar 3.11:

(a) Bila group frekuensi memiliki maksimal putaran sebesar ν_1 , maka menghasilkan nilai:

$$\Delta \nu = \frac{1}{\Delta t} \tag{3.30}$$

(b) Bila group frekuensi memiliki putaran $\nu_{1,2,3,...}$, maka menghasilkan nilai:

$$\Delta \nu > \frac{1}{\Delta t} \tag{3.31}$$

Maka secara umum didapat:

$$\Delta \nu \ge \frac{1}{\Delta t} \tag{3.32}$$

atau menghasilkan ungkapan:

$$\Delta \nu \Delta t \ge 1 \tag{3.33}$$

3. Arti fisika dari Persamaan 3.33 dapat dilihat pada Gambar 3.12.

Dari gambar 3.12 ini juga dapat dijelaskan beberapa hal sebagai berikut:

Gambar 3.12: Kaitan Δv dan Δt dalam prinsip ketidakpastian Heisenberg.

- (a) Pada *t* besar dan Δv sangat kecil, maka frekuensinya secara tepat dapat diukur, tetapi pada daerah ini memiliki Δt lebar sehingga tidak mungkin secara tepat menentukan waktu partikel berputar.
- (b) Pada daerah Δt sempit, maka waktu putaran elektron akan secara tepat dapat diukur, tetapi pada daerah ini memiliki ν sangat kecil, sehingga tidak mungkin dapat secara tepat mengukur frekuensi partikel.
- 4. Dengan menggunakan rumus frekuensi Planck, yaitu:

$$\nu = \frac{E}{h} \tag{3.34}$$

maka di dapat group frekuensi menjadi:

$$\Delta \nu = \frac{\Delta E}{h} \tag{3.35}$$

sehingga ungkapan Persamaan 3.33 menjadi:

$$\frac{\Delta E}{h}\Delta t \ge 1$$
, atau (3.36)

$$\Delta E \Delta t \ge h \tag{3.37}$$

Ungkapan ini dikenal sebagai prinsip ketidakpastian Heisenberg bagi energi dan waktu, dimana semakin kita mengetahui pengukuran energi maka semakin sulit kita mengukur waktu terjadinya energi tersebut dan sebaliknya semakin kita tahu waktu pengukuran maka semakin sulit seberapa besar energi tersebut terjadi, kecuali seluas *h*. Dengan demikian antara ΔE dengan ΔT memiliki luas pengukuran pertikel sebesar *h* saja.

3.2.3 Big Bang & Hari Kiamat

Dari Persamaan Ketidakpastian Heisenberg ini dapat diungkapkan hal-hal nya sangat penting dalam kehidupan, seperti Asal mula alam semesta dan hari akhir alam semesta, yaitu:

- Asal Mula Alam Semesta. Kita dapat mengukur volume materi pada saat sebeum terjadinya peristiwa *Big bang* (Ledakan Besar). Dari Persamaan Heisenberg (Persamaan 3.41), menjelaskan bahwa bila kita dapat mengukur suatu energi, (*E*), pada suatu keaadan serta pada saat yang bersamaan dapat juga mengukur waktunya, (*t*), maka luas perkalian keduanya adalah sebesar *h*. Maka pada saat sebelum meledak, meteri kecil yang masif ini, memiliki dual hal:
 - Energi potensial, $E_{Pot} =$ Sangat Besar, dan
 - Terjadi pada saat t = 0

Pada keaadan ini Energi dan waktunya sangat terukur, sehingga luas bola materi masif *Big Bang*, *L*, sesaat sebelum meledak adalah sebesar *h*, atau:

$$L = 6,626x10^{-34} Js$$

$$\approx 6,626x10^{-34} m^2$$
(3.38)

Atau volume bola materi big bang, *V*, adalah:

$$V = \frac{4\pi}{3} \left(\sqrt{\frac{6,626x10^{-34}m^2}{4\pi}} \right)^3 \approx 1.604209458x10^{-51}m^3 \quad (3.39)$$

Seberapa besar energi yang dibutuhkan untuk meledakkan materi sebesar 1.604209458 $x10^{-51}m^3$ ini? Melalui Persamaan 3.41, didapat:

$$\Delta E \geq \frac{h}{\Delta t}$$

$$\geq \frac{6,626 \times 10^{-34} Js}{0}$$

$$\geq \text{Tidak Berhingga} \qquad (3.40)$$

Dengan demikian kita dapat mengetahui bahwa volume materi masif sesaat sebelum *Big Bang* meledak adalah sebesar $6,626x10^{-34}m^3$ dengan kekuatan energi untuk meledakan materi masif itu adalah sebesar Tidak Berhingga.

2. Akhir Alam Semesta. Dari penjabaran hukum ketidakpastian Heisenberg bagi energi dan waktu: Apakah kita sudah sanggup menghitung seberapa besar energi saat terjadinya kiamat itu? Apakah kita sudah sanggup menjawab pertanyaan kapankah kiamat tiba?

Kita tidak mungkin dapat mengetahui kapan (t) suatu kiamat alam semesta ini akan terjadi? Hal ini karena pada saat kiamat maka derajat kekacauan alam semesta atau energi tropi (ΔS)-nya Sangat Besar, energi entropi besar atau maksimal ini adalah energi yang sangat terukur. Dengan demikian pada saat energinya sangat terukur, waktunya menjadi sangat tidak terukur atau waktunya menjadi tidak pasti, hal ini dapat diungkapkan oleh:

$$\Delta t \geq \frac{h}{\Delta E}$$

$$\geq \frac{6,626 \times 10^{-34} Js}{Tidak \ Berhingga}$$

$$\geq \text{Tidak Terukur} (3.41)$$

Gambar 3.13: Model elektron Heisenberg dalam ukuran tertentu.

- Secara hukum termodinamika, kita sudah dapat memperkirakan seberapa besar energi pada saat kiamat itu berlangsung, yaitu energi dengan derajat kekacauan maksimal.
- Sesuai hukum ketidakpastian Heisenberg bagi energi dan waktu akan konsekuensi dari pengukuran yang tepat terhadap besarnya energi saat kiamat, maka kita menjadi tidak mengetahui waktu berlangsungnya kiamat tersebut, kecuali sebesar *h*.
- Namun bila ada Peramal yang mengetahui waktu terjadinya Hari Kiamat, maka peluang kebenarannya dalam menentukan kapan Hari Kiamat akan terjadi hanya sebesar 6,626x10⁻³⁴%

MASALAH MIKROSKOPIK. Posisi dari elektron diketahui terletak pada daerah, $\Delta x = 10$ Å, (lihat Figure 3.13), maka hitunglah ketakpastian dalam kecepatannya, Δv ? Apakah ketidakpastian kecepatan elektron ini dapat berpengaruh pada pengukuran partikel elektron? **Jawab**:

Dari prinsip ketakpastian Heisenberg bahwa Δx∆p ≥ h, sehingga didapat:

$$\Delta p \ge \frac{h}{\Delta x} = \frac{6,626x10^{-34}Js}{1,0x10^{-9}m} = \frac{6,626x10^{-34}kgm^2s^{-1}}{1,0x10^{-9}m}$$
$$= 6,626x10^{-34}kgms^{-1}$$

Jadi didapat bahwa nilai $\Delta p \ge 6,626x10^{-34} kgms^{-1}$. Sedangkan untuk mengetahui ketakpastian dalam kecepatannya, yaitu:

$$\Delta p = m_e \Delta v \tag{3.42}$$

maka:

$$\Delta v = \frac{\Delta p}{m_e} \ge \frac{6,626x10^{-34}kgms^{-1}}{9,11x10^{-19}kg} \ge 7,27x10^6m$$

Jadi ketidakpastian kecepatan elektron adalah $\Delta v \ge 7,27x10^6 m$.

 Harga ketidapastian kecepatan dari hasil perhitungan di atas dapat berpengaruh terhadap pengukuran partikel elektron karena harga ini cukup mendekati harga gerak elektron bila mengalami eksitasi dari energi keadaan dasar hingga ke energi keadaan tereksitasi. Contoh Soal 3.2: Contoh Soal tentang fenomena ketidakpastian Heisenberg.

Gambar 3.14: Erwin Rudolf Josef Alexander Schrödinger, penemu konsep funsi gelombang dan energi elektron (Sumber: https://plus.google.com/+PauloCruz/ posts/NS39kpXW4aB).

3.3 Persamaan Gelombang Schrödinger

Erwin Rudolf Josef Alexander Schrödinger pada tahun 1926 mengusulkan *Schrödinger equation*, yaitu $\hat{H}\Psi = E\Psi$, dimana melalui persamaan ini kita diperkenalkan bentuk-bentuk panjang gelombang dan besar energinya serta kebolehjadian (*probability*) menemukan kerapatan elektron.

Setelah de Brogliè bekerja menyelesaikan sifat gelombang dari suatu elektron dalam atom, dan Heisenberg menjelaskan secara detail bahwa lintasan atau posisi suatu partikel adalah tidak pasti/terdefinisi, maka konsekuensi logikanya adalah harus merumuskan adanya kebolehjadian (*probability*) tersebut dalam menentukan posisi dan momentum suatu partikel. Ide ini adalah dasar dari mekanika kuantum yang diusulkan oleh Schrödinger.

Persamaan Schrödinger menerangkan pergerakan partikel-partikel mikroskopoik misal gerak elektron. Persamaan gerak gelombang Schrödinger diusulkan melalui rumus:

$$\hat{H}\Psi = E\Psi \tag{3.43}$$

dimana *H* adalah operator Hamiltonian, Ψ adalah fungsi gelombang yang merupakan fungsi diri (*eigenfunction*) dan *E* adalah energi yang merupakan nilai diri (*eigenvalue*).

3.3.1 Sejarah Singkat Penurunan Persamaan Schrödinger

Schrödinger merumuskan persamaan fungsi gelombang di atas dengan menggunakan terlebih dahulu sifat fungsi gelombang klasik sederhana satu dimensi, *x*, yaitu fungsi gelombang Maxwell:

$$\Psi(x) = A \sin\left(\frac{2\pi}{\lambda}\right) x \tag{3.44}$$

Fungsi gelombang klasik, $\Psi(x)$, ini haruslah bersifat dapat diperoleh kembali fungsi gelombang semula, $\Psi(x)$, bila dilakukan penurunan hingga ke orde dua, dengan demikian maka dihasilkan tahap pertama:

$$\frac{d\Psi(x)}{dx} = A\left(\frac{2\pi}{\lambda}\right)\cos\left(\frac{2\pi}{\lambda}\right)x \tag{3.45}$$

Kemudian pada tahap kedua didapat:

$$\frac{d^2 \Psi(x)}{dx^2} = -A \left(\frac{2\pi}{\lambda}\right)^2 \sin\left(\frac{2\pi}{\lambda}\right) x$$
$$= -\left(\frac{2\pi}{\lambda}\right)^2 \Psi(x)$$
(3.46)

Persamaan ini dapat juga ditulis dalam lazimnya konsep fungsi gelombang klasik, menjadi:

$$\frac{d^2\Psi(x)}{dx^2} + \left(\frac{2\pi}{\lambda}\right)^2 \Psi(x) = 0$$
(3.47)

Selanjutnya Schrödinger menyelasaikan besaran panjang gelombang, λ , dengan menggunakan konsep penurunan panjang gelombang de Brogliè di atas yaitu

$$\lambda = \left(\frac{h}{p}\right) \tag{3.48}$$

sehingga didapat:

$$\frac{d^2\Psi(x)}{dx^2} + \left(\frac{2\pi p}{h}\right)^2 \Psi(x) = 0 \tag{3.49}$$

Seperti halnya dengan ilmuwan Bohr dan ilmuwan sebelumnya, maka Schrödinger juga menggunakan hukum kekekalan energi melalui Operator Hamiltonian \hat{H} yaitu jumlah dari operator energi kinetik klasik, \hat{K} , dengan operator energi potensial kalsik, \hat{V} , yaitu

$$E \equiv \hat{H} = \hat{K} + \hat{V}$$
$$= \frac{\hat{p}_x^2}{2m} + V(x)$$
(3.50)

Harga momentum, p, di atas dapat diselesaikan menjadi:

$$\hat{p}_{x} = \begin{cases} +\sqrt{2m \left[E - V(x)\right]} , & \text{untuk materi} \\ -\sqrt{2m \left[E - V(x)\right]} , & \text{untuk anti-materi} \end{cases}$$
(3.51)

Besaran Momentum yang dihasilkan memiliki dua harga yaitu harga (+) untuk diterapkan pada partikel atau materi misalnya elektron, sedangkan harga (-) dapat diterapkan pada anti-partikel atau antimateri misalkan anti-materi dari elektron yaitu positron. Namun pada pembahasan kajian kimia kuantum ini, maka harga momentum, p, hanyalah yang berharga positif. Hal ini didasarkan pada bahwa kajian kimia kuntum yang lazimnya diterapkan pada atom dan molekul masih terpusat pada sifat dan prilaku elektron.

Bila harga momentum positif ini diperlakukan dengan melibatkan panjang gelombang de Brogliè, λ , maka didapat harga panjang gelombang de Brogliè terkoreksi menjadi:

$$\lambda = \left(\frac{h}{\sqrt{2m[E - V(x)]}}\right) \tag{3.52}$$

Bila Persamaan 3.52 ini dimasukkan ke dalam Persamaan 3.47 maka didapat:

$$\frac{d^2\Psi(x)}{dx^2} + \left(\frac{2\pi(\sqrt{2m[E-V(x)]})}{h}\right)^2 \Psi(x) = 0$$
$$\frac{d^2\Psi(x)}{dx^2} + \frac{8\pi^2 m}{h^2} [E-V(x)]\Psi(x) = 0$$
(3.53)

Sehingga secara umum persamaan Schrödinger sederhana atau untuk gerak satu dimensi diungkapkan sebagai:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(x)}{dx^2} + V(x)\Psi(x) = E\Psi(x)$$
(3.54)

Atau disungkat menjadi Persamaan Schrödinger, yang sangat terkenal yaitu:

$$\hat{H}\Psi(x) = E\Psi(x) \tag{3.55}$$

Sehingga melalui model Persamaan Schrödinger ini didapat Operator Hamiltonian, \hat{H} , untuk mekanika kuantum, da bila

$$\hbar = \frac{h}{2\pi} \tag{3.56}$$

digunakan pada Operator Hamiltonian, maka didapat:

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)$$
(3.57)

Dari perumusan Operator Hamiltonian bagi mekanika kuantum ini muncullah konsep *eigen* sebagai konsep diri (jatidiri), yaitu:

- 1. eigenvalue sebagai nilai diri untuk E,
- 2. *eigenfunction* sebagai fungsi diri untuk $\Psi(x)$.
- 3. *eigenoperator* sebagai operator diri untuk \hat{H} .

Persamaan Schrödinger ini menjadi sejarah baru dalam penyelasaian masalah mekanika kuantum terumata pada perubahan operator dari operator mekanika kalsik menjadi operator mekanika kuantum.

3.3.2 Cara membaca Persamaan Schrödinger

Persamaan Schrödinger adalah persamaan yang cukup terkenal karena bila kita berhasil menyelesaikan Persamaan Schrödinger ini maka kita akan mengetahui nilai diri dari meteri yang kita pelajari, dalam hal ini elektron, atom dan molekul.

Persamaan Schrödinger seperti pada Persamaan 3.55 adalah sebagai berikut: "Fungsi gelombang, $\Psi(x)$, yang dioperasikan terhadap suatu operator Hamiltonian, \hat{H} , akan menghasilkan fungsi gelombang itu sendiri, $\Psi(x)$, dan nilai dirinya, *E*, sendiri "

3.3.3 Konsep Kebolehjadian Menemukan Partikel

Makna fisik dari Persamaan Schrödinger di atas harus mampu menjelaskan keberadaan partikel atau materi dalam rentang panjang x_1 hingga x_2 suatu batasan energi potensial V(x) tertentu. Keberadaan partikel ini menjadi masalah penting, karena menurut Hukum Ketidakpastian Heisenberg, partikel tidak mungkin dapat ditentukan posisi atau keberadaannya secara pasti.

Untuk itulah Max Born mengusulkan makna fisik intensitas partikel (*intensity of the particle*) yang menjelaskan rapat muatan (*charge density*) dari keadaan energi tertentu dan pada fungsi gelombang tertentu. Max Born mengusulkan kerumitan Persamaan Schrödinger ini berupa konsep kebolehjadian (*probability*) menemukan elektron dengan rumusan:

$$\Psi^*(x)\Psi(x)dx \approx Charge \ density$$
 (3.58)

Dengan $\Psi^*(x)$ adalah fungsi gelombang komplek konjugasi dari fungsi gelombang komplek $\Psi(x)$. Kuantitas komplek konjugasi ini didapat dengan mengubah (*i*) menjadi (-i), yaitu suatu konsep perumusan yang penting dalam memahami mekanika kuantum.

Keberadaan fungsi gelombang konjugasi ini adalah sebuah keniscayaan dalam mempelajari fenomena cahaya. Hal ini karena secara eksperimen fenomena keberadaan partikel selalu komplementer dengan keberadaan anti-partikel.

$$\Psi(x) \longrightarrow \begin{cases} \Psi(x) , & \text{untuk materi} \\ \\ \Psi^*(x) , & \text{untuk anti-materi} \end{cases}$$
(3.59)

Fungsi gelombang ($\Psi(x)$), yang merupakan fungsi dari suatu pertikel, dapat diasumsikan berada dalam suatu *box* energi dengan batasan (dapat dilihat pada Gambar 3.16) yaitu keadaan energi potensial:

$$V(x) \begin{cases} = \sim, \text{ pada daerah: } (-\sim < x < x_1), (x_2 < x < \sim) \\ = 0, \text{ pada daerah: } (x_1 \le x \le x_2) \end{cases}$$
(3.60)

Dari Persamaan 3.60 ini dapat dijelaskan bahwa $V(x) = \sim$ di luar dan V(x) = 0 di dalam daerah antara posisi awal, x_1 , dengan posisi akhir, x_2 , maka kebolehjadian untuk menemukan partikel adalah sebesar 1 (satu). Atau pada keadaan energi apapun pastilah akan menemukan partikel dengan konsep:

Gambar 3.15: Max Born, penemu konsep kebolehjadian menemukan partikel (Sumber: http://www.quotationof.com/maxeastman.html).

Gambar 3.16: Konsep Box Max Born, box sebagai peluang menemukan partikel.

$$\int_{x_1}^{x_2} \Psi^*(x) \Psi(x) dx = 1$$

= Probability (3.61)

Persamaan di atas merupakan konsep kebolehjadian dari fungsi gelombang $\Psi(x)$ yang sangat berguna dalam memahami harga-harga yang melekat dalam setiap koefisien-koefisien fungsi gelombang tersebut.

MASALAH ELEKTRON. Elektron dalam sebuah molekul H_2 dapat ditentukan fungsi gelombang elektronnya, maka Ilustrasikanlan bagaimana bentuk fungsi gelombang elektron dalam molekul H_2 tersebut? Bagaimanakah kebolehjadian menemukan elektron pada molekul H_2 ?

Jawab:

• Misalkan fungsi gelombang elektron pada molekul H₂ adalah $\Psi(x) = \sin x$, maka dari persamaan Schrödinger pada persamaan 3.57 didapat:

$$\hat{H}\Psi(x) = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi(x) + V(x)\Psi(x)$$
 (3.62)

• Melalui konsep kebolehjadian Max Born, Persamaan 3.58, yaitu:

$$\Psi^*(x)\Psi x dx \approx Charge \ density \tag{3.63}$$

Harga ketidapastian kecepatan dari hasil perhitungan di atas dapat berpengaruh terhadap pengukuran partikel elektron karena harga ini cukup mendekati harga gerak elektron bila mengalami eksitasi dari energi keadaan dasar hingga ke energi keadaan tereksitasi.

• Untuk kebolehjadian menemukan elektronnya adalah:

$$\int_{x_1}^{x_2} \Psi^*(x) \Psi(x) dx = Probability$$
(3.64)

Contoh Soal 3.3: Contoh Soal tentang fenomena elektron melalui persamaan Schrödinger.

3.4 Mekanika & Postulat Kuantum

Dari hukum-hukum: Postulat & Gelombang de Brogliè, Pertikel & Prinsip Ketidakpastian Heisenberg, dan Persamaan Gelombang Schrödinger, maka lahirlah mekanika dan postulat kuantum, yang disingkat menjadi postulat kuantum, dengan fungsi sebagai alat untuk memahami dasar-dasar matematika rumit dalam menjelaskan fenomena cahaya.

Postulat kuantum ini memberi gambaran tentang perbandingan perhitungan prediksi yang dihasilkan oleh postulat dengan data eksperimen. Postulat dibangun atas dasar murni perhitungan fisikamatematika dalam memahami fenomena cahaya. Berikut adalah 5 postulat kuatum:

3.4.1 Postulat 1

Suatu keadaan sistem mekanikan kuantum dikatakan lengkap adalah bila keadaan itu memiliki fungsi:

$$\Psi(\mathbf{r},t) \tag{3.65}$$

dimana fungsi tersebut bergantung pada koordinat partikel (**r**) dan juga pada waktu (t). Fungsi ini disebut sebagai fungsi gelombang atau fungsi keadaan, dimana fungsi ini mempunyai sifat penting yaitu bahwa

$$\Psi^*(\mathbf{r},t)\Psi(\mathbf{r},t)dxdydz \tag{3.66}$$

merupakan kebolehjadian menemukan partikel dalam volume elemen dx, dy, dz dan terlokasi sejauh r serta pada saat t.

Postulat 1 mekanika kuantum ini memberi implikasi dan konsekuensi logis berupa:

1. Normalisasi fungsi gelombang.

Munculnya konsep kebolehjadian (*probability*) dalam menemukan partikel atau elektron pada pembahasan di atas, memberi pengertian bahwa suatu fungsi keadaan harus dapat dinormalisasi secara matematika dengan rumus:

$$\iiint_{-\infty}^{\infty} \Psi^*(\mathbf{r}, t) \Psi(\mathbf{r}, t) dx dy dz = 1$$
(3.67)

Normalisasi ini bertujuan untuk mendapatkan harga kebolehjadian menemukan elektron atau pertikel dalam volume sebesar *xyz* atau sebesar perubahan volume dxdydz pada saat semua waktu *t*. Untuk menunjukkan semua dimensi ruang, maka biasanya besaran dxdydz disingkat $d\tau$, sehingga persamaan di atas menjadi:

Gambar 3.17: Diskusi tentang Postulat Mekanika Kuantum: Neils Bohr, Werner Heisenberg dan Wolfgang Pauli (Sumber: http://denstoredanske.dk /Sprogreligion-og-filosofi/Filosofi/ Mennesketsgrundvilk-C3-A5r /natur).

Dengan demikian maka melalui postulat 1 ini, rumusan fungsi $\Psi(\mathbf{r}, t)$ haruslah memenuhi penyelesaian normalisasi di atas agar memenuhi konsep perhitungan mekanika kuantum.

 $\int_{0}^{\infty} \Psi^{*}(\mathbf{r},t)\Psi(\mathbf{r},t)d\tau = 1$

(3.68)

2. Fungsi & batasan keadaan kuantum.

Akibat persyaratan normalisasi di atas maka tidak semua fungsi dapat terintegralkan secara kuadratik (*quadratically integrable*) menghasilkan kebolehjadian seharga 1 (satu). Hal ini sangat tergantung pada pemilihan fungsi serta batasan limit intergralnya. Bila kebolehjadian berharga bukan satu, maka fungs tersebut tidak memenuhi syarat batas keadaan kuantum.

Beberapa contoh Fungsi matematika dan batasannya yang memenuhi dan yang tidak memenuhi untuk postulat 1 mekanika kuantum dapat dilihat pada Tabel 3.1.

Fungsi	Batasan	Hasil	Persyaratan
$f(x) = e^{-x}$	(0,∞)	$\int_{0}^{\infty} e^{-2x} dx = 1$	terpenuhi
$f(x)=e^{-x}$	$(-\infty,\infty)$	$\int_{-\infty}^{\infty} e^{-2x} dx \neq 1$	tidak terpenuhi
$f(x) = \sin^{-1} x$	(-1,1)	$\int_{-1}^{1} \sin^{-2} x \neq 1$	tidak terpenuhi
$f(x) = \frac{\sin^{-1} x}{x}$	(0,∞)	$\int_{0}^{\infty} \frac{\sin^{-2} x}{x^2} = 1$	terpenuhi
$f(x) = e^{- x }$	$(-\infty,\infty)$	$\int_{-\infty}^{\infty} e^{- 2x } dx \neq 1$	tidak terpenuhi

3.4.2 Postulat 2

Untuk setiap yang dapat teramati pada mekanika klasik dan memperoleh hasil linear, maka setiap yang dapat teramati tersebut pada mekanika kuantum harus memenuhi operator mekanika kuantum.

Postulat 2 mekanika kuantum ini memberi implikasi dan konsekuensi logis berupa:

1. Operator mekanika kuantum.

Tabel 3.1: Contoh Fungsi & Batasan Keadaan Kuantum. Salah satu operator yang sudah dikenal pada mekanika klasik adalah operator energi kinetik, yaitu:

$$\hat{K}_x = \frac{\hat{p}_x^2}{2m} \tag{3.69}$$

Melalui penurunan persamaan Schrödinger yaitu persamaan 3.54 didapat Operator Hamiltonian bagi mekanika kuantum. Pada Operator Hamiltonian, yaitu persamaan 3.57, ini didapat operator energi kinetik untuk operasi mekanika kuantum, yaitu:

$$\hat{K}_x = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$
(3.70)

Tabel 3.2:	Operator	Klasik	dan	Kuantum
yang terp	enuhi.			

