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Abstract: Agricultural crop insurance is an important component for mitigating farm risk, particularly 1 

given the potential for unexpected climatic events. Using a 2.8 million nationwide insurance claim     2 

dataset from the United States Department of Agriculture (USDA), this research study examines 3 

spatiotemporal variations of over 31,000 agricultural insurance loss claims across the 24-county region     4 

of the inland Pacific Northwest (iPNW) portion of the United States, from 2001 to 2022. Wheat is the 5 

dominant insurance loss crop for the region, accounting for over 2.8 billion dollars in indemnities,          6 

with over 1.5 billion dollars resulting in claims due to drought. While fruit production generates 7 

considerably lesser insurance losses ( 400 million dollars) as a primary result of freeze, frost and   8 

hail, overall revenue ranks number one for the region, with over 2 billion dollars in sales. Principal 9 

components analysis of crop insurance claims showed distinct spatial and temporal differentiation in 10 

wheat and apples insurance losses using the range of damage causes as factor loadings. The first two 11 

factor loadings for wheat account for approximately 50 percent of total variance for the region, with 12 

apples having 60 percent variance. 13 

Keywords: Pacific Northwest; agriculture; insurance; wheat; apples; drought 14 

 
 
 
 
 
 
 
 
 

 
Citation: Seamon, E.; Gessler, P.E.; 

Abatzoglou, J.T., Mote, P.W., Lee, S.S. 

Climatic Relationships to Agricultural 

Insurance Loss for the Pacific 

Northwest Region of the United States. 

Agriculture 2023, 1, 0. https://doi.org/ 

 
 

Received: 

Revised: 

Accepted: 

Published: 

Copyright: © 2023 by the authors. 

Submitted to Agriculture for 

possible open access publication 

under  the  terms   and   conditions 

of the Creative Commons Attri- 

bution (CC BY) license (https:// 

creativecommons.org/licenses/by/ 

4.0/). 

1. Introduction 15 

Crop insurance is an important component for mitigating agricultural risk [1–3]. In 16 

1996 the United States Department of Agriculture (USDA) formed their Risk Management 17 

Agency (RMA), which works to increase the availability and effectiveness of federal crop in- 18 

surance as a risk management tool. With the implementation of the Federal Crop Insurance 19 

Act (FCIA) and the USDA RMA, program improvements (providing direct payments to 20 

farmers, implementing subsidies) grew the level of program participation to over 90 percent 21 

of all U.S. farmed land by 1998. Crop insurance program efforts have also had a dramatic 22 

impact on overall farm management, including the reduction of income risk around crop 23 

production, increasing land values, increasing farm survivability rates, stabilizing cash 24 

flow, and liquidity improvement [4]. By 2021, the USDA insured over 400 million acres of 25 

farmland, with an insurance liability net worth almost 200 billion dollars [5]. Regionally, 26 

agriculture in the Pacific Northwest (PNW) accounted for over 600,000 jobs over the three 27 

state region of Idaho, Oregon, and Washington [6–8]. All three states consistently rank 28 

in the top five in terms of U.S. crop production for a range of agricultural commodities, 29 

including apples and wheat (Washington), potatoes and barley (Idaho), as well as hay, 30 

blackberries, and hazelnuts (Oregon) [9].  In terms of agricultural exports, Washington 31 

ranks second behind California (2021), with Oregon placing eighth and Idaho, eleventh [10]. 32 

While indemnities and overall program costs have increased considerably since 2000, loss 33 

ratios (a measure of total indemnities to total premiums) since the late 1990’s have leveled 34 

off at around 80 percent, mainly due to mandatory participation stipulations, underwriting 35 

changes, and other legislative changes [5]. Given these combined efforts of 1) insurance 36 

protection, as well as 2) risk mitigation (e.g. agricultural practices) which provide farmers 37 
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protection against unforeseen natural disasters and economic events, our research focus is 38 

twofold: 1) to evaluate the variations of agricultural insurance loss for top commodities  39 

for the Pacific northwest (PNW) as well as the subregion of the inland Pacific Northwest 40 

(iPNW) (Figure 1), and 2) to examine how these variations align with climatically associated 41 

causes of damage using dimensionality reduction and clustering methods. 42 

 

Figure 1. Key agricultural regions in the Pacific Northwest (PNW) portion of the United States, with 

the 24-county inland Pacific Northwest (iNPW) study area indicated by the rectangular bounding 

box. 

Weather and climate extremes, including those associated with climate change, have 43 

direct impacts on food security and resilience [11,12]. These interactions may vary due     44 

to a number of factors, including crop type, geographic location, and farming practices. 45 

Previous studies have examined climate-yield relationships [13,14], with a number of 46 

analyses examining climatic relationships related to crop insurance loss [15–18]. Drought, 47 

in particular, plays an important role in the success or failure of many agricultural systems. 48 

Redmond [19] conceptually defines drought as “insufficient water to meet needs”, with a 49 

particular note of the varied relationships of supply and demand. Wilhite and Glantz [20] 50 

describe drought broadly as a “deficiency of precipitation that results in water shortage for  51 

some activity or for some group” and emphasize the difficulties in having one overarching 52 

definition of drought, given its impacts from an agricultural, climatological, meteorological, 53 

atmospheric, hydrologic, and water management perspectives. Operationally, drought is 54 

often times quantified in terms of frequency, severity, intensity and duration, compared    55 

to a historical time frame, with human, biological, and climatological influences on both 56 

water supply and demand. Typically referred to as a “creeping phenomenon”, the impacts 57 

of drought on society can persist for a number of years, dependent upon the level of 58 

vulnerability [19]. Agriculturally, drought often refers to a period with anomalously low 59 

