

Department of Agroindustrial Technology Faculty of Agriculture, Universitas Trunojoyo Madura, Indonesia **Department of Agricultural Product Technology, Universitas** Mulawarman, Indonesia

FORMULATION OPTIMIZATION USING **RESPONSE SURFACE METHODOLOGY** (RSM) ON SUCROSE-FREE HARD CANDY WITH JAVANESE LONG PEPPER (Piper retrofractum Vahl.) SUPPLEMENTATION

Supriyanto¹, Mojiono¹, Hadi Suprapto²

Introduction

Conventional "hard candy"

Problems:

- High content of "sugar"
- Risk of dental carries dan other health issues

Alternative:

- Sugar partial replacement by xylitol
- Hard candy with lower "conventional sweetener"
- Enrichment with "herbal ingredient" •

Objectives of the study:

Investigating the effects of formulation (xylitol and Javanese long pepper extract) on characteristics of hard candy and suggesting the optimum formulation.

Javanese long pepper (Piper retrofractum Vahl.)

Method

Experimental Design

Build information:

- File version: Design Expert 13 (trial version)
- Study type: Response Surface
- **Design type: I-optimal**
- Runs: 16

Unit Minimum Maximum Factor Response Xylitol (A) Antioxidant (%); Solubility time (min); pH; 10 30 g **RGB** color Javanese long pepper extract (B) 10 5 g

Method

Sample Preparation

Mixing and stirring glucose (70 g), water (10 g), xylitol (10-30 g)

Heating (up to 140 C)

Mixing and stirring added with the extracts (5-10 g) and citric acid (2 g)