Teramati	Operator		
	Klasik	Kuantum	Operasi
Posisi	x	Ŷ	Perkalian dengan <i>x</i>
	r	Ŕ	Perkalian dengan r
Momentum	p_x	\hat{P}_x	$-i\hbar \frac{\partial}{\partial x}$
	р	Ŷ	$-i\hbar\left(\mathbf{i}\frac{\partial}{\partial x}+\mathbf{i}\frac{\partial}{\partial y}+\mathbf{k}\frac{\partial}{\partial z}\right)$
Momentum sudut	$l_x = xp_z - zp_y$	\hat{L}_x	$-i\hbar\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)$
	$l_y = zp_x - xp_z$	\hat{L}_y	$-i\hbar\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)$
	$l_z = xp_y - yp_x$	\hat{L}_z	$-i\hbar\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)$
Energi kinetik	K _x	$\hat{K_x}$	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}$
	K	Ŕ	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)$
Energi potensial	$V(x) \\ V(x,y,z)$	$ \hat{V}(x) \\ \hat{V}(x,y,z) $	Perkalian dengan $V(x)$ Perkalian dengan $V(x, y, z)$
Energi total	Е	Ĥ	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V(x, y, z)$

Keberhasilan Schrödinger dalam menurunkan operator klasik yang

teramati menjadi operator kuantum yang memenuhi persyaratan mekanika kuantum ini, telah memberi banyak jalan bagi penurunan operator lain. Salah satu operator lain yang diturunkan dari operator momentum klasik menjadi operator kuantum adalah operator momentum, yaitu dengan memasukkan Persamaan 3.69 kedalam Persamaan 3.70 didapat:

$$\hat{p}_x^2 = \left(-\hbar^2 \frac{d^2}{dx^2}\right) \\ = \left(-i\hbar \frac{d}{dx}\right) \left(-i\hbar \frac{d}{dx}\right)$$
(3.71)

Sehingga didapat operator momentum bagi mekanika kuantum yaitu:

$$\hat{p}_x = \left(-i\hbar\frac{d}{dx}\right) \tag{3.72}$$

Berikut adalah contoh operator klasik yang telah dialihkan menjadi operator kuantum, dapat dilihat pada Tabel 3.2.

2. Operator Hermitian.

Operator kuantum, selain harus dapat menyelesaikan semua persamaan untuk masalah fenomena cayaha, juga harus memiliki sifat yang dapat menghasilkan harga *eigenvalue* yang *real* atau nyata. Artinya bila operator kuantum ini diselesaikan pada fungsi gelombang konjugasi $\Psi^*(\mathbf{r}, t)$ dan juga diselesaikan pada suatu operator terkonugasi \hat{A}^* maka tetap harus menghasilkan harga *eigenvalue* yang tetap *real*.

Operator yang memenuhi postulat 2 mekanika kuantum ini dikenal sebagai Operator Hermitian atau \hat{A} . Contoh sederhana dalam oprasi Hermitian adalah Persamaan Schrödinger yang setara dengan persamaan 3.55, yaitu:

$$\hat{H}\Psi(\mathbf{r},t) = E\Psi(\mathbf{r},t) \tag{3.73}$$

Sifat Operator Hermitian akan terpenuhi bila sisi kiri persamaan ini dikalikan dengan fungsi gelombang konjugasinya, dan juga harus memenuhi harga normalisasi dari postulat 1, sehingga didapat:

$$\int_{-\infty}^{\infty} \Psi^*(\mathbf{r}, t) \hat{H} \Psi(\mathbf{r}, t) d\tau = E \int_{-\infty}^{\infty} \Psi^*(\mathbf{r}, t) \Psi(\mathbf{r}, t) d\tau$$
$$= E \qquad (3.74)$$

Sifat Operator Hermitian juga harus terpenuhi bila sisi kanan persamaan ini dikalikan dengan operator konjugasinya, didapat:

Gambar 3.18: Ewrin Schrödinger memberi Orasi Ilmiah tentang Postulat Mekanika Kuantum (Sumber: http://quotesgram.com/schrodingeratomic-quotes/).

$$\int_{-\infty}^{\infty} \Psi(\mathbf{r}, t) \hat{H}^* \Psi^*(\mathbf{r}, t) d\tau = E^* \int_{-\infty}^{\infty} \Psi(\mathbf{r}, t) \Psi^*(\mathbf{r}, t) d\tau$$
$$= E^*$$
$$= E \qquad (3.75)$$

Harga *eigenvalue* tidak terpengaruh oleh tanda konjugasi karena *E* adalah *real*, maka $E = E^*$. Dari kedua penyelesaian di atas didapat:

$$\int_{-\infty}^{\infty} \Psi^*(\mathbf{r},t) \hat{H} \Psi(\mathbf{r},t) d\tau = \int_{-\infty}^{\infty} \Psi(\mathbf{r},t) \hat{H}^* \Psi^*(\mathbf{r},t) d\tau \qquad (3.76)$$

Dengan demikian maka Operator Hamiltonian adalah memenuhi sifat dalam mekanika kuantum atau memenuhi sifat Hermitian. Semua operator mekanika kuantum harus memenuhi sifat Hermitian, sehingga untuk Postulat 2 memiliki sub-postulat, yaitu:

Postulat 2' Untuk setiap yang dapat teramati pada mekanika klasik dan memperoleh hasil linear, maka setiap yang dapat teramati tersebut pada mekanika kuantum harus memenuhi sifat operator Hermitian.

3.4.3 Postulat 3

Pada setiap pengukuran yang dapat teramati dengan operator kuantum \hat{A} , maka akan menghasilkan nilai-nilai, E, yang akan dapat teramati sebagai eigenvalue, dimana operasi ini memenuhi persamaan.

$$\hat{A}\Psi(\mathbf{r},t) = E\Psi(\mathbf{r},t)$$
(3.77)

Postulat 3 mekanika kuantum ini memberi implikasi dan konsekuensi logis berupa:

1. Keadaan terkuantisasi.

Secara umum, operator \hat{A} mengasilkan *eigenfunction* dan *eigenvalue* yang terkuantisasi bila operator ini bekerja pada sistem energi potensial yang tersekat. Sehingga operator Hamiltonian (\hat{H}) yang bekerja pada persamaan Schrödinger, dan ditulis kembali manjadi:

$$\hat{H}\Psi_n(\mathbf{r},t) = E_n \Psi_n(\mathbf{r},t) \tag{3.78}$$

Gambar 3.19: Werner Heisenberg memberi kuliah kelas tentang Postulat Mekanika Kuantum (Sumber: https://plus.maths.org/content/ schrodinger-1).

Penyelesaian persamaan ini menghasilkan harga-harga *eigenvalue*, E_n , dan *eigenfunction*, $\Psi_n(\mathbf{r}, t)$, yang teramati berupa set nilai:

$$E_n = E_1, E_2, E_3, \dots$$

$$\Psi_n(\mathbf{r}, t) = \Psi_1(\mathbf{r}, t), \Psi_2(\mathbf{r}, t), \Psi_3(\mathbf{r}, t), \dots$$
 (3.79)

Harga-harga tersebut adalah merupakan nilai dan fungsi khusus yang secara eksperimen dapat teramati dengan. Maka dapat dijelaskan bahwa untuk satu set nilai E_n pada setiap keadaan $\Psi_n(\mathbf{r}, t)$ adalah hasil dari operator \hat{H} dan ini disebut sebagai *spectrum* \hat{H} .

2. Spektrum cahaya matematis.

Dalam setiap data eksperimen, foton terjebak dalam energi potensial tersekat, sehingga entitas data merupakan harga-harga dari setiap frekuensi, ν , yang teramati. Hukum radiasi Planck, Persamaan 2.12, menjadi penting karena frekuensi, ν , tersebut berbanding lurus dengan total energi yang teramati:

$$\Delta E = h \Delta \nu \tag{3.80}$$

Dengan demikian persamaan ini menunjukkan bahwa spektrum teramati secara eksperimen dari suatu sistem adalah memiliki hubungan dengan spektrum secara matematika. Dalam pemahaman ini menunjukkan juga bahwa set nilai-nilai *eigenvalue*, E_n , dari operator (\hat{H}) merupakan *spectrum* itu sendiri. Ini adalah salah satu keistimewaan dari Persamaan Schrödinger sebagai suatu persamaan *eigenvalue* yang khusus dan menarik.

3.4.4 Postulat 4

Jika suatu sistem adalah dalam keadaan terukur dengan menormalisasikan fungsi gelombang $\Psi(\mathbf{r}, t)$, maka harga rerata dari hasil yang teramati, E, oleh operator adalah diungkapkan oleh:

$$\langle E \rangle = \int_{-\infty}^{\infty} \Psi^*(\mathbf{r}, t) \hat{A} \Psi(\mathbf{r}, t) d\tau$$
(3.81)

Postulat 4 mekanika kuantum ini memberi implikasi dan konsekuensi logis berupa:

1. Distribusi harga energi.

Secara eksperimen, hasil pengukuran energi (E) yang untuk setiap sistem, secara mekanika kuantum, diungkapkan oleh $\Psi(\mathbf{r}, t)$ dapat terjadi bila $\hat{A} = \hat{H}$. Harga rerata energi ini menghasilkan harga

Gambar 3.20: Ewrin Schrödinger di ruang kerjanya dalam menyelesaikan Postulat Mekanika Kuantum (Sumber: http://www.suppose.de/texte/ schroedinger.html).

rerata energi (
 $\langle E\rangle)$ dan harga keragaman pengukuran (
 $\sigma_E^2)$ dengan rumusan-rumusan:

$$\langle E \rangle = \int_{-\infty}^{\infty} \Psi_n^*(\mathbf{r}, t) \hat{H} \Psi_n(\mathbf{r}, t) d\tau = \int_{-\infty}^{\infty} \Psi_n^*(\mathbf{r}, t) E_n \Psi_n(\mathbf{r}, t) d\tau = E_n \int_{-\infty}^{\infty} \Psi_n^*(\mathbf{r}, t) \Psi_n(\mathbf{r}, t) d\tau = E_n$$
 (3.82)

Untuk harga distribusi pengukuran $\langle E^2 \rangle$ didapat:

$$\langle E^2 \rangle = \int_{-\infty}^{\infty} \Psi_n^*(\mathbf{r}, t) \hat{H}^2 \Psi_n(\mathbf{r}, t) d\tau = \int_{-\infty}^{\infty} \Psi_n^*(\mathbf{r}, t) E_n^2 \Psi_n(\mathbf{r}, t) d\tau = E_n^2 \int_{-\infty}^{\infty} \Psi_n^*(\mathbf{r}, t) \Psi_n(\mathbf{r}, t) d\tau = E_n^2$$
(3.83)

Sehingga didapat harga keberagaman pengukuran sebagai berikut:

$$\sigma_E^2 = \langle E^2 \rangle - \langle E \rangle^2$$

= $E_n^2 - E_n^2$
= 0 (3.84)

Harga keragaman adalah nol untuk semua pengukuran energi, E_n , dan hal ini menunjukkan bahwa kebolehjadian adalah satu.

3.4.5 Postulat 5

Postulat 5: Suatu fungsi gelombang atau suatu fungsi keadaan yang bergantung waktu dari sistem adalah terbangun dari Persamaan Schrödinger yang bergantung waktu.

$$\hat{H}\Psi(\mathbf{r},t) = i\hbar\frac{\partial\Psi}{\partial t}$$
(3.85)

Gambar 3.21: Ewrin Schrödinger memberi kuliah kelas tentang Postulat Mekanika Kuantum (Sumber: http://www.hinduhistory.info/erwinschrodinger-vedantist-and-father-ofquantum-mechanics/).

Postulat 5 mekanika kuantum ini memberi implikasi dan konsekuensi logis berupa:

1. Eksitasi & emisi partikel.

Dalam ilmu kimia, kondisi keadaan tidak tereksitasi (*stationary-state*) dan tidak bergantung waktu (*time-independent*) adalah lazim digunakan dalam banyak hal baik secara teori maupun secara eksperimen. Keadaan (*stationary-state*) ini diungkapkan dalam fungsi gelombang $\psi(\mathbf{r})$ yang tidak bergantung waktu. Kondisi ini lazimnya digunakan dalam menjelaskan adanya reaksi kimia, juga dalam menjelaskan struktur suatu atom atau molekul.

Akan tetapi bila mengkaji tentang fenomena eksitasi, baik yang mengakibatkan adanya respon molekul berupa rotasi, vibrasi, translasi, maka akan sangat membutuhkan kajian pengaruh waktu atau *time-dependent* bagi sistem. Hal ini karena memang ada pengaruh waktu pada saat kapan terjadinya eksitasi? dan kapan ternyadinya de-eksitasi atau emisi setelah eksitasi tersebut? Persamaan Schrödinger yang bergantung waktu ini menjadi sangat penting untuk menjawab pertanyaan diatas.

Dimulai dari pemisahan persamaan Persamaan Schrödinger yang bergantung waktu (*time-dependent*), untuk dimensi satu (x), yaitu:

$$\Psi(x,t) = \psi(x)\psi(t) \tag{3.86}$$

Sehingga didapat hasil pemisahan antara variable posisi (x) dan waktu t, yaitu:

$$\Psi(x,t) = \psi(x)\psi(t) \tag{3.87}$$

Bila Postulat 5 dan bila harga $\hat{H}\psi(x) = E\psi(x)$ diterapkan terhadap persamaan di atas, maka didatadidapat:

$$\frac{1}{\psi(x)}\hat{H}\psi(x) = \frac{i\hbar}{\psi(t)}\frac{d\psi(t)}{dt}$$
$$E = \frac{i\hbar}{\psi(t)}\frac{d\psi(t)}{dt}$$
(3.88)

Maka dengan mamasukkan harga $i = -\frac{1}{i}$ didapat rumusan:

$$\frac{d\psi(t)}{dt} = -\frac{i}{\hbar}E\psi(t) \tag{3.89}$$

Persamaan 3.89 ini diselesaikan dengan mengintegralkan pada masingmasing variabel fungsi $\psi(t)$ dan variable t pada kedua sisinya dan didapat:

$$\int \frac{d\psi(t)}{\psi(x)} = -\frac{i}{\hbar} E \int dt$$

$$\ln \psi(t) = -\frac{i}{\hbar} Et$$

$$\psi(t) = e^{-iEt/\hbar}$$
(3.90)

Maka bila persamaan ini dimasukkan ke dalam persamaan 3.86 didapat:

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$
(3.91)

Untuk keadaan tingkat energi yang berbeda, yaitu tingkat energi ke-*n*, maka didapat:

$$\Psi_n(x,t) = \psi_n(x)e^{-iE_nt/\hbar}$$
(3.92)

Persamaan ini menunjukkan adanya dua keadaan yang bergantung pada waktu (t), yaitu $\Psi_n(x,t)$ dan $\Psi_{n+1}(x,t)$, dan dengan energi yang berbeda, yaitu E_n sebagai keadaan ground state dan E_{n+1} sebagai keadaan excited state.

- 3.1 GELOMBANG DE BROGLIÈ. Bila panjang suatu ikatan kimia C[~]C adalah 1,0 Å, mengalami eksitasi dari keadaan dasar ke keadaan tereksitasi ke dua setalah diberi sinar. Hitunglah panjang gelombang elektron yang ada dalam ikatan kimia tersebut? (Gunakan konsep panjang gelombang de Brogliè untuk fungsi gelombang linear)
- 3.2 KETIDAKPASTIAN HEISENBERG. Sinar foton hijau (dengan panjang gelombang 5,3x10⁻⁷m) digunakan untuk mengamati elektron pada senyawa krolofil pada proses fotosintesis suatu daun. Hitunglah berapa ketidakpastian dalam kecepatan elektron tersebut? (Gunakan bahwa $\Delta x \sim \Delta \lambda$)
- 3.3 PERSAMAAN SCHRÖDINGER. Pada proses reaksi oksidasi reduksi, maka elektron dapat bergerak menuju elektroda. Apakah elektron ini dapat dikatakan sebagai elektron yang bergerak bebas? Bila Ya, tuliskanlah persamaan Schrödingernya? Bila Tidak, tuliskanlah perkiraan persamaan Schrödingernya?

4 *Persamaan Schrödinger dan Terapannya*

SCHRÖDINGER menjelaskan dengan baik sifat-sifat partikel/elektron melalui persamaan Schrödinger, dan dapat diselesaikan dan sekaligus diterapkan dalan berbagai variasi energi potensial tersekat. Hal ini penting karena dalam beberapa solusi persamaan Schrödinger tersebut berguna untuk menjawab masalah-masalah energi ikatan kimia, baik dalam kajian kimia organik maupun anorganik.

Persamaan Schrödinger, seperti yang telah diturunkan pada bab sebelumnya, sangat bergantung pada energi potensial yang diterapkan. Bentuk energi potensial secara umum dapat dibagi menjadi 2 jenis: Gambar 4.1: Area persamaan Schrödinger dan terapannya.

1. Bentuk energi potensial yang tidak tersekat dengan besar energi potensialnya adalah:

$$V(x)_{total} = 0 \rightarrow \text{energi tunggal}$$
 (4.1)

untuk semua harga *x*, maka akan menghasilkan keadaan energi yang kontinu atau berharga tunggal dimana tidak memiliki tingkattingkat energi yang terkuantisasi, karena partikel akan bergerak bebas dan hal ini cocok dengan mekanika klasik

2. Menurut Heisenberg, bahwa dalam kenyataannya partikel atau elektron yang diamati selalu diberi momentum, maka partikel selalu berada dalam bentuk potensial yang tersekat dengan harga yang tidak selalu nol:

$$V(x) \begin{cases} = 0 , & \text{kurva potensial idel} \\ \neq 0 , & \text{kurva potensial nyata} \end{cases}$$
(4.2)

Maka akan menghasilkan keadaan energi yang diskontinu atau berharga tidak tunggal sehingga hal ini tidak cocok dengan mekanika klasik.

Persamaan Schrödinger ini, kelak, dapat memprediksikan bentuk orbital atom dan molekul, momen dipol dan energi dan ikatan kimia dari suatu atom/senyawa.

.1 Partikel dalam box Nol Dimensi

Energi potensial *box* nol dimensi ini adalah model energi potensial yang paling sedarhana, hal ini karena pada model ini memiliki energi potensial partikel bebas yaitu:

$$V(x) = 0$$
 untuk semua daerah (4.3)

Potensial partikel bebas ini telah dapat menjelaskan gejala klasik radiasi elektromagnetik Maxwell, contoh elektron di ruang angkasa. Maka bila persamaan Schrödinger diterapkan, didapat:

Gambar 4.2: Model energi potensial gerak partikel bebas.

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(x)}{dx^2} + 0 = E\Psi(x)$$
(4.4)

Persamaan ini memberi dua buah solusi yang memenuhi persyaratan persamaan Schrödinger di atas, yang dapat dilihat pada Gambar 4.2, yaitu:

 Fungsi gelombang klasik Maxwell tunggal itu sendiri yang berprilaku bebas tanpa batas sejauh panjang (*x*), dan dengan panjang gelombang sebesar (λ), serta dengan harga amplitudo sebesar (Λ), yaitu:

$$\Psi(x) = A \sin\left(\frac{2\pi}{\lambda}x\right)$$

2. Energi tunggal tanpa kuantisasi harga energinya, yaitu

$$E = \left(\frac{h^2}{2m\lambda^2}\right)$$

Bila pada harga ini dimasukkan rumus momentum de Brogliè, yaitu

$$p = \frac{h}{\lambda} \tag{4.5}$$

maka didapat energi total yang merupakan harga dari energi kinetik klasik dari partikel bebas itu sendiri. Energi kinetik kuantum dan kinetik kalsik pada potensial tanpa sekat ini dirumuskan sebagai:

$$E = \frac{p^2}{2m} \tag{4.6}$$

Hal ini menunjukkan bahwa Konsep mekanika klasik masih berlalu untuk mempelajari fenomena cahaya atau foton namun dalam batasbatas energi potensial *box* nol dimensi.

Konsep pada Gambar 4.2 adalah konsep pertikel bergerak bebas pada potensial tanpa sekat dan

$$V(x) = 0 \rightarrow \Psi(x)_{tunggal}$$
 (4.7)

menghasilkan bentuk fungsi gelombang tunggal $\Psi(x)$ dan energi tunggal yang kontinu.

Dengan demikian kasus klasik akan cocok dengan kasus kuantum, bila partikel berada pada bentuk potensial tidak tersekat. Energi yang dihasilkan tidak memiliki tingkat-tingkat energi yang terkuantisasi. Artinya kasus klasik dan kasus kuantum, dengan bentuk potensial tanpa sekat, sama-sama tidak memiliki kuantisasi energi.

Persamaan Schrödinger yang sesungguhnya adalah diterapkan pada berbagai bentuk potensial yang tersekat yang merupakan kajian

Gambar 4.3: Erwin Schrödinger, menjelaskan pentingnya mencari solusi persamaan dirinya (Sumber: http://www.giornalettismo.com/ archives/ 1062669/erwin-schrodingerequazione-gatto-scatola-di-erwinschrodinger-scatola/erwin-schrodingeraustrian-physicist-lecturing-at-theblackboard-c-1950/).

utama dalam ilmu mekanika kuantum. Konsep mekanika kuantum yang menjadi penting penyelesaian Persamaan Schrödinger tersebut adalah diterapkan mulai dari potensial box 1 dimensi, potensial box 2 dimensi, potensial box 3 dimensi, potensial non-box 1 dimensi, potensial tunnelling, dan potensial tersekat lainnya yang akan dibahas pada pembahasan berikutnya.

Konsep Persamaan Schrödinger pada potensial tersekat tersebut berguna dalam membangun konsep struktur atom dan molekul senyawa kimia.

4.2 Partikel dalam Box 1 Dimensi

Partikel dalam kotak dikenal dengan potensial *box* 1 dimensi, yang hanya memiliki satu dimensi panjang *x*, dimana energi potensial ini adalah pendekatan bentuk potensial tersekat yang paling sederhana:

Potensial *box* satu dimensi, pada Gambar 4.4, untuk energi potensial pada daerah:

$$V(x) \begin{cases} = \sim, \text{ pada daerah: } (-\sim < x < 0), (L < x < \sim) \\ = 0, \text{ pada daerah: } (0 \le x \le L) \end{cases}$$
(4.8)

Harga $V(x) = \sim$ akan menghasilkan baik energi, *E*, maupun fungsi gelombang, $\Psi(x)$, sebagai harga yang tidak terdefinisi. Sedangkan energi potensial V(x) = 0 akan membentuk sumur empat persegi panjang tak-berhingga dan hanya pada daerah ini sajalah dapat diterapkannya persamaan Schrödinger, dengan ungkapan:

Gambar 4.4: Energi potensial box 1 dimensi.

$$-\frac{h^2}{8\pi^2 m} \frac{d^2 \Psi(x)}{dx^2} = E \Psi(x)$$
(4.9)

Secara singkat, dengan menggunakan fungsi gelombang Maxwell, maka solusi persamaan Schrödinger tersebut adalah:

$$\Psi(x) = A \sin\left(\frac{2\pi}{\lambda}x\right) \tag{4.10}$$

Fungsi gelombang ini harus didefinisikan dengan lengkap sesuai bentuk energi potensial yang tersekat dalam *box* 1 dimensi, yaitu harus menentukan:

- 1. Berapakah harga $\left(\frac{2\pi}{\lambda}\right)$? dan
- 2. Berapakah harga amplitudo, *A*?

Untuk menjawab kedua masalah di atas, maka tentukan dahulu nilai-nilai berikut yaitu:

$$x = 0$$
, maka didapat $\Psi(0) = 0$ (4.11)

sedangkan untuk:

$$x = L$$
, maka didapat
 $\Psi(L) = A \sin\left(\frac{2\pi}{\lambda}L\right)$
(4.12)

Karena pada posisi x = 0 dan x = L adalah mempunyai harga energi potensial yang sama yaitu V(x) = 0, maka didapat:

$$\Psi(0) = \Psi(L) = 0 \tag{4.13}$$

Sehingga dari Persamaan 4.12 didapat:

$$A\sin\left(\frac{2\pi}{\lambda}L\right) = 0 \tag{4.14}$$

Persamaan 4.14 ini akan terpenuhi bila:

$$\left(\frac{2\pi}{\lambda}L\right) = 0, \pi, 2\pi, 3\pi, \dots$$
(4.15)

Sehingga didapat harga:

$$\begin{pmatrix} \frac{2\pi}{\lambda}L \end{pmatrix} = n\pi \begin{pmatrix} \frac{2\pi}{\lambda} \end{pmatrix} = \frac{n\pi}{L}$$
 (4.16)

dengan n = 0, 1, 2, 3, ...

Sedangkan untuk menentukan harga A, maka perhitungannya ditentukan dengan konsep seperti yang tertuang dalam hukum kebolehjadian atau Persamaan 3.67, maka didapat:

$$\int_{0}^{L} \left(A \sin\left(\frac{2\pi}{\lambda}L\right) \right)^{2} dL = 1$$

$$A^{2} \int_{0}^{L} \sin^{2}\left(\frac{2\pi}{\lambda}L\right) dL = 1$$
(4.17)

Persamaan 4.17 ini adalah persamaan yang cukup rumit, sehingga membutuhkan rumus-rumus intergral yang telah diselesaikan oleh orang matematika, dan didapat rumus bahwa

$$\int \sin^2 x dx = \frac{1}{2} (x - \sin x . \cos x)$$
(4.18)

Dengan mensubstitusi Persamaan 4.11 dan Persamaan 4.14, maka Persamaan 4.17 menjadi:

$$A^{2} \int_{0}^{L} \sin^{2} \left(\frac{2\pi}{\lambda}L\right) dL = 1$$

$$A^{2} \left(\frac{1}{2} \left[L - \sin\left(\frac{2\pi}{\lambda}L\right) \cdot \cos\left(\frac{2\pi}{\lambda}L\right)\right]\right) \Big|_{0}^{L} = 1$$

$$A^{2} \left(\frac{1}{2} \left[L - 0\right] - \frac{1}{2} \left[0\right]\right) = 1$$

$$A^{2} \left(\frac{1}{2}L\right) = 1$$

$$A^{2} = \frac{2}{L} \qquad (4.19)$$

Sehingga didapat nilai A sebesar:

$$A = \sqrt{\frac{2}{L}} \tag{4.20}$$

Dengan demikian maka diperoleh fungsi gelombang dengan tingkat energi ken adalah:

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) \tag{4.21}$$

Bila Persamaan 4.21 ini disubstitusi ke dalam Persamaan 4.9 menghasilkan:

$$-\frac{h^2}{8\pi^2 m} \frac{d^2 \Psi_n(x)}{dx^2} = E_n \Psi_n(x)$$
(4.22)

Bila Persamaan 4.21 disubstitusi ke dalam Persamaan 4.22, maka akan diperoleh harga energi sebesar:

$$-\frac{h^2}{8\pi^2 m} \frac{d^2}{dx^2} \Psi_n(x) = E_n \Psi_n(x)$$

$$-\frac{h^2}{8\pi^2 m} \sqrt{\frac{2}{L}} \frac{d^2}{dx^2} \sin\left(\frac{n\pi}{L}x\right) = E_n \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)$$

$$-\frac{h^2}{8\pi^2 m} \left(\frac{n\pi}{L}\right) \sqrt{\frac{2}{L}} \frac{d}{dx} \cos\left(\frac{n\pi}{L}x\right) = E_n \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)$$

$$\frac{h^2}{8\pi^2 m} \left(\frac{n\pi}{L}\right)^2 \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) = E_n \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)$$

$$\frac{h^2}{8\pi^2 m} \left(\frac{n\pi}{L}\right)^2 = E_n \qquad (4.23)$$

Sehingga didapat harga energi untuk setiap tingkat ke n adalah

$$E_n = \frac{h^2 n^2}{8mL^2}$$
(4.24)

Gambaran dari Persamaan 4.21 dan Persamaan 4.24 dapat diungkap melalui Gambar 4.5 berikut:

Gambar 4.5: Solusi persamaan Schrödinger box 1 dimensi.

Gambar 4.5 adalah solusi dari persamaan Schrödinger pada potensial

Gambar 4.6: 1,3-butadiena suatu senyawa konjugasi lurus.

box 1 dimensi ini, yang merupakan gambaran tentang energi dan fungsi gelombangnya secara lengkap termasuk harga kebolehjadian menemukan partkel dalam setiap tingkat energinya, $\Psi_n^2(x)$, yaitu:

Solusi persamaan Schrödinger ini dapat menjelaskan adanya tingkattingkat energi ke *n* dan fungsi gelombang elektron yang berharga positif dan negatif, (+/-), dan kebolehjadian menemukan elektron, yang semuanya berharga positif.

Dari Gambar 4.5 dapat diprediksikan bahwa semakin menuju energi tinggi maka akan semakin mendekati hukum fisika klasik. Pada $n = \sim$ maka menghasilkan fungsi gelombang tunggal dan harga kebolehjadian pada semua harga x adalah sama dan tunggal yaitu $\Psi_{\sim}^2 = 1$, sedangkan harga energinya adalah tidak terdefinisi, $E = \sim$.

4.2.1 Terapan Potensial Box 1 Dimensi

Potensial *box* 1 dimensi dapat menjelaskan fenomena pada alat spektroskopi UV-VIS untuk mengukur λ_{max} suatu senyawa konjugate, misal pengukuran λ_{max} 1,3-butadiena, yang secara eksperimen menghasilkan spektra UV sebesar 258 nm. Seperti semua poliena, maka dapat diasumsikan bahwa pada butadiena (lihat Gambar 4.7):

- 1. Empat elektron π pada butadiena terdelokalisasi sepanjang garis lurus dan elektron π berada pada potensial *box* 1 dimensi serta tidak ada interaksi antar elektron π .
- Panjang L adalah panjang ikatan dari dua C=C yaitu 2x(1,35 Å) plus satu C-C yaitu 1,54 Å, plus jari-jari tiap atom karbon ujung yaitu 2x(0,77 Å), sehingga total L = 5,78 Å.

Gambar 4.7: Skema Energi Potensial 1,3butadiena: Teori dan Fakta.

- Tiap tingkat energi potensial *box* 1 dimensi terisi oleh 2 elektron π, sehingga abrsopsi UV terjadi dari *n*=2 ke *n*=3, diperoleh gambaran: Energi potensial *box* 1 dimensi untuk butadiena pada Gambar 4.7 menjelaskan empat hal penting yaitu:
 - Tingkat-tingkat energi mulai dari n = 1 sebagai keadaan energi dasar hingga n = 2, 3, 4, ..., sebagai keadaan tereksitasi dan untuk kasus ini 4 elektron π mengisi dua tingkat energi pertama, yang mengisyaratkan bahwa 1,3-butadiena adalah senyawa dengan sifat diamagnetic dan nonradikal,
 - Fungsi gelombang orbital molekul untuk setiap tingkat energi yang setara dengan $\Psi_n(x)$,
 - Terdapat perbedaan bentuk potensial energi teori dan eksperimen, yang bentuk sumur potensialnya tidak menuju V(x) →~ namun melandai atau V(x) terdefinisi,
 - Akibat bentuk sumur potensial eksperimen ini, maka harga tingkat energinya adalah lebih rendah dari tingkat-tingkat energi teori.
- Melalui Persamaan 4.24, maka secara teori kita dapat menghitung panjang gelombang akibat berkas sinar pada senyawa, yaitu terja-dinya eksitasi elektron dari tingkat energi n = 2 ke tingkat energi n = 3, sehingga diturunkan sebagai:

$$\Delta E = (n_3 - n_2) \frac{h^2}{8mL^2}$$

= $(9 - 4) \frac{(6,26x10^{-34}Js)^2}{8(9,11x10^{-31}kg)(5,78x10^{-10})^2}$
= $9.09x10^{-19}J$

Sehingga didapat harga panjang gelombang sebasar:

$$\lambda = \frac{hc}{\Delta E}$$

= $\frac{(6,26x10^{-34}Js)(2,9979x10^8ms^{-1})}{9,09x10^{-19}J}$
= 250 nm

Bila dibandingkan dengan data eksperimen maka selisih harga panjang gelombangnya adalah 8 *nm*, dari harga eksperimen yaitu sebesar 258 *nm*. Hal ini menunjukan bahwa secara teori dapat menjalaskan

Gambar 4.8: 1,3-butadiena suatu senyawa konjugasi lurus.

fenomena emisi 1,3-butadiena. Harga selisih panjang gelombang ini menunjukkan bahwa adanya kelengkungan bentuk sumur potensial yang lebih landai dari sumur potensial teori. Kelengkungan sumur energi potensial ini menyebabkan nilai energi menjadi menurun, dan berdasarkan hukum Planck, yang menyatakan bahwa energi berbanding terbalik terhadap panjang gelombang, maka semakin rendah energi maka semakin besar panjang gelombangnya.

Solusi ini dapat menjelaskan fenomena emisi senyawa terkonjugasi lurus yang lain, misal etena, butadiena, heksatriena, vitamin C, β -karotin, dan lain sebaginya.

4.3 Partikel dalam Box 2 Dimensi

Partikel dalam *box* 2 dimensi, yang mempunyai dua dimensi panjang *x* dan *y*, dapat dilihat pada Gambar 4.9 berikut:

Gambar 4.9: Energi potensial box 2 dimensi.

Potensial box dua dimensi merupakan pendekatan bentuk potensial tersekat yang lebih rumit dari potensial *box* 1 demensi, tetapi termasuk

juga sebagai pendekatan sederhana.

Potensial box dua dimensi, adalah bentuk energi potensial ini adalah potensial dengan sekat berupa luas segi empat, dimana:

$$V(x) \begin{cases} = 0, \text{ pada daerah: } (0 \le x \le L_1), (0 \le y \le L_2) \\ = \sim, \text{ pada daerah: di luar sumur} \end{cases}$$
(4.25)

Pada energi potensial V(x,y) = 0 berada pada sumur potensial balok dengan tinggi tak-berhingga pada luasan sebasar L^2 , yaitu pada: $0 \le x \le L_1$ dan $0 \le y \le L_2$, sedangkan untuk $V(x,y) = \sim$ adalah kondisi pada luasan diluar balok tersebut. Jadi dapat diungkapkan bahwa ini merupakan konsep sumur kotak dengan tinggi tak berhingga, dimana partikel terjebak dalam sumur ini dengan tingkat energi yang berbeda-beda.

Persamaan Schrödinger pada potensial *box* 2 dimensi ini adalah berasal dari masing-masing sumbu *x* dan *y*, yaitu:

$$\Psi(x,y) = \Psi(x)\Psi(y) \tag{4.26}$$

Sedangkan energi (E) pada potensial *box* 2 dimensi dari masingmasing sumbu x dengan tingkat energi (n) dan y dengan tingkat energi (m). Dalam hal ini muncul tingkat energi baru yaitu m, harga ini sebanding dengan tingkat energi n pada sumbu x. Energi total pada *Box* 2 dimensi ini didapat:

$$E_{n,m} = E_n + E_m \tag{4.27}$$

Sehingga harus diselesaikan masing-masing fungsi gelombang $\Psi(x)$ dan $\Psi(y)$, yaitu:

1. Pada sisi sumbu *x*, didapat:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2}{dx^2}\Psi(x) = E\Psi(x)$$
(4.28)

Untuk Persamaan 4.28 ini telah diselesaiakan pada bagian *Box* 1 dimensi di atas dan menghasilkan solusi persamaan fungsi gelombang (Persaman 4.21) dan energinya (4.24), yaitu:

• Fungsi gelombang pada sumbu *x* dengan panjang sebesar *L*₁:

$$\Psi_n(x) = \sqrt{\frac{2}{L_1}} \sin\left(\frac{n\pi}{L_1}x\right) \tag{4.29}$$

• Tingkat-tingkat energi pada sumbu *x* dengan panjang sebesar *L*₁:

$$E_n = \frac{h^2 n^2}{8mL_1^2} \tag{4.30}$$

2. Pada sumbu *y*, didapat:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2}{dy^2}\Psi(y) = E\Psi(y)$$
(4.31)

Maka dengan cara yang sama dengan penyelesaian pada sumbu x di atas, akan didapat solusi persamaan fungsi gelombang dan energinya yaitu:

• Fungsi gelombang pada sumbu *y* dengan panjang sebesar *L*₂:

$$\Psi_m(y) = \sqrt{\frac{2}{L_2}} \sin\left(\frac{m\pi}{L_2}y\right) \tag{4.32}$$

• Tingkat-tingkat energi pada sumbu *y* dengan panjang sebesar *L*₂:

$$E_m = \frac{h^2 m^2}{8mL_2^2}$$
(4.33)

Dengan demikian maka Persamaan 4.26 dapat disubstitusi oleh Persamaan 4.29 dan Persamaan 4.32 sehingga didapat:

$$\Psi_{n,m}(x,y) = \Psi_n(x)\Psi_m(y)$$

= $\frac{2}{\sqrt{L_1}}\sin\left(\frac{n\pi}{L_1}x\right)\frac{2}{\sqrt{L_2}}\sin\left(\frac{m\pi}{L_2}y\right)$
= $\frac{2}{\sqrt{L_1L_2}}\sin\left(\frac{n\pi}{L_1}x\right)\sin\left(\frac{m\pi}{L_2}y\right)$ (4.34)

Energi total pada Potensial *Box* 2 dimensi ini adalah subsitusi Persamaan 4.27 oleh Persamaan 4.30 dan Persamaan 4.33, seginga didapat:

$$E_{n,m} = E_n + E_m$$

$$= \frac{h^2}{8m} \left(\frac{n^2}{L_1^2}\right) + \frac{h^2}{8m} \left(\frac{m^2}{L_2^2}\right)$$

$$= \frac{h^2}{8m} \left(\frac{n^2}{L_1^2} + \frac{m^2}{L_2^2}\right)$$
(4.35)

Bila harga panjang sisi-sisinya sama atau $L_1 = L_2 = L$, maka kedua solusi persamaan Schrödinger untuk *box* 2 dimensi di atas (Persamaan 4.34 dan Persamaan 4.35) akan menjadi:

$$\Psi_{n,m}(x,y) = \frac{2}{L} \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}y\right)$$
(4.36)

$$E_{n,m} = \frac{h^2}{8mL^2} \left(n^2 + m^2 \right)$$
(4.37)

Setelah menyelesaikan persamaan Schrödinger pada potensial *box* 2 dimensi ini, maka didapat gambaran penting, seperti yang tertuang pada Gambar 4.10 yaitu: Solusi persamaan Schrödinger pada potensial *box* 2 dimensi, yang menunjukkan adanya tingkat energi, $E_{n,m}$, fungsi gelombang, $\Psi_{n,m}(x, y)$, dan jumlah degenerasi tiap tingkat energi.

Gambar 4.10: Solusi persamaan Schrödinger box 2 dimensi.

- 1. Energi, $E_{n,m}$, sangat bergantung pada tingkat energi ke (n,m) dan juga bergantung pada luasan L^2 .
- 2. Fungsi gelombang, $\Psi_{n,m}(x, y)$, sangat bergantung pada tingkat ke (n, m), *L*, dan fungsi jarak *x* dan *y*, dimana:
 - (a) Kurva permukaan (warna merah) berada di atas luasan dengan berharga $\Psi_{n,m}(x, y) = +$
 - (b) Kurva permukaan (warna biru) berada di bawah luasan berharga $\Psi_{n,m}(x,y) = -$
- 3. Munculnya konsep degenerasi (*degeneracy*), suatu keadaan dimana menghasilkan sejumlah fungsi gelombang yang berbeda tetapi memiliki energi yang sama.

Gambar 4.11: Siklo-butadiena suatu senyawa konjugasi silkus.

Terapan Potensial Box 2 Dimensi

Mengapa senyawa siklobutadiena adalah suatu diradikal dan bersifat paramagnetik? Padahal molekul siklobutadiena tidak mengandung logam berat.

Potensial *box* 2 dimensi dapat menjelaskan fenomena senyawa konjugate ini, pengukuran λ_{max} siklobutadiena (Lihat Gambar 4.11). Adapun asumsi yang digunakan adalah:

- 1. Empat elektron π pada siklobutadiena terdelokalisasi pada luasan L^2 dan elektron π berada pada potensial *box* 2 dimensi serta tidak ada interaksi antar elektron π tersebut.
- 2. Pada tingkat energi keadaan dasar potensial *box* 2 dimensi terisi oleh 2 elektron π , sedang pada keadaan tereksitasi pertama, yang merupakan keadaan degenerasi, sehingga masing-masing keadaan hanya terisi 1 elektron π .
- 3. Keadaan di atas mengakibatkan munculnya sifat magnetik dan radikal, disebut diradikal karena ada dua elektron π yang memiliki energi sama tetapi fungsi gelombangnya berbeda.

Keadaan energi siklobutadiena, seperti pada Gambar 4.12 menjelaskan tentang empat elektron π memenuhi dua tingkat energi terendah, dimana dua elektron π teratas, yang masing-masing memiliki fungsi gelombang berbeda tetapi energinya sama, menyebabkan sifat *diradical* dan *paramagnetic*.

Solusi ini juga dapat menjelaskan fenomena emisi senyawa terkonjugasi siklus lainnya, misal benzena, annulena, dan lain sebagainya.

Gambar 4.12: Skema Energi Potensial siklo-butadiena.
4.4 Partikel dalam *Box* 3 Dimensi

Partikel dalam *box* 3 dimensi, merupakan pendekatan bentuk potensial tersekat yang lebih rumit dari potensial *box* 2 dimensi, tetapi termasuk juga sebagai pendekatan agak sederhana:

Gambar 4.13: Energi potensial box 3 dimensi.

Potensial box tiga dimensi, seperti pada Gambar 4.13, dimana V(x, y, z) = 0 berada pada volume kubus dengan volume sebasar L^3 , yaitu pada daerah $0 \le x \le L_1$, $0 \le y \le L_2$, dan $0 \le z \le L_3$, sedangkan $V(x, y, z) = \sim$, yang berada pada volume diluar kubus tersebut. Jadi dapat diungkapkan bahwa ini merupakan konsep ruangan kubus yang mana partikel terjebak dalam ruangan yang volume ruangnya tidak berhingga. Setiap partikel akan berada dalam ruangan ini dengan tingkat energi yang berbeda-beda.

Hal yang sama dengan penurunan matematika seperti pada *Box* 2 dimensi, maka persamaan Schrödinger pada potensial *box* 3 dimensi ini adalah juga berasal dari masing-masing sumbu *x*, *y*, dan *z*, yaitu:

$$\Psi(x, y, z) = \Psi(x)\Psi(y)\Psi(z)$$
(4.38)

Penurunan energinya, (*E*), pada potensial *box* 3 dimensi juga adalah berasal dari masing-masing sumbu x, sumbu y, dan sumbu z dengan

tingkat energi yaitu n), m, dan l. Pada bagian ini muncul tingkat energi baru yaitu l, harga ini juga sebanding dengan tingkat energi (n,m) pada sumbu (x,y). Sehingga energi total pada *Box* 3 dimensi ini didapat:

$$E_{n,m,l} = E_n + E_m + E_l (4.39)$$

Selanjutnya harus diselesaikan masing-masing fungsi gelombang $\Psi(x)$, $\Psi(y)$, dan $\Psi(z)$, yaitu:

 Pada sisi sumbu *x* dan *y* telah diselesaikan pada bagian *Box* 1 dan 2 dimensi di atas, dan didapat Harga fungsi gelombangnya:

$$\Psi_{n,m}(x,y) = \Psi_n(x)\Psi_m(y)$$

= $\sqrt{\frac{2}{L_1}}\sin\left(\frac{n\pi}{L_1}x\right)\sqrt{\frac{2}{L_2}}\sin\left(\frac{m\pi}{L_2}y\right)$ (4.40)

Sedangkan energinya didapat:

$$E_{n,m} = E_n + E_m = \frac{h^2}{8m} \left(\frac{n^2}{L_1^2}\right) + \frac{h^2}{8m} \left(\frac{m^2}{L_2^2}\right)$$
(4.41)

2. Sedangkan pada sumbu *z*, akan diselesaikan dengan cara yang sama dan didapat:

$$\Psi_l(z) = \sqrt{\frac{2}{L_3}} \sin\left(\frac{l\pi}{L_3}z\right) \tag{4.42}$$

Sedangkan energinya didapat:

$$E_l = \frac{h^2}{8m} \left(\frac{l^2}{L_3^2}\right) \tag{4.43}$$

Dengan asumsi semua panjang sisi-sisi kubus adalah sama ($L = L_1 = L_2 = L_3$), maka bila dilakukan substitusi Persamaan 4.42 ke dalam Persamaan 4.40 didapat Fungsi Gelombang *Box* 3 dimensi:

$$\begin{split} \Psi_{n,m,l}(x,y,z) &= \Psi_n(x)\Psi_m(y)\Psi_l(z) \\ &= \sqrt{\frac{2}{L_1}}\sin\left(\frac{n\pi}{L_1}x\right)\sqrt{\frac{2}{L_2}}\sin\left(\frac{m\pi}{L_2}y\right)\sqrt{\frac{2}{L_3}}\sin\left(\frac{l\pi}{L_3}z\right) \\ &= \sqrt{\frac{8}{L_1L_2L_3}}\sin\left(\frac{n\pi}{L_1}x\right)\sin\left(\frac{m\pi}{L_2}y\right)\sin\left(\frac{l\pi}{L_3}z\right) \\ &= \frac{2}{L}\sqrt{\frac{2}{L}}\sin\left(\frac{n\pi}{L_1}x\right)\sin\left(\frac{m\pi}{L_2}y\right)\sin\left(\frac{l\pi}{L_3}z\right) \quad (4.44) \end{split}$$

Sedangkan energi pada Box 3 dimensi didapat:

$$E_{n,m,l} = E_n + E_m + E_l$$

= $\frac{h^2}{8m} \left(\frac{n^2}{L_1^2}\right) + \frac{h^2}{8m} \left(\frac{m^2}{L_2^2}\right) + \frac{h^2}{8m} \left(\frac{l^2}{L_3^2}\right)$
= $\frac{h^2}{8mL^2} \left(n^2 + m^2 + l^2\right)$ (4.45)

Setelah menyelesaikan persamaan Schrödinger pada potensial *box* 3 dimensi ini, maka didapat gambaran-gambaran penting, seperti yang tertuang pada Gambar 4.14.

Solusi persamaan Schrödinger pada potensial *box* 3 dimensi, yang menunjukkan adanya fungsi gelombang, $\Psi_{n,m,l}(x, y, z)$, dan tingkat energi, $E_{n,m,l}$, serta jumlah degenerasi tiap tingkat energi.

- 1. Energi, $E_{n,m,l}$, yang bergantung pada tingkat energi ke (n, m, l) dan juga bergantung pada volume L^3 .
- 2. Fungsi gelombang, $\Psi_{n,m,l}(x, y, z)$, yang bergantung pada tingkat ke (n, m, l), *L*, dan fungsi jarak *x*, *y* dan *z*.
- 3. Pada model energi potensial kubus, menghasilkan kurva orbital berwarna merah untuk fungsi gelombang berharga positif ($\Psi_{n,m,l}(x, y, z) =$ +) dan juga orbital berwarna biru untuk fungsi gelombang berharga negatif ($\Psi_{n,m,l}(x, y, z) = -$).

$$\Psi_{n,m,l}(x,y,z) \begin{cases} = +, \text{ warna merah} \\ = -, \text{ warna biru} \end{cases}$$
(4.46)

 Muncul juga konsep degenerasi (*degeneracy*), suatu keadaan dimana menghasilkan sejumlah fungsi gelombang yang berbeda tetapi memiliki energi yang sama.

Bila melihat Gambar 4.14, maka ini merupakan konsep dasar dalam memperkenalkan orbital suatu partikel dalam ruangan berenergi yang terkuantisasi. Energi terkuantisasi:

- Dimulai dari tingkat energi paling dasar (*ground state*) dengan keadaan *E*_{1,1,1} dengan fungsi gelombang dengan diberi nama sebagai orbital "*old-sharp*".
- 2. Sedangkan untuk keadaan energi lebih tinggi pertama menghasilkan 3 buah keadaan degenerasi yaitu 3 buah fungsi gelombang yang berbeda dengan harga energi yang sama yaitu $E_{2,1,1} = E_{1,2,1} = E_{1,1,2}$ dan diberi nama orbital "*old-principal*".

Gambar 4.14: Solusi persamaan Schrödinger box 3 dimensi.

- 3. Untuk keadaan energi lebih tingi kedua, ketiga dan keempat menghasilkan 3 kelompok keadaan degenerasi yaitu kelompok pertama dengan harga energi $E_{2,2,1} = E_{1,2,2} = E_{2,1,2}$, kelompok kedua dengan harga energi $E_{3,1,1} = E_{1,3,1} = E_{1,1,3}$, dan satu keadaan ketiga dengan harga $E_{2,2,2}$, ketiga kelompok ini diberi nama kelompok orbital "*old-diffuse*".
- 4. Untuk keadaan energi lebih tinggi kelima menghasilkan satu keadaan degenerasi yaitu dengan harga energi $E_{1,2,3} = E_{1,3,2} = E_{2,1,3} = E_{2,3,1} = E_{3,1,2} = E_{3,2,1}$, dan diberi nama orbital "old-fundamentals".

4.4.1 Terapan Potensial Box 3 Dimensi

Salah satu molekul yang bentuk geometrinya kubus adalah senyawa karbon-60, C₆₀. Senyawa ini dikenal sebagai *buckminsterfullerene* atau *buckyball*, telah diteliti pada tahun 1985 oleh Kroto, Curl dan Smalley, melalui penelitian spektrum radiasi astronomi dan menghasilkan emisi sinar merah dengan harga panjang gelombang λ_{max} di daerah merah 660-700 nm.

Senyawa ini berbentuk mirip bola sepak, yang memang terdiri dari 60 titik, dengan memiliki 20 bentuk heksagonal dan 12 pentagonal, yang menimbulkan banyak pertanyaan, yaitu:

- 1. Mengapa C₆₀ adalah merupakan fenomena molekul ruang angkasa?
- 2. Mengapa C₆₀ menghasilkan emisi di daerah sinar tampak warna merah?
- 3. Mengapa di dalam struktur geometri molekul C₆₀ dapat terisi oleh sebuah logam?
- 4. Mengapa di dunia ilmu astronomi berkembang teori pembentukan bumi tercipta atas peran molekul C₆₀ yang terisi logam?

4.4.2 Sifat magnetik molekul C₆₀

Bila kita meninjau tingkat energi dari solusi Persamaan Schrödinger untuk *box* 3 dimensi, seperti pada 4.13, maka sejumlah 60 elektron π dari molekul C₆₀ dapat mengisi setiap tingkat energinya masing-masing 2 elektron π , dapat dilihat pada Gambar 4.16. Pada tingkat energi terisi tertinggi yaitu pada energi $E = 21(\frac{h^2}{8mL^2})$ terdapat 6 keadaan energi degenerasi, dimana dari keeanm keadaan energi tersebut hanya 2 keadaan yang terisi penuh 2 elektron π sedangkan 4 keadaan energi lainnya hanya terisi masing-masing satu elektron π .

Keadaan ini menyebabkan molekul C_{60} adalah berifat feromagnetik, dan menyebabkan satu molekul C_{60} mudah berinteraksi baik secara

Gambar 4.15: Model molekul bola sepak: C₆₀

adsorpsi fisik (*physisorption*) maupun adsorpsi kimia (*chemisorption*) dengan satu logam. Namun timbul pertanyaan, yaitu:

- Bagaimanakah betuk interaksi semua atom karbon dalam molekul C₆₀ dengan satu logam?
- 2. Apakah interaksi logam tersebut berada di luar atau berada di dalam molekul C₆₀?