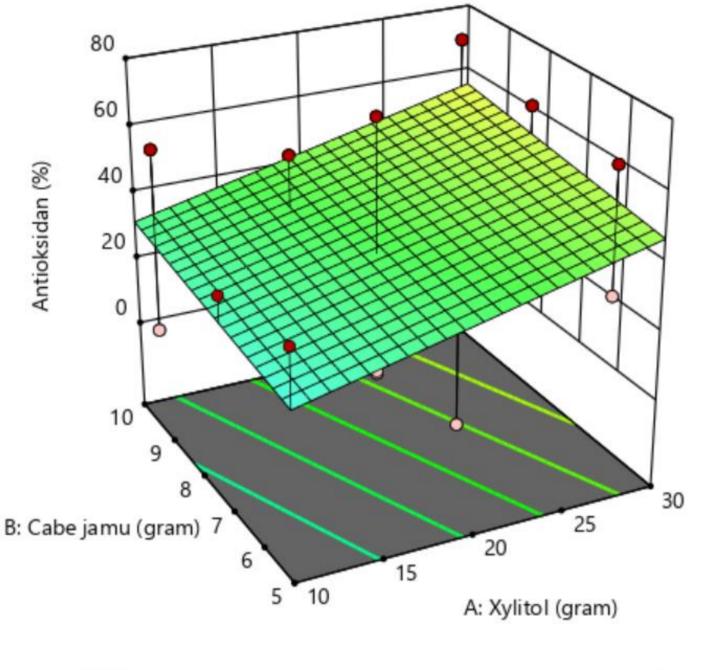
> Heating. Terminated at 140 C

Pouring and forming Immediately poured into forming plate

Sample storage Hard candy is stored for further analysis

Appearance of 16 Samples

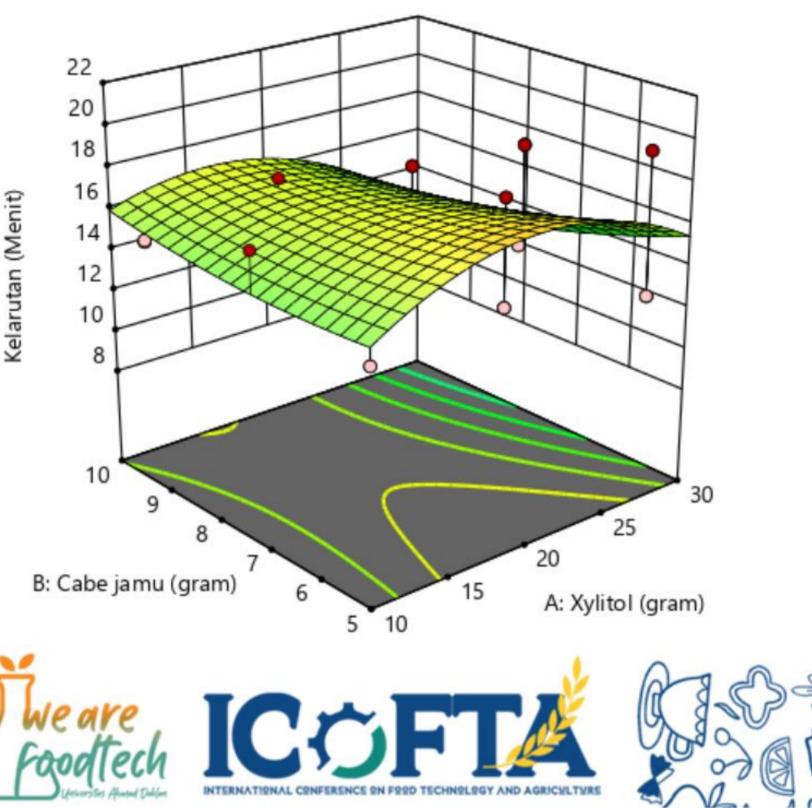
Colors of samples differed greatly.



Effects on Antioxidant

- Antioxidant activity is expressed as ulletpercentage of radical inhibition
- Based on DPPH assay lacksquare
- Antioxidant is presented in a linear model ullet
- Higher Javanese long pepper extract and xylitol appears to increase antioxidant activity

Antioksidan (%)



Effects on Solubility Time

- Solubility time is expressed as the amount of time (min) required to dissolve sample (2 g) on simulated condition (continuous stirring in distilled water at 30 C)
- Solubility time is presented in a quadratic model
- Javanese long pepper extract contributes to the response differently, depending on concentration
- Xylitol appears to increase solubility time at certain level.

Effects on PH and RGB color

- pH and RGB color are recommended to express as mean
- Both data are insufficient to produce model
- The level of pH ranges 2.9 3.4, which might result from the addition of citric acid
- RGB color ranged 38 177, showing high a variety of color.

Optimization & Verification

Constraints

Goal Name Importance A: Xylitol is in range 3 B: Extract is in range 3 Antioxidant maximize 4 Solubility time minimize 3 pН is in range 3 RGB color minimize 3

Desirability

Xylitol (g)	Extract (g)	R1 (%)	R2 (min)	R3	R4	Desirability
30.000	10.000	55.718	12.073	3.228	60.821	0.746
30.000	9.721	55.230	12.165	3.228	60.821	0.741
30.000	9.017	54.004	12.449	3.228	60.821	0.726
10.000	8.938	29.625	15.478	3.228	60.821	0.487
10.000	8.898	29.556	15.463	3.228	60.821	0.487
10.002	8.982	29.705	15.495	3.228	60.821	0.487

The suggested solution was verified, resulting in antioxidant 42.4% (R1), solubility time 14 min (R2), pH 4.3 (R3), and RGB color 58.53 (R4).

Conclusion

Finding and Further Works

Finding

Formulation successfully produced hard candy with supplementation of xylitol and Javanese long pepper extract. Based on the experiment, the optimum condition was achieved by xylitol 30 g and the extract 10 g, yielding the characteristics of hard candy as follows: antioxidant 42.4%, solubility time 14 min, pH 4.3, and RGB color 58.53.

Further works:

- Improved model for more reliable prediction of the response
- sugar.

The use of more various polyols as sweetener alternative to conventional

Acknowledgment

Research funding by Institute for Research and Community Service (LPPM) Universitas Trunojoyo Madura through National Collaboration **Research (Penelitian Kolaborasi** Nasional) Scheme 2023.