Bila ditinjau dari kestabilan energi interaksi logam dengan molekul C_{60} , maka interaksi logam di luar molekul C_{60} akan menghasilkan energi interaksi yang sangat besar, sedangkan interaksi logam di dalam molekul C_{60} akan menghasilkan energi interaksi yang jauh lebih kecil.

Sehingga model interaksi logam di dalam molekul C_{60} sangat melimpah di ruang angkasa.

Hal di atas adalah sesuai dengan bukti pengamatan (observasi) yang dilakukan oleh ilmuwan astrokimia, yang memberi informasi bahwa kondisi ini diperkirkan terjadi di ruang angkasa dengan jumlah yang sangat banyak, kemudian membentuk kumpulan logam- C_{60} dalam jumlah banyak dan pada masa tertentu membentuk bumi.

Perkiraan proses masuknya suatu logam ke dalam molekul C_{60} dengan cara memecahkan molekulnya kemudian dengan mudah logam

Gambar 4.16: Pengisian elektron π molekul C₆₀ pada box 3 dimensi.

berat akan masuk dan menempati ruang molekul dengan setimbang, lihat Gambar 4.17.

Gambar 4.17: Proses interaksi fisika suatu logam ke dalam molekul C_{60} .

4.4.3 Spestrokopi molekul C₆₀

Untuk mengetahui pada panjang gelombang berapa emisi dari molekul C_{60} maka perlu dihitung selisih energi dari eksitasi dan emisi pada bentuk *box* 3 dimensi, dimulai dari panjang sisi-sisi kubus *box* 3 dimensi untuk molekul C_{60} adalah 3,47138 $x10^{-10}m$, maka melalui Persamaan 4.45, secara teori kita dapat menghitung panjang gelombang akibat berkas sinar pada senyawa, yaitu terjadinya eksitasi elektron dari tingkat energi $E = 21(\frac{h^2}{8mL^2})$ ke tingkat energi $E = 22(\frac{h^2}{8mL^2})$, sehingga diturunkan sebagai:

$$\Delta E = (22 - 21) \frac{h^2}{8mL^2}$$

= $(1) \frac{(6,26x10^{-34}Js)^2}{8(9,11x10^{-31}kg)(3,47138x10^{-10}m)^2}$
= $1.818x10^{-19}J$

Sehingga didapat harga panjang gelombang sebasar:

$$\lambda = \frac{hc}{\Delta E}$$

= $\frac{(6,26x10^{-34}Js)(2,9979x10^8ms^{-1})}{1.818x10^{-19}J}$
= 650 nm

Panjang gelombang sebesar 650 nm menunjukkan adanya emisi sinar tampak dengan warna merah dari molekul C₆₀ di luar angkasa.

4.5 Komparasi Panjang Gelombang

Setelah mengetahui bentuk panjang gelombang dari penyelesaian Persamaan Schrödinger untuk semua dimensi, yaitu *box* 1 dimensi, *box* 2 dimensi dan *box* 3 dimensi, maka secara lengkap dapan dibandingkan bentuk panjang gelombang kediganya, yaitu yang terungkap pada Gambar 4.18 berikut:

Dari komparasi bentuk kurva fungsi gelombang dari ketiga *box* dimensi di atas dapat disimpulkan:

- Ketiga fungsi gelombang memiliki pola yang sama yaitu ada fungsi gelombang positif (warna merah) dan fungsi gelombang negatif (warna biru).
- 2. Fungsi gelombang *box* 3 dimensi adalah kurva fungsi gelombang baru yang dimunculkan pada buku ini.
- 3. Fungsi gelombang *box* 3 dimensi ini menjadi penyempurna gambaran semua kurva fungsi gelombang dari hasil solusi persamaan Schrödinger secara lengkap.

4.6 Energi Potensial Non-Box 1 Dimensi

Persamaan Schrödinger dapat dierapkan pada semua model energi potesial selain bentuk potensial *box* dari semua dimensi. Bentuk energi potensial dimodifikasi sesuai dengan 'kebutuhan'dari fenomena alam yang terjadi. Fenomena alam yang sering terjadi adalah terdeteksinya emisi vibrasi, rotasi, transisi, serta peluruhan suatu senyawa atau unsur akibat kehadiran suatu foton. Beberapa bentuk energi potensial juga dapat diterapkan untuk meramalkan model suatu bentuk molekul.

4.6.1 Potensial Osilator Harmonik

Bentuk energi potensial harmonik berasal konsep hukum fisika yaitu hukum Hooke yaitu

$$V(x) = \frac{1}{2}kx^2$$
 (4.47)

dimana *k* adalah tetapan gaya vibrasi, dapat dilihat pada Gambar 4.19. Maka persamaan Schrödinger untuk potensial ini adalah:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(x)}{dx^2} + \frac{1}{2}kx^2\Psi(x) = E\Psi(x)$$
(4.48)

Gambar 4.19: Bentuk Energi Potensial Harmonik.

Solusi persamaan ini menghasilkan fungsi gelombang osilator harmonik yaitu:

$$\Psi_n(x) = \left[\left(\frac{\alpha}{\pi}\right)^{1/2} \frac{1}{2^n n!} \right]^{1/2} H_n(\alpha^{1/2} x) e^{-\alpha x^2/2}$$
(4.49)

dimana, $H_n(\alpha^{1/2}x)e^{-\alpha x^2/2}$ adalah fungsi Hermitian yang bergantung pada *n*, α adalah tetapan vibrasi yang besarnya adalah:

$$\alpha = \frac{2\pi}{h}\sqrt{k\mu} \tag{4.50}$$

Sedangkan μ adalah massa tereduksi dan energi vibrasinya adalah:

$$E_n = \left(n + \frac{1}{2}\right)h\nu$$
, dengan $n = 1, 2, 3, ...$ (4.51)

Fungsi gelombang dan energi osilator harmonik yang didapatkan dari penurunan di atas menghasilkan persamaan frekuensi osilator harmonik, yaitu:

$$\nu = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} \tag{4.52}$$

Potensial harmonik osilator dan tingkat-tingkat energi harmonik serta fungsi gelombangnya dapat diamati pada fenomena vibrasi dan rotasi ikatan kimia molekul diatom, misal: H–H, O=O, N \equiv N juga molekul poliatom yang bervibrasi simetri misal vibrasi gunting dari molekul H₂O, vibrasi lipat dari molekul CO₂.

4.6.2 Potensial Osilator An-Harmonik

Potensial *barrier* sederhana an-harmonik adalah suatu bentuk potensial energi yang menjelaskan adanya tumbukan antara dua benda dari keadaan menjauh hingga keadaan mendekat sampai terbentuknya keadaan setimbang energi. Model potensial ini adalah modifikasi dari model potensial *box* 1 dimensi yang satu sisinya dijadikan bentuk *barrier*-nya, lihat Gambar 4.20.

Salah satu model energi potenasil anharmonik, yang cukup mewakili dengan gaya-gaya yang bekerja pada vibrasi ikatan suatu molekul,

Gambar 4.20: Bentuk Energi Potensial An-harmonik.

adalah persamaan energi potensial yang merupakan jumlah antara persamaan energi potensial harmonik, atau disebut juga energi potensial harmonik terganggau dengan persamaan energi potensial gangguan. Adapaun model energi potensial terganggau diungkapkan sebagai:

$$V(x) \equiv V^{(0)}(x) = \frac{1}{2}kx^2$$
(4.53)

Sedangkan model energi potensial gangguan yang menyebabkan bentuk harmonik menjadi bentuk anharmonik adalah:

$$V^{(1)}(x) = \frac{1}{6}\gamma x^3 + \frac{1}{24}\beta x^4 + \cdots$$
 (4.54)

Sehingga didapat total model energi potensial anharmonik adalah:

$$V(x) = V^{(0)}(x) + V^{(1)}(x)$$

$$= \frac{1}{2}kx^{2} + \frac{1}{6}\gamma x^{3} + \frac{1}{24}\beta x^{4} + \cdots$$
(4.55)

Maka persamaan Schrödinger untuk potensial anharmonik ini adalah:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(x)}{dx^2} + \left(\frac{1}{2}kx^2 + \frac{1}{6}\gamma x^3 + \frac{1}{24}\beta x^4 + \cdots\right)\Psi(x) = E\Psi(x)$$
(4.56)

Solusi persamaan ini menghasilkan fungsi gelombang osilator anharmonik yaitu jumlah dari fungsi gelombang osilator harmonik (Persamaan 4.49) dengan fungsi gelombang gangguan, $\Delta \psi(x)$:

$$\Psi_n(x) = \left[\left(\frac{\alpha}{\pi}\right)^{1/2} \frac{1}{2^n n!} \right]^{1/2} H_n(\alpha^{1/2} x) e^{-\alpha x^2/2} + \Delta \psi(x)$$
(4.57)

dimana, α adalah tetapan vibrasi yang besarnya yaitu:

$$\alpha = \frac{2\pi}{h}\sqrt{k\mu} \tag{4.58}$$

Sedangkan μ adalah massa tereduksi dan $H_n(\alpha^{1/2}x)$ adalah fungsi Hermitian yang bergantung harga tingkat energi yaitu: *n*.

Sedangkan energi vibrasi potensial anharmonik juga merupakan jumlah antara energi potensial harmonik dengan energi vibrasi gangguannya, ΔE , didapat:

$$E_n = \left(n + \frac{1}{2}\right)h\nu + \Delta E \tag{4.59}$$

Sama halnya dengan penentuan harga frekuensi, ν , maka fungsi gelombang dan energi osilator anharmonik, untuk setiap harga n, yaitu

$$n = 1, 2, 3, \dots$$
 (4.60)

Menghasilkan persamaan frekuensi osilator anharmonik sebesar:

$$\nu = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} \tag{4.61}$$

Bentuk dasar dari kurva ini adalah kurva warna hitam sebagai potensial *barrier* sederhana perluasan dari potensial *box* 1 dimensi, sedangkan kurva warna merah adalah potensial osilator an-harmonik yang biasa diterapkan pada konsep tumbukan 2 partikel, misal:

- 1. Potensial Morse, untuk tumbukan partikel elementer.
- 2. Potensial Leonard-Jones, untuk tumbukan antar unsur, dan
- 3. Potansial Van der Waals, untuk interaksi antar molekul.

4.6.3 Potensial Sumur Berhingga

Potensial sumur berhingga ini adalah bentuk energi potensial *real* dari bentuk energi potensial teoritik *box* 1 dimensi, 2 dimensi dan 3 dimensi. Hal ini karena keduanya (bentuk *real* dan teoritik) sama-sama memiliki batas dasar potensialnya, walaupun memiliki perbedaan dimana pada *box* batasan sumur ditandai dengan harga energi potensial V(x) = 0 sedang pada sumur berhingga ditandai dengan harga energi potensial $V(x) \neq 0$. Potensial sumur dalam berhingga satu dimensi, dapat dilihat pada Gambar 4.21.

Perbedaan keduanya juga terjadi pada tinggi sumur, dimana untuk box 1, 2, dan 3 dimensi tinggi sumur adalah tidak berhingga, sedangkan

Gambar 4.21: Bentuk Energi Potensial Sumur Berhingga. pada potensial ini tinggi sumur adalah berhingga, yang ditandai dengan arah potensial yang melengkung akibat adanya energi potensial gangguan, $V^n(x)$.

Jadi potensial berbentuk melengkung tersebut adalah akibat dari energi potensial gangguan total sebesar:

$$V^{n}(x) = \begin{cases} \text{tidak selalu nol,} & (- \sim < x < 0) \text{ dan } (L < x < \sim) \\ \\ V^{1}(x) + V^{2}(x) + V^{3}(x) + \cdots, \text{ daerah luar} \end{cases}$$
(4.62)

Dengan demikian persamaan Schrödinger untuk sumur berhingga ini diungkapkan sebagai:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(x)}{dx^2} + \left(V^1(x) + V^2(x) + V^3(x) + \cdots\right)\Psi(x) = E\Psi(x)$$
(4.63)

Solusi persamaan ini menghasilkan fungsi gelombang sumur berhingga yaitu jumlah dari fungsi gelombang *box* 1 dimensi (Persamaan 4.21) dengan fungsi gelombang gangguan, $\Delta \psi_{(molekul)}(x)$ yang bergantung pada jenis molekulnya:

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) + \Delta\psi_{(molekul)}(x)$$
(4.64)

Sedangkan energi sumur berhingga juga merupakan jumlah antara energi *box* 1 dimensi yaitu persamaan 4.24, dengan energi gangguannya, $\Delta E_{(molekul)}$, didapat:

$$E_n = \left(\frac{h^2 n^2}{8mL^2}\right) + \Delta E_{(molekul)} \tag{4.65}$$

Penerapan model potensial ini cocok untuk menjelaskan tingkattingkat energi pada ikatan kimia senyawa organik misal molekul 1,3butadiena, siklobutadiena, dan C_{60} , seperti yang sudah dicontohkan perhitungan energi emisinya pada pembahasan sebelumnya.

4.6.4 Potensial Sumur Tak-berhingga

Model energi potensial sumur tak berhingga ini adalah model yang setara dengan Model atom Bohr. Hal ini karena antara kedua model potensial ini memiliki kesamaan yaitu kedalaman sumur yang tak berhingga dan hanya dibedakan pada ada tidaknya energi potensial gangguannya.

Untuk model yang setara dengan model atom Bohr, terdapat energi potensial gangguan berupa persamaan:

$$V(x) = \left(-\frac{1}{x}\right) \tag{4.66}$$

Sehingga Persamaan Schrödinger untuk model potensial tak berhingga ini adalah:

$$-\frac{h^2}{8\pi^2 m} \frac{d^2 \Psi(x)}{dx^2} + \left(-\frac{1}{x}\right) \Psi(x) = E \Psi(x)$$
(4.67)

Solusi dari persamaan Schrödinger untuk sumur tak berhingga, secara singkat, adalah:

$$\Psi_n(x) = \psi(x) + \Delta \psi_{(atom)}(x) \tag{4.68}$$

Sedangkan energi sumur tak berhingga juga merupakan jumlah antara energi *box* 1 dimensi dengan energi gangguannya, $\Delta E_{(atom)}$, didapat:

$$E_n = E + \Delta E_{(atom)} \tag{4.69}$$

Kurva dari solusi persamaan 4.68 dan besaran tingkat energi (Persamaan 4.69) ini tertuang dalam Gambar 4.22. Tampak bahwa fungsi gelombang elektron dari atom mengalami percepatan bila mendekati inti atom, atau elektron-elektron yang berada di orbit yang paling dekat dengan inti atom.

Model sumur tak berhingga ini dapat juga diterapkan pada model suatu atom atau suatu kation/anion, misal model potensial atom Detrium, dan model Atom *hydrogen-like* misal He⁺, Li²⁺, Se³⁺

Gambar 4.22: Bentuk Energi Potensial Sumur Tak-berhingga.

4.7 Energi Potensial Tunneling

Fenomena potensial terobosan atau *tunnelling* bagi keadaan-keadaan tertentu banyak terjadi di alam semesta. Fenomena terobosan pada benda fisika, salah satu contoh adalah sebuah pesawat tempur beralih dengan capat dari kecepatan *sub-sonic* menjadi kecepatan *super-sonic*, maka pesawat ini haruslah menembus penghalang energi potensial antara dua daerah kecepatan tersebut. Ledakan partkel alfa (α) pada reaktor akibat cacat reaksi radioaktif.

Fenomena terobosan jua tejadi pada senyawa kimia, salah satu contohnya adalah fenomena inversi payung molekul NH_3 , PH_3 dan AsH_3 pada spekrum *infra red* (IR), rotasi intramolekul pada molekul etana C_2H_6 , pembentukan hasil samping suatu reaksi kimia atau dikenal sebagai *wrong molecule*.

Pada era modern, pengaruh fenomena *tunnelling* ini menjadi ide dan gagasan dalam bidang sosial dan ekonomi, yaitu dengan munculnya konsep "terobosan-terobosan baru" dalam memecahkan masalah sosial dan ekonomi. Kata terobosan ini tidak lain adalah *tunnelling efect* dalam ilmu feq-energi-sumur-tak-berhinggaisika kuantum yang menjadi kata utama dalam memberi motivasi untuk banyak perubahan sosial ekonomi manusia modern.

Fenomena terobosan di atas dalam ilmu fisika kuantum disebut juga sebagai *Tunneling Effect Potential* dan dapat dipelajari melalui penjelasan sederhana seperti yang dapat dilihat pada Gambar 4.23.

Gambar 4.23: Bentuk Energi Potensial *Tunnelling*.

Dalam hal ini, sebuah partikel dengan energi E_a dan dengan fungsi gelombang $\Psi_I(x)$, dapat bergerak bebas pada daerah I. Kemudian pada daerah II, partikel tersebut terhambat dan tetap menembus dengan fungsi gelombang yang berubah $(\Psi)_{II}(x)$ pada penghalang energi potensial *barrier potential*. Pada daerah III, partikel dengan fungsi gelombang $\Psi_{III}(x)$ kembali menjalar sepanjang *x*.

Dengan kata lain, fungsi gelombang $\Psi_{(N)}(x)$ tersekat-sekat dalam daerah:

Daerah
$$\begin{cases} I : V(x) = 0 & \text{untuk } (x_1 < x < x_2) \\ II : V(x) = V_a & \text{untuk } (x_2 \le x \le x_3) \\ III : V(x) = 0 & \text{untuk } (x_3 < x < \infty) \end{cases}$$
(4.70)

Perhitungan seberapa besar kemampuan terjadi terobosan fungsi gelombang $\Psi_{(N)}(x)$ melewati potensial penghalang sangat ditentukan oleh seberapa besar koefisien transparasi (*transparency coefficient*), χ , yaitu harga koefisien yang bergantung pada jumlah partikel yang tembus potensial penghalang.

Jumlah partikel ini ditentukan oleh besar amplitudo dari masingmasing fungsi gelombangnya. Koefisien transparasi dirumuskan sebagai:

$$\chi = \frac{[Amplitudo \ akhir]^2}{[Amplitudo \ awal]^2} \tag{4.71}$$

Hubungan daerah satu dengan yang lainnya ini harus memenuhi persyaratan mekanika kuantum, yaitu persamaan pada titik perbatasan harus kontinu dan turunan pertamanya juga harus kontinu. Dari ketiga daerah perbatasan tersebut didapat syarat-syarat sebagai berikut:

$$\Psi_{I}(x) = \Psi_{II}(x) \tag{4.72}$$

$$\frac{d \prod(x)}{dx} = \frac{d \prod(x)}{dx}$$
(4.73)

$$\Psi_{II}(x) = \Psi_{III}(x) \tag{4.74}$$

$$\frac{d\Psi_{II}(x)}{dx} = \frac{d\Psi_{III}(x)}{dx}$$
(4.75)

Harga amplitudo pada Persamaan 4.71 di atas adalah harga dari masing-masing peluang tembus *energy barrier* di titik x_2 dan titik x_3 .

4.7.1 Tunneling Pertama

Pada daerah I dengan harga V(x) = 0, Persamaan Schrödinger dinyatakan melalui ungkapan:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi_I(x) = E\Psi_I(x)$$
(4.76)
$$\frac{d^2}{dx^2}\Psi_I(x) + \frac{2mE}{\hbar^2}\Psi_I(x) = 0$$

Bila diungkapkan suatu harga κ yaitu

$$\kappa^2 = \frac{2mE}{\hbar^2} \tag{4.77}$$

maka penyelesaian persamaan Schrödinger di atas adalah:

$$\Psi_I(x) = Ae^{i\kappa x} + Be^{-i\kappa x} \tag{4.78}$$

Munculnya faktor koreksi berupa $e^{-i\kappa x}$ adalah untuk menjelaskan adanya faktor pantulan (*reflection*) fungsi gelombang $e^{i\kappa x}$ saat menuju potensial penghalang daerah II. Sehingga fungsi gelombang $\Psi_I(x)$ menjadi lengkap untuk menjalarnya dan memantulnya pada daerah I. Sedangkan harga koefisien *A* dan *B* adalah besaran amplitudo dari masing-masing fungsi gelombang, dengan *A* sebagai Amplitudo awal.

Pada daerah II dengan harga $V(x) = V_0$, dimana harga $V_0 > E$ atau disebut potensial penghalang, Persamaan Schrödinger dinyatakan melalui ungkapan:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi_{II}(x) + V_0\Psi_{II}(x) = E\Psi_{II}(x) \qquad (4.79)$$
$$\frac{d^2}{dx^2}\Psi_{II}(x) - \frac{2m(V_0 - E)}{\hbar^2}\Psi_{II}(x) = 0$$

Bila diungkapkan suatu harga ξ yaitu

$$\xi^2 = \frac{2m(V_0 - E)}{\hbar^2} \tag{4.80}$$

maka penyelesaian persamaan Schrödinger di atas adalah:

$$\Psi_{II}(x) = Ce^{\xi x} + De^{-\xi x} \tag{4.81}$$

Munculnya faktor koreksi berupa $e^{-\xi x}$ adalah untuk menjelaskan adanya faktor pantulan (*reflection*) fungsi gelombang $e^{\xi x}$ saat keluar dari potensial penghalang daerah II. Sehingga fungsi gelombang $\Psi_{II}(x)$ menjadi lengkap untuk penjalaran dan pemantulannya yang melemah pada saat menuju daerah III. Harga koefisien *C* dan *D* adalah besaran amplitudo yang melemah dari masing-masing fungsi gelombang.

4.7.2 Tunneling Kedua

Pada daerah III dengan harga V(x) = 0, Persamaan Schrödinger dinyatakan melalui ungkapan:

Gambar 4.24: Skema *tunnelling* pertama (Penentuan harga *A*).

Gambar 4.25: Skema *tunnelling* kedua (Penentuan harga *E*).

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi_{III}(x) = E\Psi_{III}(x)$$
(4.82)
$$\frac{d^2}{dx^2}\Psi_{III}(x) - \frac{2mE}{\hbar^2}\Psi_{III}(x) = 0$$

Bila ungkapan Persamaan 4.77 disubstitusi pada persamaan di atas, maka penyelesaian persamaan Schrödinger ini menjadi:

$$\Psi_{III}(x) = Ee^{i\kappa x} + Fe^{-i\kappa x} \tag{4.83}$$

Karena pada daerah III ini tidak terdapat faktor koreksi refleksi atau F = 0 dan hanya terdapat fungsi gelombang menjalar menuju $x = \infty$. Sedangkan harga koefisien *E* adalah besaran amplitudonya atau Amplitudo akhir, sehingga persamaan di atas menjadi:

$$\Psi_{III}(x) = Ee^{i\kappa x} \tag{4.84}$$

Untuk menyelasaikan persamaan pada ketiga daerah di atas maka persyaratan daerah perbatasab harus terpenuhi, sehingga didapat:

$$\Psi_{I}(x) = \Psi_{II}(x)$$

$$Ae^{i\kappa x} + Be^{-i\kappa x} = Ce^{\xi x} + De^{-\xi x}$$
(4.85)

Untuk memulainya digunakanlah permisalan yang sederhana, yaitu pada $x_2 = 0$, maka didapat:

$$\Psi_{I}(0) = \Psi_{II}(0) \qquad (4.86)$$
$$A + B = C + D$$
$$B = C + D - A$$

Untuk persyaratan berikutnya didapat:

$$\frac{d\Psi_{I}(0)}{dx} = \frac{d\Psi_{II}(0)}{dx}$$
(4.87)
$$i\kappa A - i\kappa B = \xi C - \xi D$$
$$i\kappa (A - B) = \xi (C - D)$$

Bila harga *B* dimasukkan ke dalam persamaan di atas, maka didapat:

$$i\kappa(2A - [C+D]) = \xi(C-D)$$

$$i\kappa 2A = C(\xi + i\kappa) + D(i\kappa - \xi)$$
(4.88)

Salah satu syarat lain agar terjadi transparasi energi potensial penghalang adalah bila $D \gg C$ maka didapat:

$$A \equiv \frac{1}{2} \left(1 - \frac{\xi}{i\kappa} \right) D = \frac{1}{2} \left(1 + \frac{i\xi}{\kappa} \right) D$$
(4.89)

Sedangkan bila digunakan permisalan bahwa $x_3 = a$, akan didapat:

$$\Psi_{II}(a) = \Psi_{III}(a) \qquad (4.90)$$
$$Ce^{\xi a} + De^{-\xi a} = Ee^{i\kappa a}$$

Untuk persyaratan berikutnya didapat:

$$\frac{d\Psi_{II}(a)}{dx} = \frac{d\Psi_{III}(a)}{dx}$$
(4.91)
$$Ce^{\xi a} - De^{-\xi a} = \frac{i\kappa}{\xi} Ee^{i\kappa a}$$

Selisih dari kedua persamaan terakhir di atas, didapat:

$$2De^{-\xi a} = \left(1 - \frac{i\kappa}{\xi}\right) Ee^{i\kappa a}$$

$$D = \frac{1}{2} \left(1 - \frac{i\kappa}{\xi}\right) Ee^{i\kappa a + \xi a}$$
(4.92)

Sehingga bila harga *D* ini dimasukkan kedalam persamaan 4.89 akan didapat:

$$A = \frac{1}{4} \left(1 + \frac{i\xi}{\kappa} \right) \left(1 - \frac{i\kappa}{\xi} \right) E e^{i\kappa a + \xi a}$$
(4.93)

4.7.3 Peluang Tunneling, χ

Dengan demikian harga peluang tembus/*Tunneling* atau koefisien transparasi, χ , didapat:

$$\chi \equiv \frac{E^2}{A^2} = \frac{E^2}{\left[\frac{1}{4}\left(1 + \frac{i\xi}{\kappa}\right)\left(1 - \frac{i\kappa}{\xi}\right)Ee^{i\kappa a + \xi a}\right]^2} \qquad (4.94)$$
$$\chi = \frac{e^{-2\xi a}}{\left[\frac{1}{4}\left(1 + \frac{i\xi}{\kappa}\right)\left(1 - \frac{i\kappa}{\xi}\right)e^{i\kappa a}\right]^2}$$

Harga koefisien transparasi merupakan harga yang berbanding lurus dengan harga tetapan ξ , yaitu:

$$\chi \approx e^{-2\xi a} \sim exp\left(\frac{-2a}{\hbar}\sqrt{2m(V_0 - E)}\right)$$
(4.95)

Gambar 4.26: Skema *tunnelling* total (Penentuan harga χ).

Gambar 4.27: Perubahan bentuk NH_3 dari bentuk awal menjadi bentuk inversinya.

Gambar 4.28: Bentuk energi potensial inversi payung NH_3 .

Persamaan di atas menunjukkan bahwa kekuatan tembus potensial suatu fungsi gelombang $\chi_{\psi(x)}$ sangat bergantung pada silish energi potensial penghalangnya $(V_0 - E)$ dan lebar dari penampang lintang sepanjang (*a*) dari energi potensial penghalangnya.

Konsep ini digunakan untuk memahami beberapa fenomena *tunnelling* yang terjadi pada banyak reaksi atau interaksi molekul kimia yaitu pada molekul yang memiliki ikatan dengan atom hidrogen yang interaksinya sangat spesifik, diantaranya adalah:

- 1. Fenomena inversi payung amonia.
- 2. Rotasi enata.
- 3. Fenomena *tunnelling* juga terjadi pada proses peluruhan partikel *α* suatu reaktor nuklir.
- 4. STM (Scanning Tunneling Microscope)

4.7.4 Potensial Tunneling: Inversi Payung Amonia

Fenomena menarik dari spectrum Infra Red pada molekul amonia NH₃, yang mana muncul dua puncak (*peak*) kembar yang menunjukkan adanya dua individu molekul NH₃ tersebut. Secara eksperimen hal ini tidak bisa dijelaskan dengan cukup baik, sehingga membutuhkan penjelasan dari tinjuan kuantum, yaitu melalui teori *tunnelling quantum effect*, seperti pada bagian di atas, dengan uraian:

- Molekul NH₃ diprediksikan mengalami peristiwa payung *umbrella* dari molekul NH₃ tersebut atau mengalami inversi payung (*umbrella inversion*), seperti yang tampak pada Gambar 4.27.
- 2. Hal ini akibat kehadiran sinar *infra red* (IR) molekul NH₃ mengalami gerak vibrasi unik/aneh yang mana bervibrasi seperti payung.
- 3. Energi vibrasi pada amonia ini mengasilkan vibrasi yaitu ketiga atom H (*proton*) dapat menembus *barrier/tunnel* energi potensial yang menyerupai potensial harmonik kembar, yaitu Persamaan 4.96, dan bentuk kurvanya tampak pada Gambar 4.28, yaitu:

$$V_x = \frac{1}{2}kx^2 + be^{-cx^2} \tag{4.96}$$

Yang mana tetapan b adalah tinggi amplitudo barrier tunneling kurva dan c adalah lebar dari barrier tunneling kurvanya.

Secara umum Persamaan Schrödinger bagi fenomena inversi payung amonia adalah, dimulai dari bentuk energi potensial, yaitu:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(x)}{dx^2} + \left(\frac{1}{2}kx^2 + be^{-cx^2}\right)\Psi(x) = E\Psi(x)$$
(4.97)

Solusi persamaan ini menghasilkan fungsi gelombang osilator harmonik kembar seperti yang tampak pada Gambar 4.29 dimana:

 Pada Gambar 4.29, fenomena bentuk *umbrella* (A) dan *umbrella inversion* (C) dari molekul NH₃ ini muncul setelah terdeteksi dua *peak* dari spektra IR pada analisa gas amonia.

Gambar 4.29: Bentuk energi potensial inversi payung, dan perubahan bentuk molekul NH_3 .

- 2. Fenomena dua bentuk di atas dipelajari sebagai efek potensial *tunnelling*, dimana amonia (bentuk *umbrella*) mengalami vibrasi dari tingkat *ground state* (E_a) ke tingkat *excited state* (E_b) hingga bervibrasi tinggi tingkat *excited state* (E_c), tanpa melalui energi potensial penghalang tertinggi sehingga bentuk amonia transisi pada titik (B) tidak dilalui atau tidak terjadi.
- 3. Efek *tunnelling* terjadi pada saat molekul amonia mencapai tingkat *excited state* (E_c) dan tembus secara inversi menuju potensial vibrasi disebelahnya dengan energi vibrasi sama yaitu (E_c) kemudian vibrasi berkurang seinring dengan berkurangnya energi vibrasi menjadi (E_b) dan (E_a) .

4.7.5 Potensial Tunneling: Rotasi Etana

Fenomena tunneling juga terjadi pada hasil analisa karakterisasi dari *Microwave Sprectroscopy* untuk senyawa etana (C_2H_6). Terdeteksi bahwa molekul etana mengalami rotasi yang dianggap tidak biasa, dimana gugus metil yang seolah-olah saling berputar berlawanan, relatif terhadap gugus metil lainnya.

Dari hasil hasil spektra gelombang pendek tersebut, tampak bahwa rotasi yang terjadi normal kecuali pada sudut o°, 120°, 240°dan 360°dimana pada sudut-sudut tersebut posisi atom H dari gugus metilnya adalah saling berhadapan, sehingga seharusnya menghasilkan energi yang paling tinggi. Posisi atom H yang saling berhadapan ini tidak pernah terjadi, hal inilah terjadi *tunneling effect* dari rotasi molekul etana.

Fenomena rotasi etana ini dapat dijelaskan secara mekanika kuantum, dengan menurunkan persamaan Schrödinger bagi molekul C_2H_6 , yaitu:

1. Persamaan energi potensial yang berlaku bagi gerak rotasi molekul C_2H_6 , didapat:

$$V(\theta) = \frac{1}{2}V_0 (1 - \cos \theta)$$
 (4.98)

Persamaan 4.98 ini disubstitusi ke persamaan Schrödinger, didapat:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(\theta)}{d\theta^2} + \frac{1}{2}V_0\left(1-\cos\theta\right)\Psi(\theta) = E\Psi(\theta)$$
(4.99)

2. Dari Persamaan 4.99 ini dapat menjelaskan fenomena retasi molekul C_2H_6 dimana pada sudut (θ = 0°, 120°, 240°dan 360°) menghasilkan energi tertinggi namun tidak pernah terjadi konformasi molekul C_2H_6 tersebut atau dengan kata lain terjadi *tunneling effect*.

4.7.6 Potensial Tunneling: Peluruhan Partikel α

Para Ilmuwan meneliti adanya fenomena peluruhan partikel α atau partikel yang setara dengan isotop dari helium (⁴₂He), yang teremisi dari suatu reaktor nuklir, yang melibatkan atom radioaktif uranium (²³⁸₉₂U). Secara umum persamaan reaksi kimia yang terjadi adalah:

$${}^{238}_{92}\text{U} \longrightarrow {}^{234}_{90}\text{Th} + \alpha \quad E = 4,2MeV \tag{4.100}$$

Yang mana partikel alfa ini setara dengan isotof helium:

$$\alpha \sim \binom{4}{2} \text{He} \tag{4.101}$$

Partikel/elektron α mampu menebus potensial *barrier* inti setelah mencapai energi kinetik dari dinding reaktor nuklir, dengan energi sebesar 4,2 MeV. Fenomena ini menarik karena seharusnya dinding reaktor nuklir mampu mencegah peluruhan/radiasi sinar α . Hal ini dapat diamati secara teori melalui potensial tunnel inti, dan ini dapat dikatakan terjadi *tunneling efect*.

Gambar 4.31: Bentuk Energi Potensial Peluruhan Partikel α .

Dinding reaktor nuklir di atas dapat diungkapkan bentuk energi potensialnya yaitu merupakan gabungan antara potensial harmonik:

$$V_{(r,harmonik)} = \frac{1}{2}kr^2$$
 (4.102)

dan potensial dinding reaktor itu sendiri:

$$V_{(r,wall)} = \frac{2(Z-2)e^2}{4\pi\epsilon_0 r}$$
(4.103)

Sehingga persamaan energi potensial reaksi peluruhan sinar α menjadi:

$$V_{(r)} = \frac{1}{2}kr^2 + \frac{2(Z-2)e^2}{4\pi\epsilon_0 r}$$
(4.104)

Persamaan Schrödinger secara umum untuk kasus peluruhan sinar α menjadi:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi(r)}{dr^2} + \left(\frac{1}{2}kr^2 + \frac{2(Z-2)e^2}{4\pi\epsilon_0 r}\right)\Psi(r) = E\Psi(r)$$
(4.105)

Persamaan 4.105 ini memberi solusi dan gambaran berupa adanya *tunneling effect* pada tingkat energi eksitasi sebelum mencapai energi potensial tertinggi dari dinding reaktor nuklir, dan dapat dilihat pada Gambar 4.31.

4.7.7 Scanning Tuneling Microscope

Salah satu terapan dari konsep mekanika kuantum dan merupakan perluasan konsep dari persamaan Schrödinger, untuk box satu dimensi dengan potensial tunnelling, adalah instrumentasi STM (*scanning tunnelling microscope*), alat ini dikembangkan pada era tahun 80-an dengan penemunya adalah Benning, G., dan Rohrer, H. Alat ini dapat mendeteksi atom secara individual dan langsung memanipulasi bentuk atom tersebut. Instrumen ini dapat juga dianggap sebagai alat untuk "meraba" dan menggeser-geser sebuah atom.

Pada Gambar 4.32 ini tampak bahwa energi potensial atom sampel dan atom jarum saling memberi efek. Sampai keadaan dimana mencapai titik terdekat maka elektron dalam orbital atom sampel memiliki kebolehjadian dalam keadaan stabil atau setimbang, sehingga pada jarak inilah alat STM dapat melakukan proses scaning seluruh sample yang diteliti. Sifat tolak-menolak antar atom sampel dan atom jarum STM, yang keduanya cenderung bermuatan positif, dapat digunakan untuk menggeser atom-atom serbuk pada permukaan sampel.

Gambar 4.32: Skema STM dan Model Energi Box 1 Dimensi Persamaan Schrödinger untuk STM. Gambar 4.33: Proses scanning STM untuk membuat *corral* dari atom Cr (Sumber: http://researcher.watson.ibm.com/ researcher/view-group-subpage.php-id=4252).

4.8 Soal-soal Bab 4

- 4.1 POTENSIAL BOX 1 DIMENSI. Spektronik 20 dapat digunakan untuk meneliti fenomena radiasi senyawa etena. Tenyata analisa yang didapat adalah menghasilkan panjang gelombang maksimal sebesar 1,97х10⁻⁸m. Hitunglah berapa panjang ikatan rangkap C=C pada senyawa etena ini? Berapa energi pada keadaan tereksitasi pertama?
- 4.2 POTENSIAL BOX 2 DIMENSI. Struktur krislaografik dari senyawa [18]annulena atau disebut juga sebagai Cyclooctadecanonaene, C₁₈H₁₈, telah ditentukan dengan menggunakan alat *X-Ray Crytallography*. Gambar di bawah ini menunjukkan kerapatan elektron pada tingkat molekular: Spektrum absorpsi dari senyawa ini telah diteliti. Nilai absorpsi maksimum dapat diestimasikan dengan menggunakan model potensial 2 dimensi atau *'the particle on a ring'*. Tentukanlah panjang gelombang teori melalui model tersebut dari transisi elektronik terendahnya?

Gambar 4.34: Struktur senyawa annulena, $\rm C_{18}H_{18}$

4.3 POTENSIAL BOX 3 DIMENSI. Bila logam Na dilarutkan dalam la-

rutan NaCl, maka elektron-elektron akan bergerak dalam larutan tersebut. Suatu sinar dengan panjang gelombang sebesar 800 nm mengabsorbsi elektron tersebut dan menghasilkan emisi warna tampak. Anggaplah bahwa elektron berada dalam potensial *box* 3 dimensi yang memiliki panjang L. Bila elektron tereksitasi dari keadaan dasar menuju keadaan tingkat energi eksitasi pertama, maka hitunglah L pada kotak ini?

- 4.4 OSILATOR AN-HARMONIK. Pada alat FTIR (Spektrum Infra Red), akan diteliti spektrum senyawa BrF, dimana N.A. Br = 75, F = 19. Berapa frekuensi senyawa BrF, bila tetapan gayanya, *k*, adalah 129 kgs^2 ?
- 4.5 OSILATOR AN-HARMONIK. Dalam spektrum IR dihasilkan untuk molekul HBr menghasilkan frekuensi di daerah 2,6.10³ cm⁻¹. hitunglah tetapan gaya, *k*, yang bervibrasi tersebut? Gunakan : H = 1, Br = 75

5 Atom Hidrogen

Hidrogen adalah atom utama dalam mempelajari sifat-sifat kuantum dan atom ini adalah contoh yang paling sederhana untuk mempelajari model atom yang lebih rumit (atom bukan hidrogen). Perhitungan analisa matematika untuk masalah atom hidrogen, untuk menghasilkan tingkat-tingkat energi elektron hidrogen dan ortbital elektron, telah sempurna diselesaikan melalui persamaan Schrödinger.

Gambar 5.1: Area Penurunan Hukum Atom Hidrogen.

Solusi dari persamaan Schrödinger untuk atom hidrogen akan menjadi dasar bagi model atom yang lain (atom bukan hidrogen) atau model suatu ion atom (atom mirip hidrogen atau *hydrogen-like*), misal: He^+ , Li_2^+ dan lain-lain.

5.1 Persamaan Schrödinger: Hidrogen

Masalah model atom hidrogen dapat dijelaskan dengan suatu penyelesaian persamaan Schrödinger. Karena atom hidrogen hanya memiliki suabuah inti atom, yaitu proton yang bermuatan Ze^- dan sebuah elektron yang bermuatan e^- , maka energi potensial yang cocok digunakan untuk kasus atom hidrogen adalah energi potensial Coulomb, yang diungkapkan oleh:

$$V_x = -\frac{Ze^2}{r} \tag{5.1}$$

Interaksi potensial Coulomb atom hidrogen dapat diilustrisikan oleh gambar 5.2: Gaya tarik antara proton dan elektron dari atom hidrogen, yang menghasilkan energi potensial Coulomb yang diungkapkan oleh Persamaan 4.9. Kurva energi potensial antara proton dan elektron atom hidrogen yang terpisah sejauh *r*, yang merupakan pendekatan dari potensial sumur tak-berhingga.

Gambar 5.2: Energi potensial atom hidrogen: 2 dan 3 dimensi.

Akibat dari adanya potensial Coulomb ini, maka persamaan Schrödinger bagi atom hidrogen memuat unsur energi potensial Coulomb di atas, yang tidak lain adalah pendekatan potensial sumur memutar tak-berhingga. Hal ini setara dengan apa yang dilakukan oleh Bohr dalam menjelaskan model atom Bohr.

Konsep masa sistem ini adalah masa tereduksi antara masa elektron, m_e dengan masa proton, m_p , sehingga masa tereduksi, μ , diungkapkan oleh:

$$\mu = \frac{m_e m_p}{m_e + m_p} \approx m_e \tag{5.2}$$

Dari keterangan di atas, maka penelusuran penyelesaian persamaan Schrödinger bagi atom hidrogen adalah sebagai berikut:

Persamaan Schrödinger atom hidrogen, dengan memasukkan energi potensial Coulomb, V(r), adalah:

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\Psi}{dr^2} + V(r)\Psi = E\Psi$$
(5.3)

Karena elektron diasumsikan dapat bergerak dalam sistem partikel dalam *box* 3 dimensi, dengan masa tereduksi, μ , dan bila $\hbar = \frac{h}{2\pi}$, maka diperoleh:

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dx^2} + \frac{dy^2}{dz^2} + \frac{d^2}{dz^2} \right) \Psi + V(x, y, z) \Psi = E \Psi$$
(5.4)

Bohr telah mengasumsikan bahwa elektron bergerak mengelilingi inti/proton maka dari persamaan ini akan dikonversikan, yaitu dari koordinat sumbu (x, y, z) menjadi koordinat sferik (ϕ, θ, r).

Gambar 5.3: Konversi koordinat: Cartesian ke Sferik.

Sistem koordinat bola/sferik dianggap lebih alamiah dibandingkan koordinat Cartesian/sumbu. Dari Gambar 5.3 akan dihasilkan konversi, yang terungkap pada penurunan persamaan berikut:

$$x = r \sin \theta \cos \phi \qquad (5.5)$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$

$$r^{2} = x^{2} + y^{2} + z^{2}$$

Dengan batasan-batasan: $0 \le \phi \le 2\pi$, $0 \le \theta \le \pi$, dan $0 \le r \le \sim$ Sehingga persamaan Schrödinger bagi atom hidrogen dengan koordinat sferik sebagai hasil konversi adalah:

$$-\frac{\hbar^2}{2\mu r^2} \left[\frac{d}{dr} \left(\frac{d\Psi}{dr} \right) + \frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Psi}{d\theta} \right) + \frac{1}{\sin^2\theta} \left(\frac{d^2\Psi}{d\phi^2} \right) \right] \Psi + V(r)\Psi = E\Psi$$
(5.6)

Tampak bahwa persamaan Schrödinger atom hidrogen bergantung pada tiga koordinat, yaitu:

1. Bagian sudut ϕ , yaitu $\left[\frac{1}{\sin^2 \theta} \left(\frac{d^2}{d\phi^2}\right)\right]$, sebagai operator untuk Persamaan Sudut Phi, $\Phi(\phi)$, yang bergantung pada sudut ϕ .

- 2. Bagian sudut θ , yaitu $\left[\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta}\right)\right]$, sebagai operator untuk Persamaan Sudut Theta, $\Theta(\theta)$, yang bergantung pada sudut θ .
- 3. Bagian radial, yaitu $\left[\frac{d}{dr}\left(\frac{d}{dr}\right)\right]$, sebagai operator untuk Persamaan Radial, R(r), yang bergantung pada jari-jari elektron, r.

Sehingga persamaan Schrödinger atom hidrogen secara umum menghasilkan penyelesaian berupa fungsi gelombang:

$$\Psi(r,\theta,\phi) = \Phi(\phi)\Theta(\theta)R(r)$$
(5.7)

Selanjutnya secara berurutan akan dijabarkan ketiga persamaan fungsi gelombang atom hidrogen di atas.

5.2 Persamaan *Phi*, $\Phi(\phi)$

Persamaan *Phi* ini dikenal dengan persamaan magnetik (*magnetic equation*). Hal ini karena arti fisika dari persamaan ini dapat dipelajari dan memiliki nilai prilaku atom hidrogen bila berada dalam pengaruh medan magnet. Dari persamaan Schrödinger di atas dapat dipecah dan dengan hanya memperhatikan bagian yang bergantung pada sudut ϕ , maka lazim akan diperoleh dua hal, yaitu:

1. Persamaan *Phi*, $\Phi(\phi)$, dengan ungkapan:

$$\frac{d^2\Phi(\phi)}{d\phi^2} = -m^2\Phi(\phi) \tag{5.8}$$

dari ungkapan ini muncullah harga tetapan *m*, yaitu suatu tetapan yang sebanding dengan bilangan kuantum magnetik (*magnetic quantum number*) atau merupakan bilangan kuantum momentum sudut.

2. Solusi Persamaan *Phi*, adalah sebuah solusi yang diselesaikan secara mudah dan eksak, yaitu dengan ungkapan:

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi} \text{ dengan harga } m = 0, \pm 1, \pm 2, \pm 3, \dots$$
 (5.9)

dimana untuk setiap harga bobot (nol, positif dan negatif) diperoleh ungkapan:

$$\Phi_{m}(\phi) = \begin{cases} \frac{1}{\sqrt{2\pi}} & \text{untuk } m = 0\\ \frac{1}{\sqrt{\pi}} \cos |m|\phi & \text{untuk } m = \text{ positif}\\ \frac{1}{\sqrt{\pi}} \sin |m|\phi & \text{untuk } m = \text{ negatif} \end{cases}$$
(5.10)

Dengan demikian Persamaan *Phi*, akan berpengaruh terhadap momentum magnetik suatu orbital atom hidrogen.

5.3 Persamaan *Theta*, $\Theta(\theta)$

Persamaan *Theta* ini dikenal sebagai persamaan azimut (*azimuthal equation*) atau persamaan momentum sudut (*angular momentum equation*). Hal ini dikarenakan arti fisika dari persamaan ini dapat dipelajari melalui efek azimut/momentum sudut suatu rotasi atau vibrasi atom hidrogen, akibat pengaruh suatu cahaya daerah *microwave* atau *infra-red*.

Dari persamaan Schrödinger di atas dapat dipecah lagi dan dengan hanya memperhatikan bagian yang bergantung pada sudut *theta*, maka lazim akan diperoleh dua hal, yaitu:

1. Persamaan *Theta*, $\Theta(\theta)$, dengan ungkapan:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin \frac{d\Theta(\theta)}{d\theta} \right) - \frac{m^2}{\sin^2\theta} \Theta(\theta) + \beta \Theta(\theta) = 0$$
(5.11)

dari ungkapan ini muncullah harga tetapan β , yaitu suatu tetapan yang sebanding dengan bilangan kuantum azimut (*azimuthal quantum number*) atau merupakan bilangan kuantum proyeksi momentum.

2. Solusi Persamaan *Theta* ini adalah sebuah solusi yang diselesaikan secara rumit tetapi eksak melalui *Legendre polynomial methods*, yaitu dengan ungkapan:

$$\Theta_{m,l}(\theta) = \sqrt{\frac{2l+1}{2} \frac{(l-|m|)!}{(l+|m|)!}} \frac{(-1)^l}{2^l l!} \sin^{|m|} \theta \frac{d^{l+|m|}(\sin^{2l}\theta)}{(d\cos\theta)^{l+|m|}} \quad (5.12)$$

Ungkapan bilangan kuantum proyeksi momentum sudut hasil solisi di atas adalah:

$$\beta = l(l+1)$$
 dimana $l = |m|, |m|+1, |m|+2, |m|+3, \dots$ (5.13)

Dan dari persamaan β di atas, muncullah ungkapan *l* adalah dikenal dengan bilangan kuantum azimut. Bila dimulai dari *m* = 0, maka diperoleh:

$$l = 0, 1, 2, 3, \dots \tag{5.14}$$

Dengan demikian Persamaan *Theta* akan berpengaruh terhadap dua hal, yaitu:

- 1. Momentum magnetik, *m*, yang mana nilai *m* ini sudah diperoleh melalui persamaan *Phi* di atas.
- Momentum azimut, *l*, suatu orbital, yang secara tradisional (*old spectroscopy*), bilangan kuantum azimut ini dinamai, secara berurutan, sebagai:

$$l = 0 \rightarrow (s) \ sharp \qquad (5.15)$$

$$l = 1 \rightarrow (p) \ principal$$

$$l = 2 \rightarrow (d) \ diffuse$$

$$l = 3 \rightarrow (f) \ fundamental$$

$$\vdots$$

Persamaan *Phi*, $\Phi(\phi)$, dan Persamaan *Theta*, $\Theta(\theta)$, dikenal dengan persamaan sudut atom hidrogen dan gabungan atau perkalian keduanya dikenal sebagai fungsi harmonik sferis atom hidrogen atau Persamaan Sudut, $\Psi_{lm}(\phi, \theta)$, yang lebih lanjut akan dijabarkan pada pembahasan selanjutnya.

5.4 Persamaan Sudut, $\Psi_{lm}(\phi, \theta)$

Kedua Persamaan Schrödinger, yaitu Persamaan *Phi* dan Persamaan *Theta* telah menjelaskan adanya ungkapan gerakan sudut (*angular*) dari elektron yang diekspresikan oleh sudut *theta* dan *phi*. Keduanya kelak melalui faktor sudut akan mempengaruhi bentuk fisik fungsi gelombang, $\Psi_{lm}(\phi, \theta)$, tetapi dalam hal ini tidak mempengaruhi energi atom hidrogen.

Fungsi gelombang sudut ini dikenal sebagai fungsi harmonik sferis, yang merupakan gabungan atau perkalian antara $\Phi(\phi)$ dengan $\Theta(\theta)$. Fungsi $\Psi_{lm}(\phi, \theta)$ memiliki batasan-batasan logis sebagai berikut:

$$l = 0 \to m = 0$$
(5.16)

$$l = 1 \to m = 0, \pm 1$$

$$l = 2 \to m = 0, \pm 1, \pm 2$$

$$l = 3 \to m = 0, \pm 1, \pm 2, \pm 3$$

$$\vdots$$

Untuk setiap harga keadaan kuantum (lm) solusi persamaan Schrödinger menghasilkan fungsi harmonik sferis atom hidrogen:

$$\Psi_{lm}(\phi,\theta) = \Phi_m(\phi)\Theta_{lm}(\theta) \tag{5.17}$$

Ungkapan 5.17 ini tertuang dalam Tabel 5.1 di bawah ini:

Tabel 5.1: Fungsi gelombang harmonik sferis atom hidrogen.

Azimut	Magnetik	Fungsi Gelombang $\Phi_m(\phi)\Theta_{lm}(\theta)$	Orbital
l = 0	m = 0	$\Phi_0(\phi) \Theta_{0,0}(heta) = \sqrt{rac{1}{4\pi}}$	S
l = 1	m = 0	$\Phi_0(\phi)\Theta_{1,0}(heta)=\sqrt{rac{3}{4\pi}}\cos heta$	p_z
	m = +1	$\Phi_{+1}(\phi)\Theta_{1,+1}(\theta) = \sqrt{\frac{3}{4\pi}}\sin\theta\cos\phi$	p_x
	m = -1	$\Phi_{-1}(\phi)\Theta_{1,-1}(\theta) = \sqrt{\frac{3}{4\pi}}\sin\theta\sin\phi$	p_y
<i>l</i> = 2	m = 0	$\Phi_0(\phi)\Theta_{2,0}(heta) = \sqrt{rac{5}{16\pi}}(3\cos^2 heta - 1)$	d_{z^2}
	m = +1	$\Phi_{+1}(\phi)\Theta_{2,+1}(\theta) = \sqrt{\frac{15}{4\pi}}\sin\theta\cos\theta\cos\phi$	d_{xz}
	m = -1	$\Phi_{-1}(\phi)\Theta_{2,-1}(\theta) = \sqrt{\frac{15}{4\pi}}\sin\theta\cos\theta\sin\phi$	d_{yz}
	m = +2	$\Phi_{+2}(\phi)\Theta_{2,+2}(\theta) = \sqrt{\frac{15}{16\pi}}\sin^2\theta\cos 2\phi$	$d_{x^2-y^2}$
	m = -2	$\Phi_{-2}(\phi)\Theta_{2,-2}(\theta) = \sqrt{\frac{15}{16\pi}}\sin^2\theta\sin 2\phi$	d_{xy}
<i>l</i> = 3	m = 0	$\Phi_0(\phi)\Theta_{3,0}(\theta) = \sqrt{\frac{7}{16\pi}}(5\cos^2\theta - 3)\cos\theta$	f_{z^3}
	m = +1	$\Phi_{+1}(\phi)\Theta_{3,+1}(\theta) = \sqrt{\frac{21}{32\pi}}(5\cos^2\theta - 1)\sin\theta\cos\phi$	f_{xz^2}
	m = -1	$\Phi_{-1}(\phi)\Theta_{3,-1}(\theta) = \sqrt{\frac{21}{32\pi}}(5\cos^2\theta - 1)\sin\theta\sin\phi$	f_{yz^2}
	m = +2	$\Phi_{+2}(\phi)\Theta_{3,+2}(\theta) = \sqrt{\frac{105}{16\pi}}\cos\theta\sin^2\theta\cos2\phi$	$f_{z(x^2-y^2)}$
	m = -2	$\Phi_{-2}(\phi)\Theta_{3,-2}(\theta) = \sqrt{\frac{105}{16\pi}}\cos\theta\sin^2\theta\sin2\phi$	f _{xyz}
	m = +3	$\Phi_{+3}(\phi)\Theta_{3,+3}(\theta) = \sqrt{\frac{35}{32\pi}}\sin^3\theta\cos 3\phi$	$f_{x(x^2-3y^2)}$
	m = -3	$\Phi_{-3}(\phi)\Theta_{3,-3}(\theta) = \sqrt{\frac{35}{32\pi}}\sin^3\theta\sin 3\phi$	$f_{y(3x^2-y^2)}$

Tabel 5.1 ini memberi gambaran tentang bentuk fungsi gelombang armonik sferis suatu atom hidrogen seperti pada Gambar 5.4:

Gambar 5.4: Fungsi gelombang sudut atom hidrogen.

Gambaran tentang bentuk fungsi gelombang harmonik sferis suatu atom hidrogen adalah bentuk orbital dari setiap perhitungan dalam Tabel 5.1 ini dapat dilihat pada Gambar 5.4.

Dan tampak pada bentuk orbital persamaan sudut ini seirama dengan model orbital hasil solusi persamaan Schrödinger untuk *box* 3 dimensi (Gambar 4.14), yaitu:

- Bentuk orbital *s* (*sharp*) pada persamaan sudut atom hidrogen ini adalah identik dengan bentuk orbital *old-sharp* pada *box* 3 dimensi, dimana fungsi gelombang masing-masing hanya bertanda positif (warna merah) dan berbentuk bola.
- 2. Untuk bentuk orbital *p* (*principal*) pada persamaan sudut atom hidrogen juga identik dengan bentuk orbital *old-principal* pada *box* 3 dimensi, dimana fungsi gelombang berupa dua bola masing-masing bertanda positif dan negatif ditandai dengan warna merah dan biru.
- 3. Demikian juga dengan bentuk orbital *d* (*diffuse*) pada persamaan sudut atom hidrogen adalah identik dengan bentuk orbital *old-diffuse* pada *box* 3 dimensi, dimana fungsi gelombang berupa empat bola dengan dua bola bertanda positif (merah) dan dua bertanda negatif (biru) dan ada juga yang identik antara orbital d_{z^2} pada model atom hidrogen dengan orbital $\Psi_1(x)\Psi_3(y)\Psi_1(z)$ pada *box* 3 dimensi.
- 4. Sedangkan untuk bentuk orbital *f* (*fundamental*) pada persamaan sudut atom hidrogen juga identik dengan bentuk orbital *oldfundamental* pada *box* 3 dimensi, dimana fungsi gelombang berupa enam bola dengan masing-masing tiga bola bertanda positif (merah) dan tiga bertanda negatif (biru) namun tidak terdapat orbital yang identik dengan orbital f_{z^3} pada model atom hidrogen dengan orbital $\Psi_1(x)\Psi_4(y)\Psi_1(z)$ pada *box* 3 dimensi.

5.4.1 Komparasi orbital Box 3 dimensi dan atom hidrogen

Akhirnya dapat dipaparkan perbedaan antara bentuk kurva fungsi gelombang kubus atau orbital, dimana perbedaan antara orbital pada *box* 3 dimensi dengan orbital atom hidrogen adalah terletak pada batasan panjang dimensinya, yaitu:

- 1. Bila pada *box* 3 dimensi dibatasi oleh panjang *L* maka pada atom hidrogen tidak dibatasai oleh satuan panjang.
- 2. Selain itu bahwa box 3 dimensi adalah solusi persamaan Schrödinger untuk koordinat Cartesian sedangkan pada atom hidrogen adalah koordinat sperik-polar.

3. Kedua bentuk fungsi gelombang ini memiliki pola yang saya yaitu memiliki fungsi gelombang positif (warna merah) dan fungsi gelombang negatif (warna biru).

Perbedaan bentuk fungsi gelombang atau orbital keduanya dapat dilihat pada Gambar 5.5.

Gambar 5.5: Perbandingan bentuk fungsi gelombang antara: (a). Box 3 dimensi, dan (b). Atom hidrogen.

5.5 Persamaan Radial, R(r)

Persamaan *radial* ini dikenal sebagai persamaan prinsip energi (*energy principle equation*). Hal ini karena arti fisika dari persamaan R(r) ini dapat dipelajari melalui efek potensial energi. Energi potensial akan mempengaruhi tingkat energi ionansi dan eksitasi (absorbsi atau emisi) suatu elektron, yaitu melalui interaksi dan pengaruh cahaya *ultraviolet*, visibel, *x-rays* dan lain-lain terhadap elektron tersebut.

Dari persamaan Schrödinger di atas dapat dipecah lagi dan dengan hanya memperhatikan bagian yang bergantung pada *radial*, maka lazim
akan diperoleh dua hal, yaitu:

1. Persamaan radial, dengan ungkapan:

$$\frac{r}{dr}\left(\frac{dR(r)}{dr}\right) - (2r-1)R(r) + \frac{2\mu r^2}{\hbar^2}\left[(E - V(r))\right]R(r) = 0 \quad (5.18)$$

dari ungkapan ini muncullah harga tetapan *n*, yaitu suatu tetapan bilangan kuantum utama (*principal quantum number*) atau merupakan tingkat-tingkat energi individual.

2. Solusi persamaan radial, merupakan sebuah solusi yang diselesaikan secara rumit tetapi eksak melalui *Laguerre polynomial methods*, yaitu dengan ungkapan:

$$R_{n,l}(r) = e^{-\frac{\rho}{2}} \rho^l \frac{d^{2l+1}}{d\rho^{2l+1}} e^{\rho} \frac{d^{n+1}}{d\rho^{n+1}} \left(\rho^{n+1} e^{-(n+1)}\right)$$
(5.19)

dengan harga $\rho = \left(\frac{2Z}{na_0}\right)r$, dan ungkapan ini dapat juga disingkat menjadi $\rho = \left(\frac{2\alpha}{n}\right)r$ bila $\alpha = \left(\frac{Z}{a_0}\right)$. Ungkapan bilangan kuantum utama hasil solisi di atas adalah:

$$n = l + 1, l + 2, l + 3, \dots$$
 (5.20)

Bila dimulai dari l = 0, maka diperoleh harga n = 1, 2, 3, ...

Utama	Azimut	Orbital	
n = 1	l = 0	$R_{1,0} = 2\left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\alpha r}$	1 <i>s</i>
	l = 0	$R_{2,0} = \sqrt{\frac{1}{2}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (1 - \alpha r) e^{-\alpha r}$	2 <i>s</i>
<i>n</i> = 2	l = 1	$R_{2,1} = \sqrt{\frac{1}{2}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (\alpha r) e^{-\alpha r}$	2 <i>p</i>
	l = 0	$R_{3,0} = \frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (6 - 12\alpha r + 4\alpha^2 r^2) e^{-\alpha r}$	3s
n = 3	l = 1	$R_{3,1} = \frac{1}{9\sqrt{6}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (4\alpha r - 2\alpha^2 r^2) e^{-\alpha r}$	3 <i>p</i>
	l = 2	$R_{3,2} = \frac{1}{9\sqrt{30}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (4\alpha^2 r^2) e^{-\alpha r}$	3 <i>d</i>

Tabel 5.2: Fungsi gelombang radial: *Density* elektron atom hidrogen

3. Energi E_n , yang merukapan energi orbital tiap *n*-nya dan hasilnya identik dengan atom Bohr, yaitu

$$E_n = -\frac{Z^2 e^4 \mu}{8\epsilon_0^2 n^2 h^2} \text{ dengan } n = 1, 2, 3, \dots$$
 (5.21)

Dengan demikian persamaan *radial* akan berpengaruh terhadap suatu orbital melalui tiga hal, yaitu: (a). Momentum azimut, l, (b). Bilangan kuantum utama, n, dan (c). Energi pada tingkat ke-n.

Untuk setiap harga keadaan kuantum (n, l) solusi persamaan radial ini tertuang dalam Tabel 5.2, yang memberi gambaran tentang bentuk fungsi gelombang radial dengan ungkapan kurva distribusi probabilitas radial (*radial probability distribution*) $r^2 R_{n,l}^2(r)$ versus r, seperti yang terlihat pada Gambar 5.6.

Kurva ini adalah kurva yang menjelaskan suatu probability menemukan elektron atau merupakan kerapatan (*density*) elektron suatu atom hidrogen.

Persamaan *Radial* menghasilkan kurva distribusi probabilitas radial atau *radial probability distribution*, $P(r) = r^2 R_{n,l}^2(r)$, dan persamaan dikenal dengan kerapatan elektron dalam orbital atom.

Persamaan distribusi probabilitas radial ini adalah kurva simultas dari semua Persamaan Radial dari semua orbital atom hidrogen, yang diungkapkan pada Gambar 5.7. Pada Gambar ini terungkap bahwa distribusi setiap sub-kulit dalam satu orbital atom tidak terpusat, atau

Gambar 5.6: Fungsi gelombang radial atom hidrogen.

melebar, misal pada:

- 1. Jarak antara sub-kulit 2*s* dengan sub-kulit 2*p* cukup berjarak dan melebar.
- 2. Jarak antara sub-kulit 3*s* dengan sub-kulit 3*p* dan dengan sub-kulit 3*d* juga melebar.

Gambar 5.7: Kurva Distribusi Probabilitas Radial Atom Hidrogen.

5.6 Fungsi Gelombang Atom Hidrogen, $\Psi_{nlm}(r, \theta, \phi)$

Setelah menyelesaikan Persamaan *Radial*, *Phi* dan *Theta* di atas, maka untuk setiap keadaan kuantum (n, l, m) solusi persamaan Schrödinger menghasilkan fungsi gelombang yang dikenal sebagai orbital atom hidrogen atau fungsi gelombang atom hidrogen atau juga untuk *hydrogen-like*, yang diungkapkan:

$$\Psi_{nlm}(r,\theta,\phi) = R_{nl}(r)\Theta_{lm}(\theta)\Phi_m(\phi)$$
(5.22)

dengan fungsi gelombang total adalah hasil kali bagian *radial*, $R_n(r)$, dan bagian sudut, $\Psi_{lm}(\theta, \phi)$.

Bentuk perkalian ini adalah konsekuensi logis dari bentuk energi potensial Coulomb dengan kooordinat sferik, namun juga hal ini memungkinkan pemeriksaan secara terpisah terhadap kontribusi bagian radial dengan bagian sudut fungsi gelombang total tersebut.

Energi potensial atom hidrogen yang memperlihatkan adanya *degeneracy* untuk setiap harga bilangan kuantum utama, *n*. Model energi potensial atom Bohr dan hasil solusi persamaan Schrödinger, yang memunculkan harga bilangan kuantum azimut, *l*.

Gambar 5.8: Perbandingan Tingkat Ener-

gi: Bohr dan Schrödinger.

Untuk memperoleh kebolehjadian elektron atom hidrogen pada bentuk orbital yang telah tergambar di atas, maka dilakukanlah kuantisasi fungsi gelombang total, yaitu dengan ungkapan:

$$\Psi_{nlm}^2(r,\theta,\phi)d\tau = R_{nl}^2(r)\Theta_{lm}^2(\theta)\Phi_m^2(\phi)d\tau$$
(5.23)

Makna fisik dari persamaan ini adalah bahwa bila persamaan ini diselesaikan melalui integrasi maka akan menghasilkan tiga pengertian: (a). Kebolehjadian (*probability*) menemukan elektron di dalam volume 3 dimensi sekecil $d\tau$, (b). Elektron berada dalam posisi (r, θ, ϕ) , dan (c). Atom hidrogen berada dalam keadaan kuantum (n, l.m).

Pengertian ini membutuhkan contoh-contoh spesifik, misal pengertian orbital dan ukuran orbital, yang akan dibahas pada bagian selanjutnya.

5.7 Orbital Atom Hidrogen

Orbital adalah suatu fungsi gelombang $\Psi_{nlm}^2(r, \theta, \phi)$ untuk atom berelektron satu di dalam keadaan kuantum (n, l, m). Istilah orbital mengingatkan kita pada orbit melingkar pada atom Bohr (lihat model atom Bohr 3 dimensi pada bagian sebelum ini), tetapi sesungguhnya tidak ada kesamaannya.

Suatu orbital bukanlah lintasan jejak suatu elektron, karena bila demikian maka akan bertentangan dengan prinsip ketidak-pastian Heisenberg. Bila atom hidrogen atau suatu *hydrogen-like* berada dalam keadaan kuantum (n, l, m), maka secara konvensi dapat dikatakan bahwa elektron tersebut berada di 'dalam box 3 dimensi orbital 'atau dengan kata lain berada dalam gambar orbital seperti yang tertuang dalam Tabel 5.1 yang bergantung pada keadaan kuantum (n, l, m).

Pernyataan di atas merupakan ungkapan untuk menyatakan kebolehjadian atau probability menemukan elektron pada titik tertentu dalam gambar orbital tersebut yang diberikan oleh rumus $\Psi_{nlm}^2(r, \theta, \phi)$. Secara berurutan akan dibahas masing-masing jenis orbital, yang berdasarkan rumus-rumus di atas.

5.7.1 Orbital Sharp

Orbital *sharp* disingkat dengan orbital *s*, dimana orbital ini memiliki keadaan kuantum $(l = 0 \rightarrow m = 0)$ dalam suatu fungsi gelombang $\Psi_{nlm}(r, \theta, \phi)$. Sehingga mengandung pengertian:

- 1. Dari rumus orbital Tabel 5.1 untuk orbital s ternyata tidak bergantung pada sudut sehingga hasil gambar orbitalnya selalu sferis atau bola.
- 2. Dari rumus fungsi gelombang orbital sharp (Tabel 5.3) untuk orbital s hanya bergantung pada r dari inti atom hidrogen sehingga tidak mempunyai arah di dalam box 3 dimensi.

Fungsi gelombang orbital s atom hidrogen Keadaan kuantum atom hidrogen. n = 1, l = 0, m = 0 $\Psi_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\alpha r}$ n = 2, l = 0, m = 0 $\Psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (2 - \alpha r) e^{-\frac{1}{2}\alpha r}$ n = 3, l = 0, m = 0 $\Psi_{3s} = \frac{1}{81\sqrt{3\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (27 - 18\alpha r + 28\alpha^2 r^2) e^{-\frac{1}{3}\alpha r}$ P(r

Keadaan kuantum orbital sharp atom hidrogen: Bentuk fungsi gelombang bagian sudut, $\Psi_{lm}(\theta, \phi)$, sangat dipengaruhi oleh fungsi gelombang bagian radial akibat munculnya radial probability distribution. Gambar 5.9: Fungsi Gelombang orbital sharp Atom Hidrogen.

Tabel 5.3: Keadaan kuantum orbital sharp

Untuk 1*s* tidak memiliki daerah simpul (*node radial atau low density*), untuk 2*s* memiliki satu daerah simpul dan untuk 3*s* memiliki dua simpul.

5.7.2 Orbital Principal

Orbital *principal* disingkat dengan orbital *p*, dimana orbital ini memiliki keadaan kuantum $(l = 1 \rightarrow m = 0, \pm 1)$ dalam suatu fungsi gelombang $\Psi_{nlm}(r, \theta, \phi)$. Sehingga mengandung pengertian:

- 1. Dari rumus orbital Tabel 5.1 untuk orbital p bergantung pada sudut (θ, ϕ) dan gambar orbital sferisnya menghasilkan dua bola yang mempunyai arah akibat sudut ϕ di dalam *box* 3 dimensi.
- 2. Dari rumus fungsi gelombang orbital principal Tabel 5.4 untuk orbital *p* bergantung pada *r* dengan simpul yang mempengaruhi bentuk orbital

Keadaan kuantum	Fungsi gelombang orbital p atom hidrogen
n = 2, l = 1, m = 0	$\Psi_{2p_z} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (\alpha r) e^{-\frac{1}{2}\alpha r} \cos\theta$
n = 3, l = 1, m = 0	$\Psi_{3p_z} = \frac{1}{81} \sqrt{\frac{2}{\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} (6 - \alpha r) e^{-\frac{1}{3}\alpha r} \cos \theta$

Keadaan kuantum orbital *principal* atom hidrogen: Bentuk fungsi gelombang bagian sudut, $\Psi_{lm}(\theta, \phi)$, sangat dipengaruhi oleh fungsi gelombang bagian radial akibat munculnya *radial probability distribution*. Untuk $2p_z$ tidak memiliki daerah simpul (*node radial* atau *low density*), untuk $3p_z$ memiliki satu daerah simpul.

5.7.3 Orbital Diffuse

Orbital *diffuse* disingkat dengan orbital *d*, dimana orbital ini memiliki keadaan kuantum $(l = 2 \rightarrow m = 0, \pm 1, \pm 2)$ dalam suatu fungsi

Tabel 5.4: Keadaan kuantum orbital *principal* atom hidrogen.

Gambar 5.10: Fungsi Gelombang orbital *principal* Atom Hidrogen.

gelombang $\Psi_{nlm}(r, \theta, \phi)$. Sehingga mengandung pengertian:

- 1. Dari rumus orbital Tabel 5.1 untuk orbital *d* bergantung pada sudut (θ, ϕ) dan gambar orbital sferisnya menghasilkan empat bola yang mempunyai arah akibat sudut ϕ di dalam box 3 dimensi.
- 2. Dari rumus fungsi gelombang orbital *diffuse* pada Tabel 5.5 untuk orbital *d* bergantung pada *r* dengan simpul yang mempengaruhi bentuk orbital.

Tabel 5.5: Keadaan kuantum orbital *diffuse* atom hidrogen.

Gambar 5.11: Fungsi Gelombang orbital *diffuse* Atom Hidrogen.

Keadaan kuantum orbital *diffuse* atom hidrogen: Bentuk fungsi gelombang bagian sudut, $\Psi_{lm}(\theta, \phi)$, sangat dipengaruhi oleh fungsi gelombang bagian radial akibat munculnya *radial probability distribution*. Untuk $3d_{z^2}$ tidak memiliki daerah simpul (*node radial* atau *low density*).

6 Atom bukan Hidrogen

Atom bukan hidrogen dikenal juga dengan atom berelektron banyak. Salah satu contoh adalah atom He yang merupakan atom berelekton banyak yang paling sederhana. Penyelesaian pesamaan Schrödinger atom bukan hidrogen adalah sangat komplek dan menghasilkan solusi yang tidak eksak. Untuk itu diperlukan suatu *approximation methods*.

Gambar 6.1: Area Konsep Pemahaman Atom Bukan Hidrogen.

Metode pendekatan ini justru didasari pada penyelesaian persamaan Schrödinger untuk atom hidrogen. Metode pendekatan ini dimulai dengan penyelesaian persamaan Schrödinger bagi patikel sederhana setelah atom hidrogen atau atom serupa hidrogen (*hydrogen-like*), misal He⁺, Li²⁺, Be³⁺ dan sebagainya. Secara tuntas dan eksak, penyelesaian persamaan Schrödinger untuk atom hidrogen telah dibahas pada bab sebelumnya.

Demikian juga halnya dengan *hydrogen-like* di atas, maka akan menghasilkan penurunan matematika dan hasil yang sama. Penyelesaian persamaan Schrödinger untuk atom serupa hidrogen adalah basic untuk penyelesiaan persamaan Schrödinger atom selain hidrogen.

Ilmuwan fisika, khususnya ilmuwan fisika kuantum , yang telah memberikan suatu pondasi yang kuat untuk menjelaskan problem atom berelekron banyak di atas adalah:

- 1. Douglas Hartree, melalui konsep orbital Hartree atau *Hartree energy* & orbital, juga dikenal sebagai *self consistent field orbital approximation method* (SCF).
- 2. Wolfgang Pauli, melalui konsep Prinsip Larangan Pauli atau *Pauli exclusion principle*
- 3. Frederick Hund, melalui konsep hukum Hund atau Hund's rule.

Kedua terakhir aturan di atas dikenal dengan prinsip Aufbau atau *Aufbau principle,* yang dikenal juga sebagai prinsip 'menyusun elektron suatu atom'.

6.1 Energi & Orbital Hartree

Pada prinsipnya Douglas Rayner Hartree memanfaatkan solusi persamaan Schrödinger atom hidrogen yang eksak, dimana setiap elektron tidak hanya akan tertarik oleh inti atom tetapi juga terjadi tolak-menolak dengan elektron yang lain. Konsep ini lebih mendekati fakta bahwa elektron dari atom selain hidrogen adalah saling berinteraksi dengan perbedaan energi elektronnya masing-masing.

Hartree membangun konsep orbital atom bukan hidrogen dengan dua jalan, yaitu: (a). Model kulit atom Hartree atau *Hartree atomic shell model* dan (b). Efek perisai energi atom Hartree atau *Hartree atomic penetration effect*.

6.1.1 Model Kulit Atom Hartree

Hartree memodifikasi penurunan rumus energi potensial melalui pendekatan efektifitas energi potensial, jarak rerata inti dengan elektronelektron yang terlibat, dan konsep bentuk orbital hasil penurunan

Gambar 6.2: Douglas Rayner Hartree, penemu teori konfigurasi elektron (Sumber: http://www.converter.cz/fyzici/hartree).

Schrödinger. Dalam model kulit atom ini Hartree menggunakan tiga asumsi, yaitu:

1. Setiap elektron memiliki energi potensial efektif, $V_{nl}^{eff}(r)$, akibat pengaruh elektron lain dalam satu atom, yang besarnya bergantung pada keadaan kuantum *n* dan *l*. Energi potensial efektif ini diungkakpan oleh:

$$V_{nl}^{eff}(r) = -\frac{Z_{eff}(n,l)e^2}{r}$$
(6.1)

dimana $Z_{eff}(n, l)$ adalah muatan inti atom efektif atau *effective nuclear charge*, artinya muatan inti akan berkurang secara efektif (tidak sebesar Z pada atom hidrogen) bergantung pada keadaan kuantum n dan l.

2. Akibatnya, setiap elektron akan memiliki rata-rata radial, \bar{r}_{nl} , terhadap inti atom, dengan ungkapan:

$$\bar{r}_{nl} = \frac{n^2 a_0}{Z_{eff}(n,l)} \left(1 + \frac{1}{2} \left[1 - \frac{l(l+1)}{n^2} \right] \right)$$
(6.2)

Gambar 6.3: Perbandingan Distribusi Elektron: Schrödinger dan Hartree.

3. Karena ungkapan energi potensial efektif ini hampir sama dengan energi potensial untuk atom hidrogen maka setiap elektron dideskripsikan oleh orbital berelektron satu yang mirip dengan orbital atom hidrogen. Sehingga didapat persamaan radial efektif, $R_{nl}^{eff}(r)$, untuk atom bukan hidrogen, yaitu:

$$V_{nl}^{eff}(r) = e^{-\frac{\rho}{2}} \rho^l \frac{d^{2l+1}}{d\rho^{2l+1}} e^{\rho} \frac{d^{n+1}}{d\rho^{n+1}} \left(\rho^{n+1} e^{-(n+1)}\right)$$
(6.3)

dengan $ho = \left(rac{2 Z_{e\!f\!f}(n,l)}{n a_0}
ight) r$

Penjelasan persamaan-persamaan di atas menghasilkan gambar di bawah ini, yang mana juga merupakan kurva antara *radial probability distribution* atau distribusi probabilitas radial: P(r) versus r. Distribusi probabilitas radial diungkapkan oleh:

$$P(r) = r^2 R_{nl}^{eff}(r) \tag{6.4}$$

Kurva distribusi probabilitas radial, P(r), versus r untuk atom bukan hidrogen, hasil perhitungan model orbital Hartree, menghasilkan adanya pola *distribusi radial* yang lebih 'rapih', yaitu:

1. Untuk setiap bilangan kuantum utama, n, yang sama akan menghasilkan rata-rata radial, \bar{r}_{nl} , yang hampir sama:

$$\bar{r}_{n0} \approx \bar{r}_{n1} \approx \bar{r}_{n2} \approx \bar{r}_{n3} \approx \dots \tag{6.5}$$

Pada pola ini Hartree menamakan sebagai kulit atom, *atomic shell*, yaitu:

$$n = \begin{cases} 1 \rightarrow shell \ K \\ 2 \rightarrow shell \ L \\ 3 \rightarrow shell \ M \\ 4 \rightarrow shell \ N \\ \vdots \\ dan seterusnya \end{cases}$$
(6.6)

Gambar 6.4: Perbandingan Distribusi Elektron Hartree.

2. Pada setiap *shell*, terdapat beberapa sub-kulit atom (*atomic sub-shell*), yang tidak lain adalah bilangan kuantum azimut (*l*), yaitu:

 $n = \begin{cases} 1 \rightarrow shell \ K, & sub-shell : l = 0 \ (\text{orbital } s) \\ 2 \rightarrow shell \ L, & sub-shell : l = 0, 1 \ (\text{orbital } s, p) \\ 3 \rightarrow shell \ M, & sub-shell : l = 0, 1, 2 \ (\text{orbital } s, p, d) \\ 4 \rightarrow shell \ N, & sub-shell : l = 0, 1, 2, 3 \ (\text{orbital } s, p, d, f) \\ \vdots \\ \text{dan seterusnya} \end{cases}$

(6.7)

6.1.2 Efek Perisai Energi Atom Hartree

Model efek perisai atau *penetration effect model* adalah konsep untuk menjelaskan keadaan energi atom bukan hidrogen yang berbeda dengan atom hidrogen. Keadaan energi atom bukan hidrogen sangat dipengaruhi oleh energi potensial efektif, $V_{nl}^{eff}(r)$, dan diungkapkan oleh:

$$E_{nl} = -\frac{\left[Z_{eff}(n,l)\right]^2}{n^2} \tag{6.8}$$

Dari persamaan ini mengandung makna:

 Untuk setiap bilangan kuantum utama yang sama, maka harga muatan nukleus efektif, Z_{eff}(n, l), untuk setiap orbital berbeda: orbital *s* cenderung lebih dekat dengan inti dibandingkan orbital *p* dan seterusnya. Sehingga didapat ungkapan:

$$Z_{eff}(ns) > Z_{eff}(np) > Z_{eff}(nd)$$
(6.9)

2. Sehingga untuk setiap bilangan kuantum utama yang sama energi untuk setiap orbitalnya (s, p, d dan f) adalah berbeda, atau tidak ada degenerasi. Sehingga degenerasi terjadi hanya dalam satu sub-kulit atom. Hal ini karena energi atom bergantung pada bilangan kuantum n dan l (E_{nl}).

$$E_{ns} < E_{np} < E_{nd} \tag{6.10}$$

3. Pengaruh dari jumlah elektron yang lebih dari satu untuk setiap atom ini memberi koreksi yang berarti pada hasil perhitungan energi suatu atom. Sehingga dari Persamaan 6.10 tertata ulang untuk setiap harga nilangan kuantum utama, *n*, menjadi:

- 4. Koreksi dari Hartree pada persamaan Schrödinger bagi atom hidrogen ini memberi gambaran bahwa adanya tingkat energi yang berbeda untuk setiap orbitalnya dalam satu atom bukan hidrogen, dimana setiap tingkat energi orbital atom bukan hidrogen menghasilkan tingkat energi sub-orbital atom bukan hidrogen yang berbeda-beda
- 5. Hal ini memberi gambaran bahwa konfigurasi elektron untuk setiap atom bukan hidrogen adalah tidak beraturan pada atom yang memiliki nomor atom yang lebih tinggi, sehingga didapat urutan energi sub-orbital atom yaitu:

:

$$E_{5d} < E_{4f} < E_{6p} < E_{7s} < E_{6d} < E_{5f}$$

$$E_{4p} < E_{5s} < E_{4d} < E_{5p} < E_{6s}$$

$$E_{3s} < E_{3p} < E_{4s} < E_{3d}$$

$$E_{2s} < E_{2p}$$

$$E_{1s}$$

Dari penjelasan di atas didapat gambaran singkat tentang bentuk energi potensial untuk atom bukan hidrogen berdasarkan model Hartree, dapat dilihat pada Gambar 6.5. Perbedaan model tingkat energi atom dengan urutan tingkat energ atom yang tampak tidak teratur pada model Hartree, dimana ternyata E_{4s} lebih rendah dari E_{3d} , juga E_{5s} lebih rendah dari E_{4d} , dan seterusnya.

6.2 Prinsip Larangan Pauli

6.2.1 Spin Elektron Atom

Dalam diskusi tentang atom bukan hidrogen dan juga *hydrogen-like*, maka ada satu poin penting yang di hasilkan dari eksperimen yang dipelopori oleh Otto Stern dan Walter Gerlach, yaitu bahwa berkas elektron dari suatu atom akan berputar (*spin*) sesuai pengaruh medan magnet. Hasil ekperimen ini dijelaskan dengan baik oleh Wolfgang Pauli pada tahun 1925, yaitu: bila suatu atom berada pada keadaan *ground state* (n = 1, l = 0, m = 0), berada di daerah medan magnet, maka akan terjadi split menjadi dua *spin*, dimana masing-masing keadaan split mengandung setengah dari jumlah atomnya.

Gambar 6.6: Wolfgang Pauli (Sumber: http://cds.cern.ch/record/42801).

Gambar 6.7: Skema eksperimen *spin* elektron oleh Stern & Gerlach.

Dari eksperimen ini dimunculkan konsep bilangan kuantum keempat yaitu *spin quantum number*, atau bilangan kuantum *spin*, dengan ungkapan:

$$spin \begin{cases} m_s = +\frac{1}{2} \\ m_s = -\frac{1}{2} \end{cases}$$
(6.11)

Dari 6.7 didapat keterangan-keterangan penting yang dapat ditarik, yaitu:

- Elektron dapat berputar melalui poros *spin*, dengan asumsi: (a). Untuk m_s = +¹/₂, maka harga ini adalah untuk *spin* 'atas', dan (b). Untuk m_s = +¹/₂, maka harga ini adalah untuk *spin* 'bawah'. Dengan demikian bilangan kuantum *spin* menjadi m_s = ±¹/₂
- 2. Medan grafitasi yang berasal dari medan magnet adalah akibat efek relatifitas.
- 3. Konsep bilangan kuantum *spin* tidak diturunkan dari persamaan Schrödinger.
- 4. Bilangan kuantum spin, $m_s = \pm \frac{1}{2}$, tidak mempengaruhi kebolehjadian kerapatan elektron suatu atom dan hanya berpengaruh pada

keadaan kuantum dengan energi E_n .

Akhirnya secara total telah dapat diketahui bahwa fungsi gelombang atom hidrogen dan atom bukan hidrogen memiliki empat keadaan kuantum, dengan ungkapan:

$$\Psi_{\text{atom}} \equiv \Psi_{nlmm_s} = \begin{cases} R_{nl}(r)\Theta_{ml}(\theta)\Phi_m(\phi)\alpha, & \text{untuk } m_s = +\frac{1}{2} \\ R_{nl}(r)\Theta_{ml}(\theta)\Phi_m(\phi)\beta, & \text{untuk } m_s = -\frac{1}{2} \end{cases}$$
(6.12)

Tanda α dan β adalah untuk memudahkan penulisan persamaan fungsi gelombang atom hidrogen karena adanya bilangan kuantum keempat, yaitu bahwa $\alpha \equiv m_s = +\frac{1}{2}$ adalah *spin* positif dan $\beta \equiv m_s = -\frac{1}{2}$ adalah *spin* negatif.

Fakta ini sangat berguna untuk menjelaskan atom selain hidrogen atau atom dengan elektron lebih dari satu. Dan dari fakta ini juga muncullah Postulat 6 (enam) sebagai postulat pelengkap dari 5 (lima) postulat mekanika kuantum sebelumnya.

6.2.2 Postulat 6

Total fungsi gelombang haruslah anti-simetri terhadap semua susunan konfigurasi dua partikel. Spin partikel akibat sifat anti-simetri itu haruslah berada dalam susunan konfigurasi dua partikel.

$$\Psi(x,y,z) = \begin{cases} \psi(x,y,z)m_{+\frac{1}{2}}, & \text{untuk } spin \ up \\ \\ \psi(x,y,z)m_{-\frac{1}{2}}, & \text{untuk } spin \ down \end{cases}$$
(6.13)

6.2.3 Tingkat Energi elektron

Tingkat-tingkat energi elektron dan orbital atom bukan hidrogen yang diturunkan oleh Hartree di atas, secara matematis, akan menghasilkan konfigurasi energi yang komplek bila melibatkan ke-empat bilangan kuantumnya, yaitu bilangan kuantum utama (n), bilangan kuantum azimut (l), bilangan kuantum magnetik (m), maupun bilangan kuantum spin (m_s) . Namun masalah ini dapat ditata-ulang oleh Wolfgang Pauli, dengan mengusulkan prinsip larangan Pauli. Pauli mengusulkan beberapa hal dalam konsep konfigurasi elektron, yaitu:

1. Atom berada dalam keadaan stabil bila semua elektron-elektronnya mengisi mulai pada tingkat energi yang paling rendah.

Gambar 6.8: Wolfgang Pauli muda di kelas kuliah (Sumber: http://www.wpi.ac.at/).

- 2. Maksimum hanya ada 2 (dua) elektron yang dapat mengisi satu orbital elektron Hartree dengan nilai *spin* yang berlawanan.
- 3. Prinsip Larangan Pauli, bahwa tidak ada 2 elektron dalam satu atom yang mempunyai set bilangan kuantum yang sama baik n, l, dan m, maupun m_s .

Dari pernyataan kedua, karena hanya ada dua elektron yang mungkin menempati satu orbital Hartree, maka jumlah elektron maksimum, e_{maks} , yang mungkin terdapat dalam sebuah kulit atom Hartree dengan bilangan kuantum utama, n, adalah:

$$e_{maks} = 2n^2 \tag{6.14}$$

Pada Persamaan 6.14, maka didapat urutan jumlah elektron maksimum yang mungkin terdapat dalam kulit elektron Hartree yang mengisi 2 elektron pada setiap sub-kulit:

$$n = \begin{cases} 1: 2e \rightarrow 1s & e_{maks} = 2\\ 2: 2e \rightarrow 2s, 6e \rightarrow 2p & e_{maks} = 6\\ 3: 2e \rightarrow 3s, 6e \rightarrow 3p, 10e \rightarrow 3d & e_{maks} = 10\\ 4: 2e \rightarrow 4s, 6e \rightarrow 4p, 10e \rightarrow 4d, 14e \rightarrow 4f & e_{maks} = 14 \end{cases}$$
(6.15)
$$\vdots & \\ dan \text{ seterusnya} \end{cases}$$

Sedangkan dari pernyataan ketiga, maka bila dua elektron dalam satu orbital dengan nilai-nilai:

- 1. Bilangan kuantum utama (*n*).
- 2. Bilangan kuantum azimut (*l*).
- 3. Bilangan kuantum magnetik (*m*).

orbital	А	В	sub-orbital
S	2	1	S
р	6	3	p_z, p_x, p_y
d	10	5	$d_{z^2}, d_{xz}, d_{yz}, d_{xy}, d_{x^2-y^2}$
f	14	7	$f_{z^3}, f_{xz^2}, f_{yz^2}, f_{xyz}, f_{z(x^2-y^2)}, f_{x(x^2-3y^2)}, f_{y(3x^2-y^2)}$
8	18	9	-

A= *Jumlah elektron tiap orbital*

B= Jumlah sub-orbital

Dalam keadaan sama, haruslah bilangan kuantum spin (m_s) menjadi saling berlawanan, yaitu:

- 1. Elektron pertama dengan $m_s = +\frac{1}{2}$, dan
- 2. Elektron kedua dengan $m_s = -\frac{1}{2}$.

Gambar 6.9: Perbedaan energi potensial dalam perhitungan Pauli.

Gambar 6.10: Penulisan spin elektron dalan satu sub orbital.

Tabel 6.1: Keadaan kuantum orbital Prinsip Larangan Pauli.

6.2.4 Table periodik Pauli

Dari Table 6.1 ini, Pauli mengusulkan model tabel periodik unsur non-hidrogen, dimana susunan tebal periodik ini disusun berdasarkan kelompok orbital dan sub-orbital valensinya. Tabel periodik ini dapat dilihat secara umum pada Gambar 6.11.

Prinsip larangan Pauli ini dapat membantu penyusunan daftar unsur-unsur dengan penyusunan orbital-orbital atomik yang ditandai dengan:

- 1. Empat bilangan kuantum yang unik,
- 2. Selalu berbeda antar atom,
- 3. Tidak bernilai sembarangan, dan
- 4. Menghasilkan urutan tingkat energi yang semakin meningkat untuk setiap kenaikan bilangan kuantum utamanya.
- 5. Penggolongan atom-atom terbentuk berdasarkan susunan akhir konfigurasi elektron Hartree.
- 6. Penyusunan periode atom-atom terbentuk berdasarkan kulit elektron Hartree

Prinsip larangan Pauli ini juga membantu ilmuwan fisika dan kimia dalam melakukan:

- 1. Penyusunan konsep konfigurasi elektron suatu atom.
- 2. Prinsip ini juga sangat bermaanfaat dalam membantu penataan urutan tabel periodik unsur-unsur.

Hanya larangan Pauli ini belum menjelaskan bagaimana posisi spin elektron untuk sub orbital yang berbeda namun *degeneracy* dalam satu kulit elektron. Namun kelemahan larangan Pauli ini disempuranak oleh Fisikawan lainnya yaitu Friedrich Hermann Hund, seperti penjelasan di bawah ini.

Gambar 6.12: Skema tabel periodik unsur hasil perhitungan Pauli, tersusun berdasarkan konfigurasi elektron valensi.

6.3 Aturan Hund

Dari Prinsip Larangan Pauli, Friedrich Hermann Hund menjalaskan permasalahan yang belum dipecahkan oleh Pauli, yaitu:

- 1. Bagaimana bila beberapa elektron berada pada orbital Hartree yang degenerasi (dengan tingkat energi yang sama)?
- Bagaimana proses pengisian elektron dalam orbital degenerasi tersebut?

Aturan Hund mendefinisikan perilaku berpasangan elektron valensi *shell*, memberikan wawasan reaktivitas atom dan stabilitas. Terapkan aturan Hund untuk menentukan konfigurasi elektron untuk atom dalam keadaan dasar.

Hund menyusun aturan untuk memecahkan masalah ini dengan konsep Hukum Hund, yaitu:

- Elektron-elektron yang mengisi orbital Hartree akan berada dalam keadaan tunggal terlebih dahulu kemudian elektron berikutnya mengisi sehingga dalam keadaan penuh (2 elektron) (Lihat Gambar 6.14).
- 2. Elektron mengatur diri untuk meminimalkan energi interaksi antar elektron dalam satu atom.
- 3. Elektron-elektron akan selalu menempati orbital kosong sebelum mereka berpasangan untuk meminimalkan tolakan.

Aturan larangan *spin* elektron yang diusulkan oleh Pauli di atas, diperbaiki oleh Hund, melalui perhitungan matematika rumit, khususnya peritungan beda energi potensial antara elektron yang berinteraksi pada suatu sub-orbital di dalam sebuah orbital, dengan aturan sebagai berikut:

- 1. Setiap orbital yang memiliki sub-orbital akan diisi oleh elektron dengan *spin* yang searah terlebih dahulu.
- 2. Elektron dengan *spin* yang berbeda arah akan memiliki energi yang lebih tinggi dibandingkan elektron dengan *spin* yang searah, di dalam sub-orbital pada suatu orbital.
- 3. Elektron pertama yang mengisi sub-sub orbital sebagai *spin-up* (↑), sedangkan pengisian elektron selanjutnya sebagai *spin-down* (↓).
- 4. *Spin* elektron searah memiliki energi lebih rendah (lebih stabil) daripada *spin* elektron tidak searah, di dalam suatu orbital (Lihat Gambar 6.15).

Gambar 6.13: Friedrich Hermann Hund (Sumber: http://prestonstimeline.weebly.com/).

Gambar 6.14: Beberapa terapan aturan Hund: Pengisian elektron *spin-up* terlebih dahulu untuk semua sub-orbital.

Gambar 6.15: Beberapa terapan aturan Hund: *Spin* elektron searah memiliki energi lebih rendah daripada *spin* elektron tidak searah.

Gambar 6.16: Pertemuan ahli fisika di Chicago, USA, 1929, dalam rangka merumuskan konfigurasi elektron suatu atom. Hund juga mengusulkan model pengisian konfigurasi elektron dalam rangka memperbaiki Hukum Larangan Pauli, sebagai berikut:

- 1. Konfigurasi elektron dapat dilakukan dengan sebuah prediksi tentang bagaimana unsur-unsur tertentu akan bereaksi yang sesuai rumusan Hartree.
- 2. Sebuah atom yang paling reaktif ketika *shell* valensi yang terisi tidak penuh dan paling stabil ketika *shell* valensi yang terisi penuh.
- 3. Elemen yang memiliki jumlah yang elektron valensi yang sama maka akan memiliki sifat yang mirip.

6.4 Prinsip Aufbau

Setelah para ilmuwan di atas, mulai dari Hartree, Pauli, dan Hund, berusaha untuk menyusun konfigurasi elektron, maka semua fisikawan teori berusahan untuk menyeragamkan konfigurasi elektron dari masing-masing ilmuwan.

Pada tahun 1929 diadakan konferensi khusus untuk membahas konfigurasi elektron dari semua atom dan sekaligus menyusun tabel periodik unsur-unsur secara teoritis. Yang Hadir dalam foto bersama adalah:

- Belakang dari Kiri: Arthur Holly Compton, George Spencer Monk, Carl Henry Eckardt, Robert Sanderson Mulliken, Frank Clark Hoyt.
- 2. Depan dari Kiri: Werner **Heisenberg**, Paul **Dirac**, Henry Gordon **Gale**, Friedrich **Hund**.
- 3. Absen foto: Douglas Rayner **Hartree**, Wolfgang **Pauli**, Otto **Stern** dan Walter **Gerlach**.

Susunan konfigurasi elektron itu dirumuskan dalam konsep sebagai Prinsip Aufbau. Prinsip Aufbau adalah suatu konsep cara menyusun atau rekonstruksi elektron-elektron dalam orbital suatu atom. Aubau sendiri adalah diambil dari bahasa Jerman, yang bermakna rekonstruksi, khusus untuk merekonstruksi atau mengkonfigurasi elektron dalam sebuah atom.

 $\begin{array}{l} E_{5d} < E_{4f} < E_{6p} < E_{7s} < E_{6d} < E_{5f} \\ E_{4p} < E_{5s} < E_{4d} < E_{5p} < E_{6s} \\ E_{3s} < E_{3p} < E_{4s} < E_{3d} \\ E_{2s} < E_{2p} \\ E_{1s} \end{array}$

Gambar 6.17: Perhitungan energi Hartree sebagai dasar Prinsp Aufbau.

Gambar 6.18: Konsep rekonstruksi Aufbau.

Pengisian elektron pada orbital atom harus sistematik dan prinsip ini adalah berdasar pada konsep orbital Hartree, dimulai dari:

- 1. Energi terendah dari konsep energi Hartree (Lihat Gambar 6.17).
- 2. Tiap keadaan orbital Hartree maksimal terisi 2 elektron.

Prinsip Aufbau juga dapat dijelaskan oleh ilmuwan fisika kuantum, yaitu:

- 1. Melalui Konsep Prinsip Larangan Pauli.
- 2. Melalui konsep Aturan Hund.
- 3. Hukum Distribusi elektron Dirac.

Gambar 6.19: Pieter Zeeman, eksperimentalis tingkat energi elektron akibat medan magnet (Sumber: https://www.nobelprize.org/prizes/ physics/1902/zeeman/facts/).

4. Hukum Penyebaran (scattering) Compton.

Akhirnya Prinsip Aufbau ini menghasilkan konsep konfigurasi elektron atau *electron configuration* suatu atom bukan hidrogen dan juga menjadi dasar bagi terbentuknya "tabel periodik unsur-unsur" atau *the elements periodic tabel*.

Perhitungan secara matematik untuk merumuskan konigurasi elektron serta model tabel perodeik unsur-unsur di atas perlu didukung data-data eksperimen tentang eksitasi elektron serta energi yang dihasilkan. Data eksperimen tentang atom tersebut dikerjakan oleh banyak ilmuwan fisika, di antaranya:

- 1. Pieter Zeeman yang meneliti pengaruh medan magnit terhadap suatu elektron dengan perbedaan tingkat energi suatu elektron.
- 2. Eksperimen tentang: Energi Ikat Elektron, Energi Ionisasi, dan Energi Afinitas electron.

6.5 Efek Magnetik Zeeman

Pieter Zeeman, peraih Nobel Priza di bidang Fisika tahun 1902, meneliti data pengaruh medan magnet terhadap elektron-elektron dari sebuah atom, yang disebut Efek Zeeman, dan diperoleh data-data:

- 1. Tingkat energi atom.
- 2. Transisi elektron di antara tingkat-tingkat energi elektron.
- 3. Garis-garis spektra akibat pengaruh medan magnet maupun tanpa pengaruh medan magnet.
- 4. Tingkat energi elektron dari sebuah atom serta refleksi (pemisahan) spektranya.

6.5.1 Pemisahan Spektral Zeeman

Zeeman meneliti tantang pola dan jumlah spektra dari setiap atom dengan pengaruh medan magnet dan tanpa pengaruh medan magnet.

Pemisahan refleksi dari spektra ini menunjukkan adanya apa yang disebut sebagai bilangan kuantum momentum sudut orbital L tingkattingkat energi elektron suatu atom. Bilangan kuantum ini merupakan bilangan bulat:

$$L = , 1, 2, 3, \cdots$$
 (6.16)

Jumlah refleksi tingkat-tingkat energi yang terjadi akibat pengaruh medan magnet adalah:

$$N = 2L + 1$$
 (6.17)

Gambar 6.20 berikut menggambarkan efek Zeeman, yang menjelaskan adanya perbedaan spektra (*split*) antara pengaruh medan magnet dengan tanpa pengaruh medan magnet pada eksitasi elektron di dalam suatu atom.

Gambar 6.20: Spektra elektron pada pengamatan Zeeman, dimana pada pengaruh medan magnet terjadi refleksi/*split* spektra untuk sub-orbital atom *p*.

Data-data eksperimen yang dilakukan oleh Zeeman menghasilkan informasi-infosmasi penting dalam pembuktian-pembuktian konsep mekanika kuantum, diantaranya:

1. Pada daerah medan magnet terjadi refleksi/*split* untuk orbital p menjadi tiga spektra sub-orbital yaitu: p_x , p_z , dan p_y , yang mana perbedaan energi dari ketiga sub-orbital adalah (Lihat Gambar 6.21):

$$E(p_x) > E(p_z) > E(p_y)$$
 (6.18)

 Zeeman menandai perbedaan energi di atas sebagai perbedaan tingkat energi magnetik (*m*) dari setiap sub-orbital dari orbital *p* dengan L = 1 maupun orbital *d* dengan L = 2, dan *f* dengan L = 3. Perbedaan tingkat energi magnetik tersebut adalah:

$$E_{p_x}(m = +1) > E_{p_z}(m = 0) > E_{p_y}(m = -1)$$
 (6.19)

Atau menghasilkan perbedaan energi magnetiknya sebagai berikut:

Gambar 6.21: Refleksi/*split* elektron pada orbital p menghasilkan spektra: p_x , p_z , dan p_y .

$$E_{m=+1} > E_{m=0} > E_{m=-1} \tag{6.20}$$

Untuk orbital p yaitu dengan L = 1, maka dari Persamaan 6.17, didapat jumlah *split* sebanyak:

$$N = 2(1) + 1 = 3 \tag{6.21}$$

jumlah refleksi/*split* orbital *p* bila berada dalam medan magnet adalah 3 spektra.

3. Untuk atom-atom logam yang memiliki orbital *d*, maka dari efek Zeeman di atas akan menghasilkan:

$$E_{d_{x^2},u^2} > E_{d_{xz}} > E_{d_{z^2}} > E_{d_{yz}} > E_{d_{xy}}$$
(6.22)

Atau menghasilkan perbedaan energi magnetiknya sebagai berikut:

$$E_{m=+2} > E_{m=+1} > E_{m=0} > E_{m=-1} > E_{m=-2}$$
(6.23)

Untuk orbital *d* yaitu dengan L = 2, maka dari Persamaan 6.17, didapat jumlah *split* sebanyak:

$$N = 2(2) + 1 = 5 \tag{6.24}$$

Maka jumlah refleksi/*split* orbital *d* bila berada dalam medan magnet adalah 5 spektra.

4. Untuk atom-atom logam radioaktif yang memiliki orbital *f*, maka dari efek Zeeman di atas akan menghasilkan:

$$E_{f_{x(x^2-3y^2)}} > E_{f_{z(x^2-y^2)}} > E_{f_{xz^2}} > E_{f_{z^3}} > E_{f_{yz^2}} > E_{f_{xyz}} > E_{f_{y(3x^2-y^2)}}$$
(6.25)

Atau menghasilkan perbedaan energi magnetiknya sebagai berikut:

$$E_{m=+3} > E_{m=+2} > E_{m=+1} > E_{m=0} > E_{m=-1} > E_{m=-2} > E_{m=-3}$$
(6.26)

Untuk orbital f yaitu dengan L = 3, maka dari Persamaan 6.17, didapat jumlah *split* sebanyak:

$$N = 2(3) + 1 = 7 \tag{6.27}$$

Maka jumlah refleksi/*split* orbital *f* bila berada dalam medan magnet adalah 7 spektra.

Gambar 6.22: Refleksi/*split* elektron pada orbital *d* menghasilkan spektra: $d_{x^2-y^2}$, d_{xz} , d_{z^2} , d_{yz} , dan d_{xy} .

Gambar 6.23: Refleksi/*split* elektron pada orbital *f* menghasilkan spektra: $f_{x(x^2-3y^2)}, f_{z(x^2-y^2)}, f_{xz^2}, f_{z^3}, f_{yz^2}, f_{xyz}, dan f_{y(3x^2-y^2)}.$

6.6 Energi Ikat Atom

Dalam menentukan sifat elektron untuk menjelaskan konfigurasi elektron maka pengukuran eksperimen tentang seberapa besar energi ikat antara inti atom terhadap elektronelektron yang mengelilinginya menjadi hal yang sangat penting.

Hal ini karena besaran energi ikat (*binding energy*) tersebut dapat menentukan tingkat energi eksitasi elektron dari keadaan awal ke keadaan akhir bila dikenakan medan listrik.

Besaran energi ikat setiap inti atom dapat diungkapkan sebagai berikut:

$$E_{ikat} = \frac{E_{inti}}{A} \tag{6.28}$$

Yang mana, E_{ikat} adalah energi ikat atom, E_{inti} adalah energi inti atom dan A adalah masa atom.

Gambar 6.24: Kurva antara Energi ikat atom terhadap masa atom, dalam menentukan seluruh energi ikat atom-atom.

Data-data eksperimen tentang energi ikat atom-atom yang tampak pada Gambar 6.24 dan secara umum, kurva energi ikat atom terhadap berat atom di atas menunjukkan ada 2 (dua) reaksi, yaitu:

- 1. Reaksi Fusi, reaksi pembetukan atom-atom mulai dari atom Li hingga atom Fe.
- 2. Reaksi Fisi, reaksi pembelahan atom-atom radioaktif misal atom U menjadi atom-atom logam berat, hingga atom Co.

6.6.1 Reaksi Fusi

Reaksi Fusi, suatu reaksi inti atom mulai dari tumbukan atom H dan atom He menjadi atom-atom yang lebih berat hingga berakhir membentuk atom Fe. Reaksi ini juga terjadi pada semua pembentukan bintang-bintang di alam semesta termasuk matahari. Penentuan harga energi ikat atom pada arah reaksi fusi menghasilkan urutan besar energi ikat atom, sebagai berikut:

$$E_{(^{56}Fe)} > \dots > E_{(^{34}S)} > \dots > E_{(^{16}O)} > E_{(^{12}C)} > E_{(^{14}N)} > \dots > E_{(^{7}Li)}$$
(6.29)

Sedangkan untuk urutan energi ikat atom antara atom H dan atom He, yaitu:

$$E_{(^{4}He)} > E_{(^{1}H)} \tag{6.30}$$

Pada perhitungan energi ikat atom terdapat anomali yaitu energi ikat atom atom C lebih tinggi dari pada energi ikat atom N, yaitu:

$$E_{(12C)} > E_{(14N)} \tag{6.31}$$

Sehingga akibat anomali ini tidak terjadi hubungan berikut:

$$E_{(^{14}N)} \not> E_{(^{12}C)}$$
 (6.32)

6.6.2 Reaksi Fisi

Reaksi Fisi, suatu reaksi pembelahan dari atom yang paling berat, biasaya atom radioaktif misal atom uranium (U), hingga menjadi pembelahan membentuk atom cobalt (Co), yaitu:

$$E_{(5^{9}Co)} > \dots > E_{(8^{4}Kr)} > \dots > E_{(1^{19}Sn)} > \dots > E_{(2^{05}Ti)} > \dots > E_{(2^{25}U)}$$
(6.33)

Pembelahan atom-atom tersebut menyebabkan peningkatan energi ikat atom-atom yang terjadi. Peningkatan energi ikat akibat reaksi fisi ini akan stabil hingga atom Co.

6.6.3 Atom-atom Isotop

Pada perhitungan urutan energi ikat atom-atom juga menghasilkan perbedaan energi ikat dari isotop-isotop atom tertentu, misal atom isotop H, atom isotop He, dan atom isotop U, didapat sebagai berikut:

$$E_{(^{3}H)} > E_{(^{3}He)} > E_{(^{2}H)} > \dots > E_{(^{235}U)} > E_{(^{238}U)}$$
 (6.34)

Reaksi pembentukan atom-atom isotop ini terjadi akibat perbedaan peluruhan yang menghasilkan beda jumlah elektron dan jumlah proton yang terlibat dalam reaksi fusi dan fisi.

6.7 Energi Ionisasi

Energi ionisasi adalah energi yang dibutuhkan untuk melepaskan elektron dalam kulit valensi suatu atom yang diperlukan dalam suatu reaksi. Proses ini dapat menyebabkan atom berubah menjadi sebuah ion. Pelepasan elektron dapat menjadi ukuran sifat ikatan kimia dalam senyawa yang dibentuk oleh atom-atom tersebut.

Gambar 6.25: Kurva antara Energi ionisasi atom terhadap nomor atom.

Dari data penentuan energi ionisasi menghasilkan pemahaman penting, yaitu:

- 1. Penentuan besaran energi ionisasi menghasilkan data unik yaitu data atom-atom yang memiliki energi ionisasi terendah atau yang paling mudai melepas elektron yaitu: Li, Na, K, Rb, Cs, dan Fr.
- 2. Data unik juga terjadi untuk atom-atom stabil dengan energi ionisasi tertinggi, atau atom-atom dengan tingkat energi ionisasi yang sukar terjadi, yaitu: He, Ne, Ar, Kr, Xe, dan Rn.
- 3. Terdapat pola peningkatan energi ionisasi yaitu pola atom yang paling mudah melepas elektron hingga atom yang stabil yang tidak mudah melepas elektron yaitu:
 - (a) Data antara atom H dan He:

$$E_{He} > E_H \tag{6.35}$$

(b) Data antara atom Li hingga Ne:

 $E_{Ne} > \cdots > E_{Li} \tag{6.36}$

(c) Data antara atom Na hingga Ar:

$$E_{Ar} > \dots > E_{Na} \tag{6.37}$$

(d) Data antara atom K hingga Kr:

$$E_{Kr} > \dots > E_{Ga} < E_{Zn} > \dots > E_K \tag{6.38}$$

(e) Data antara atom Rb hingga Xe:

$$E_{Xe} > \cdots > E_{In} < E_{Cd} > \cdots > E_{Rb} \tag{6.39}$$

(f) Data antara atom Cs hingga Rn:

$$E_{Rn} > \cdots > E_{Hg} > E_{Hf} > E_{Gd} > E_{La} > \cdots > E_{Cs}$$
 (6.40)

6.8 Energi Afinitas Elektron

Energi afinitas elektron adalah energi yang dilepas untuk menerima elektron.

atom.

Gambar 6.26: Kurva antara Energi afinitas elektron suatu atom terhadap nomor

Dari hasil penentuan energi afinitas elektron didapat hasil sebagai berikut:

1. Terdapat data atom-atom dengan harga-harga energi afinitas elektron yang rendah, atau atom-atom yang paling mudah menerima elektron, yaitu: F, Cl, Br, I, dan At.

- 2. Terdapat data atom-atom dengan harga-harga energi afinitas elektron yang paling tinggi dan memiliki silisih energi yang besar terhadap atom-atom kelompok pertama di atas, atau atom-atom yang paling sukar menerima elektron, yaitu: He, Ne. Ar, Kr, Xe, dan Rn.
- 3. Data atom lain yang memiliki harga energi tinggi dari selisih energinya cukup besar terhadap nilai energi afinitas elektron atom lain, yaitu: atom Hg. Dan atom Hg ini memiliki keunikan karena termasuk atom yang paling sukar menerima elektron.

6.9 Tabel Periodik Unsur-Unsur

6.9.1 Tabel periodik berbasis teori

Tabel periodik unsur-unsur tersusun secara teoritis berbasis rumusan yang diungkapkan oleh Energi Hartree, Larangan Pauli, Aturan Hund dan Rekonstruksi Aufbau. Rumusan tersebut membentuk susunan dan urutan konfigurasi elektron setiap atom atau unsur.

Gambar 6.27: Tabel Periodik Sistem.

Pada Gambar 6.27 menunjukkan urutan konfigurasi elektron dari setiap atom/unsur, yaitu konfigurasi elektron dengan susunan akhir adalah:

- 1. Golongan orbital *s*, dengan konfigurasi elektron *ns*, dengan nilai n = 1.
- 2. Golongan orbital *s*, dengan konfigurasi elektron *ns*, dengan nilai n = 2, 3, 4, 5, 6, 7.
- 3. Golongan orbital p, dengan konfigurasi elektron np, dengan nilai n = 2, 3, 4, 5, 6, 7.

- 4. Golongan orbital *d*, dengan konfigurasi elektron *np*, dengan nilai n = 3, 4, 5, 6, 7.
- 5. Golongan orbital f, dengan konfigurasi elektron np, dengan nilai n = 4, 5.

6.9.2 Tabel periodik berbasis eksperimen

Susunan tabel periodik unsur-unsur berbasis eksperimen menjadi bagian penting, yaitu:

- 1. Efek magnetik Zeeman, energi ikat atom, reaksi fusi, reaksi fisi, energi ionisasi, energi afinitas elektron, sifat bilangan oksidasi.
- 2. Perhitungan jari-jari atom, elektro-negatifitas dan konfigurasi elektron, yang dilengkapi susunan berbasis teori.

1	1 H Hydrogen 1.008														pniktoge	n kaltogen	halogen	2 He Helium 4.0026
2	3 Li 6.94	4 Be Beryllium 9.0122											5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
3	11 Na Sodium 22.990	12 Mg Magnesium 24.305		Сра	datan	Hgc	airan	H ga	s Rf	tidak	diketa	hui	13 Al Aluminium 26.982	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.948
4	19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.630	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
5	37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn ^{Tin} 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 I Iodine 126.90	54 Xe Xenon 131.29
6	55 Cs Caesium 132.91	56 Ba Barium 137.33	57–71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 Tl Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89–103	104 Rf Rutherfordium (267)	105 Db Dubnium (268)	106 Sg Seaborgium (269)	107 Bh Bohrium (270)	108 Hs Hassium (277)	109 Mt Meitnerium (278)	110 Ds Darmstadtium (281)	111 Rg Roentgenium (282)	112 Cn Copernicium (285)	113 Nh Nihonium (286)	114 Fl Flerovium (289)	115 Mc Moscovium (290)	116 Lv Livermorium (293)	117 Ts Tennessine (294)	118 Og Oganesson (294)
			6	57 La Lanthanum 138.91	58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 Ho Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.05	71 Lu Lutetium 174.97
			7	89 Ac Actinium (227)	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (266)

Gambar 6.28: Tabel Periodik Unsur-unsur (Sumber: https://www.thoughtco.com/howto-use-a-periodic-table-608807).

Tabel 6.28 ini adalah hasil gabungan antara data eksperimen dengan perhitungan teori, sehingga tersusun dengan rapi semua unsur-unsur tang telah ditemukan maupun unsur yang di masa depan baru ditemukan.

Struktur Molekul

Molekul memiliki struktur ikatan kimia dua atau lebih dari atom-atom yang lebih rumit dari pada penjelasan struktur atom, manun melalui mekanika kuantum, kajian struktur molekul menjadi lebih tepat dengan hasil data pengamatan. Melalui mekanika kuantum telah dapat menjelaskan:

- 1. Prediksi ukuran, tingkat energi dan spektra atom atau ion,
- 2. Orbital atom dan kerapatan elektron suatu atom.

Kimia kuantum juga harus dapat menjelaskan interaski atom yang akan membentuk molekul, sehingga dapat dijelaskan:

Gambar 7.1: Area Konsep Pemahaman Molekul.

1. Prediksi ukuran, tingkat energi dan spektrum molekul/ion molekul,

Gambar 7.2: Robert Oppenheimer (Sumber: https://www.governing.com/ context/the-rehabilitation-of-j-robertoppenheimer).

 Ikatan kimia, kestabilan ikatan antar atom dalam molekul dan sifat molekul.

7.1 Pendekatan Born-Oppenheimer

Max Born dan Robert Oppenheimer merumuskan pendekatan baru unutk menjelaskan bagaimana bentuk orbital molekul dalam menjelaskan ikatan kimia suatu molekul, dan pendekatan ini dikenal sebagai Pendekatan Born-Oppenheimer.

7.1.1 Ion Molekul H_2^+

Pendekatan Born-Oppenheimer ini diterapkan dengan pemisahan fungsi gelombang untuk inti atom dan elektronnya. Fungsi gelombang total merupakan hasil perkalian dua faktor:

$$\hat{H}_{e,n}\Psi_{e,n} = E_{e,n}\Psi_{e,n} \tag{7.1}$$

dimana fungsi gelombang Born-Oppenheimer dinyatakan sebagai:

$$\Psi_{e,n} = \chi_e \Psi_{e,n} \tag{7.2}$$

sedagkan operator hamiltoniannya sangat tergantung pada jarak

$$\hat{H}_e = \frac{h^2}{2m} \nabla^2 + \left(-\frac{e^2}{r_A} - \frac{e^2}{r_B} + \frac{e^2}{R} \right)$$
(7.3)

Contoh sedarhana pada pendekatan Born-Oppenheimer ini adalah diterapkan pada molekul paling Sederhana H_2^+ melalui pendekatan Born-Oppenheimer menurunkan persamaan Schrödinger bagi molekul H_2^+ .

7.1.2 Molekul H_2

Contoh sederhana lainnya adalah molekul Hidrogen (H_2) , pada model molekul ini terdapat sistem empat partikel ini, dua inti ditambah dua elektron, dijelaskan oleh Hamiltonian

Gambar 7.3: Konsep interaksi satu elektron pada molekul ion H_2^+ .

7.3.1 Metode Orbital Molekul LCOA

7.3.2 Valence-Shell Elektron Pair Repulsion

Struktur atom dan metoda mekanika gelombang memungkinkan untuk memecahkan persoalan pokok dalam ilmu kimia, yaitu apa yang menyebabkanatom dapat saling berikatan menjadi molekul. Ada beberapa teori yang memberikan postulat-postulatnya tentang bagaimana bentuk dari suatu senyawa,antara lain, teori Valence-Shell Elektron Pair Repulsion (VSEPR), teori IkatanValensi, teori Orbital Molekul, teori Lewis, dan sebagainya.

Mengenai ikatankovalen, dikenal dua jenis pendekatan yaitu teori Orbital Molekul (teori MO) danteori ikatan valensi (teori VB). Berdasarkan teori ikatan valensi, ikatan kovalendapat terbentuk jika terjadi tumpang tindih orbital valensi dari atom yang berikatan.

Teori Ikatan Valensi mampu secara kualitatif menjelaskan kestabilanikatan kovalen sebagai akibat tumpang-tindih orbital-orbital atom. Dengan konsephibridisasi pun dapat dijelaskan geometri molekul sebagaimana yang diramalkandalam teori VSEPR, tetapi sayangnya dalam beberapa kasus, teori ikatan valensitidak dapat menjelaskan sifat-sifat molekul yang teramati secara memuaskan.Contohnya adalah molekul oksigen, yang struktur Lewisnya sebagai berikut.

- 7.3.3 Molekul diatom
- 7.3.4 Molekul Poliatom
- 7.3.5 Self Consistent Field

7.4 Pendekatan Hückel

8 Spektroskopi Molekul

Terapan kimia kuantum yang paling banyak digunakan oleh ilmuwan kimia adalah pada instrumen spektroskopi atom dan molekul senyawa kimia. Instrumen ini bekerja berdasarkan prinsip adanya fenomena respon atom atau molekul akibat interaksi antara foton cahaya yang terjadi pada daerah tingkat-tingkat energi emisi tertentu yang dapat dideteksi.

Gambar 8.1: Area Konsep Pemahaman Interaksi molekul dengan cahaya.

9 Kimia Komputasi

Kimia adalah ilmu pengetahuan alam yang tidak lagi hanya berupa test tabung reaksi dan bahan kimia. Dengan ilmu kuantum, mekanika kuantum dapat digunakan untuk menghitung energi dan interaksi antarmolekul. Proses balajar molekul dan reaksi kimia dapat diselesaikan dengan penyelesaian persamaan Schrödinger dengan bantuan perhitungan metode komputasi.

Gambar 9.1: Area Konsep Pemahaman Kimia Komputasi.

Gambar 9.2: Yohanes A. Pople (Sumber: http://www.nobelprize.org/nobelprizes/chemistry/laureates/1998/).

9.1 Metode Komputasi

9.1.1 Metode Fungsi Gelombang

Yohanes A. Pople, mengembangkan metode komputasi dalam ilmu kimia, dengan dasar persamaan Schrödinger. Pople, menciptakan model ilmu kimia teori yang dapat menentukan solusi persamaan mekanika kuantum.

Pople, merangkum semua teorinya dalam program *Gaussian*, dimana sampai hari ini telah digunakan oleh banyak ilmuan kuantum dalam semua area ilmu kimia. Berikut ini adalah beberapa contoh hasil perhitungan kimia komputasi:

9.1.2 Struktur Kimia

Struktur 3 dimensi suatu molekul dapat ditentukan secara akurat dengan menggunakan metode kimia kuantum. Pementuan model 3 dimensi ini sangat sulit dilakukan secara eksperimen. Model ini sangat memungkinkan ilmuwan kimia untuk mengembangkan produk material baru ataupun suatu katalis baru untuk menciptakan produk khusus misal obat, keramik, plastik dan senyawa komposit dengan konsep *nano sciences* sebagai material cerdas dan lain-lainnya.

Gambar 9.3: Srtuktur kimia 3 dimensi Palladium-Alil.

9.1.3 Biokimia

Metode kimia kuantum dapat mempelajari pusat aktif enzim, ikatan dan mekanisme reaksi kimia suatu makromolekul (20-60 atom). Lingkungan protein dapat diuraikan dengan metode sederhana ini. Mekanisme yang paling mungkin dari bagaimana mioglobin dalam otot memproteksi dari CO beracun. Ikatan hidrogennya berinteraksi dengan asam amino protein dan oksigen dari nafas dapat mengganti CO berbahaya tersebut.

Gambar 9.4: Konsep komputasi Mioglobin dalam darah.

9.1.4 Permukaan Energi Potensial

Reaksi kimia digambarkan sebagai tumbukan antar molekul yang melalui permukaan 'lembah' dan 'bukit' energi. Titik pelana (*saddle point*) inilah tempat keadaan transisi terjadi. *Landscape* energi ini dapat menjelaskan struktur dan dinamika molekul. Contoh sederhana dari model energi ini adalah reaksi sebagai berikut:

H_2+F	\longrightarrow	$H \cdots H \cdots F$	\longrightarrow	H+HF
reaktan		keadaan transisi		produk

Perspektif dari permukaan energi potensial (3D) akan menghasilkan fungsi energi sebagai koordinat reaksi (2D). Titik pelana adalah keadaan transisi reaksi kimia. Permukaan energi potensial (3D) digunakan untuk reaksi tunggal atau reaksi osilasi. Kurva energi potensial (2D) digunakan untuk reaksi komplek atau reaksi berantai.

9.1.5 Kimia Organik

Mekanisme reaksi kimia organik menjadi mudah dipelajari melalui metode kimia kuantum Pers. Schrödinger menunjukkan nilai energi tiap molekul dan mungkinkah reaksi berlangsung? Ditunjukkan ba-

Gambar 9.5: Landscape permukaan energi potensial dan perspektifnya sebagai kurva koordinat reaksi H_2+F .

gaimana $\rm O_3$ dapat bereaksi dengan hidrokarbon? Bagainama radikal bebas berbahaya terbentuk?

Gambar 9.6: Prediksi senyawa O₃ yang bereaksi dengan hidrokarbon.

9.1.6 Spektroskopi

Sifat molekul dapat dipelajari dengan menggunakan perbadaan tipe spektra molekul. Secara eksperimen, didapat hasil spektra dari molekul porfirin yang juga setara dengan hasil perhitungan komputer yang berbasis kimia kuantum.

Gambar 9.7: Prediksi spektra dari molekul porfirin.

9.1.7 Metode Teori Fungsi Kerapatan

Walter Kohn, mengembangkan metode komputasi dalam ilmu kimia, dengan asumsi bahwa energi dalam sistem mekanika kuantum setara dengan kerapatan elektronnya. Perhitungan fungsi kerapatan Kohn setara dengan perhitungan kerapatan elektron hasil solusi persamaan Schrödinger. Kohn, merangkum semua teorinya dalam metode DFT (*Density Functional Theory*), dimana sampai hari ini juga telah digunakan untuk meneliti senyawa yang cukup besar, misal material padatan, protein dan DNA.

Gambar 9.8: Walter Kohn (Sumber: https://www.washingtonpost.com/ national /health-science/walter-kohn).

9.1.8 Distribusi Muatan

Distribusi muatan dalam molekul dapat dihitung dengan metode kimia kuantum. Kelebihan elektron dari suatu molekul menarik bagian yang bermuatan positif dari molekul lain. Metode ini memudahkan pemasangan antar DNA secara bersama-sama.

Gambar 9.9: Prediksi distribusi muatan dalam DNA.

9.2.1 Molecular mechanics

Model mekanika molekular (MM) dikembangkan untuk mendeskripsikan struktur dan sifat molekul sepraktis mungkin. Bidang aplikasi MM, meliputi: (1). Molekul yang terdiri dari ribuan atom, (2). Molekul organik, oligonukleotida, peptida dan sakarida, (3). Molekul dalam lingkungan vakum dan solvent air, (4). Sifat termodinamika dan kinetika.

9.2.2 Semi-empiric

Model semiempirik dikembangkan untuk memadukan antara perhitungan teori mekanika kantum dengan hasil eksperimen atau asumsiasumsi fisika dalam penyelesaian persamaan Schrödinger. Beberapa metode semiempirik: (1). Pendekatan AM1 (*Austin Model 1*), (2). Pendekatan ZDO (*Zero Differential Overlap*), (3). Metode CNDO (*Complete Neglect of Differential Overlap*), (4). Metode INDO (*Intermediate Neglect of Differential Overlap*).

9.2.3 Ab Initio

Model *ab initio* dikembangkan untuk penyelesaian persamaan Schrödinger dengan semata-mata dari perhitungan teori mekanika kantum. Diharapkan didapat solusi yang lebih dekat dengan solusi eksaknya. Kualitas hasil metode ab initio: (1). Optimasigeometri molekul, (2). Frekuensi vibrasi molekul, (3). Energi molekul, (4). Proses reaksi kimia, (5). Solusi fungsi gelombang: sifat listrik, muatan atom, momen dipol, dll.

- 9.2.4 Density Functional Theory
- 9.2.5 Docking Molecular

Bibliografi

F.R.S. E. Rutherford. *The Scattering of alpha and betta Particles by Matter and the Structure of the Atom.* Philosophical Magazine, vol. 21 edition, 6 1911. ISBN http://dbhs.wvusd.k12.ca.us/Chem-History/Rutherford-1911/Rutherford-1911.

Romain Elsair. *Fundamental of Chemistry*. bookboon.com, first edition, March 2012. ISBN 978-87-403-0105-2.

Anatol Malijevsky. *Physical Chemistry in Brief.* Faculty of Chemical Engineering, first edition, September 2005.

Robert G. Mortimer. *Physical Chemistry*. Academic Press is an imprint of Elsevier, third edition, May 2008. ISBN 13: 978-0-12-370617-1.

Robert J. Silbey. *Physical Chemistry*. John Wiley and Sons, Inc., fourth edition, April 2005. ISBN Ebooks Chemical Engineering/238197077030.

Riwayat Akademik Penulis

https://fmipa.unmul.ac.id/dosen/RahmatGunawan

Penulis lahir pada tanggal 3 Desember 1971 di Cirebon, Jawa Barat, menempuh pendidikan di SMAN 1 Cirebon, Jawa Barat, dan melanjutkan pendidikan Sarjana di Jurusan Kimia Universitas Gadjah Mada, Yogyakarta, tahun 1990. Tahun 1999 penulis mendapat beasiswa DUE-Karya Siswa (Development Undergraduate Education) dari Dikti Kemendiknas RI untuk melanjutkan program Magister pada Jurusan Kimia Institut Teknologi Bandung, Jawa Barat. Pada tahun 2001, Penulis menjadi staf pengajar pada Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) Universitas Mulawarman. Penulis mendapat beasiswa BPPs (Beasiswa Program Pascasarjana) dari Dikti Kemendiknas RI untuk melanjutkan pendidikan Program Studi Doktor Kimia Sekolah Pascasarjana Institut Teknologi Bandung, Jawa Barat, Tahun 2005. Dan untuk menyelesaikan riset doktor, pada tahun 2008, penulis menjadi Researcher Visitor Sandwich Program dan menyelesaikan perhitungan Kimia Komputasinya di Fasilitas Super Komputer Muscat dan Sakura System pada Kasai Laboratory, Department of Precision Science & Technology and Applied Physics, Graduate School of Engineering, Osaka University, Japan. Pada tahun 2010, penulis kembali bertugas sebagai Staf Dosen Kimia Bidang Kimia Fisika di Jurusan Kimia FMIPA Universitas Mulawarman.