soil moisture that substantially limits crop production [21]. Drought related impacts are 60 

evident in agricultural insurance loss claims, both nationally as well within the PNW. For 61 

example, drought conditions in 2015 resulted in agricultural insurance losses for PNW 62 

wheat alone totaling 183 million dollars, with total financial losses for all commodities 63 

ranging between 633 million and 773 million dollars [6]. 64 

65 

Grain-based cropping systems are particularly impacted by increased temperatures. Con- 66 

siderable research has examined the range of temperature impacts on grain yields [22] 67 

indicating that progressive temperature increases may initially result in increased yields, 68 

with an accelerating decrease over time, given an inverse temperature/precipitation re- 69 
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lationship [23]. While increased temperatures will likely decrease wheat yields in the 70 

region, the effects of carbon dioxide fertilization may modestly offset these yield reduc- 71 

tions over time. In contrast, Schlenker and Roberts [14] suggest that yields for alternative  72 

forms of cropping systems, such as soybeans, corn, and cotton, would slightly increase  73 

with initial temperature increases up to 32 degrees Celsius, and then sharply decrease      74 

as temperatures rise above that threshold. To make matters more complex, Rezaei et al.     75 

[24] as well as Asseng et al. [25] indicate that unique cultivars within a species may have 76 

varying phenological cycles, suggesting that any agricultural climate impacts assessment 77 

should include a variety of sub-species for proper threshold analysis.  When examined   78 

in total, climatic relationships to agriculture are extremely variable, with changing out- 79 

comes due to cropping system, regionalization, farming practices, and genetic diversity. 80 

This complexity is encapsulated in agricultural insurance loss management, in order to 81 

effectively hedge agricultural risk, associated variability and complexity, and incorporated   82 

into a time-adjusted financial premium/payout process. Under this premise, evaluating 83 

insurance losses in relationship to sub-seasonal climatic impacts provides a reasonable 84 

approach to assess patterns and predictability, without delving into the underlying crop 85 

processes and their biophysical effects due to a changing climate. 86 

87 

From a seasonal perspective, adverse growing conditions (such as during drought) can force 88 

farmers to consider additional risk management approaches that complement insurance 89 

mechanisms, including irrigation, selective crop abandonment, crop diversification, as 90 

well as unique crop rotation practices, which may mitigate current and future losses and 91 

preserve long-term economic viability of cropping systems [26,27].  For example, crop 92 

producers who utilize conservation tillage are often able to improve the capture and 93 

storage of soil moisture, which provides their crops an important buffer against drought 94 

impacts. By increasing the number of crop types as part of a rotation cycle, altering seeding 95 

dates, as well as using drought-sensitive breeds, farmers can retain more available soil 96 

moisture (reducing long term drawdown), while maximizing production and sales by 97 

spreading risk across a larger set of commodities [28]. From an adaptive perspective, the 98 

economic implications of more severe drought conditions, as well as changes in drought 99 

characteristics, may encourage farmers to consider alternative crop systems that are more 100 

economically viable. In total, these added risk management efforts, in combination with 101 

crop insurance, provide farmers with a diversified ability to mitigate potential financial 102 

loss in the face of changing economic and climatic conditions. 103 

104 

Given the spatial diversity in terms of cropping systems across Idaho, Oregon and Washing- 105 

ton, the iPNW sub-region provides a more homogeneous, well distributed dryland farming 106 

region, allowing us to explore spatial and temporal variations, while maintaining a fairly 107 

consistent county level claim total across the area as a whole. This narrowing also allows for 108 

the elimination of counties where little or no insurance claims were filed, primarily due to 109 

landscape, urbanization, or profitability constraints. From a damage cause perspective, the 110 

focus is on losses due to weather and climate extremes, particularly those due to drought 111 

and heat (wheat) and freeze, frost and hail (apples). 112 

2. Materials and Methods 113 

The USDA’s data archive of agricultural insurance claim records for the PNW from 114 

1989 to 2022, was the primary dataset for this analysis (http://usda.gov/rma), with insur- 115 

ance claims provided at monthly temporal and county level spatial scales. Each insurance 116 

record represented a unique claim associated with a farm property, containing the dollar 117 

amount of the insured loss, the commodity type related to the loss (e.g.  wheat, barley, 118 

canola), the acreage for the loss, the insurance company associated with the claim, and 119 

most notably, a cause for the crop damage (e.g. heat, drought, hail, decline in price, failure 120 
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of irrigation supply). The extent of this data archive is considerable: for example, from 121 

1989 to 2022, the USDA’s crop insurance data collection for the United States (all commodi- 122 

ties) totals approximately 2.8 million claims, with 31,000 claims originating in the Pacific 123 

Northwest (Idaho, Oregon, and Washington) for over 35 different commodities, across 30 124 

different damage causes. 125 

126 

For our analysis, we construct a basic three step analysis methodology which allows us to 127 

examine commodity-specific insurance loss across damage causes. Given our research goal 128 

to examine iPNW spatiotemporal variation of agricultural insurance loss, the results of these 129 

steps not only permits us to narrow our factorial analyses by geography, time, commodity, 130 

and damage cause, but also enable comparisons of how water scarcity (drought and heat) 131 

and water excess/cold (freeze, frost, hail) damage causes vary based on commodity type 132 

and geography. 133 

134 

We initially perform a full examination of insurance loss across all commodities and 135 

damage causes, for the entire PNW region, from 1989 to 2022. As part of this step, we 136 

aggregate the data by county, commodity, year, and damage cause. An initial data review 137 

indicates that approximately 83 percent of insurance loss for the region occurred after 2000 138 

(Supplemental Figure S2), which comports with farm bill policy incentives implemented 139 

in 1998, increasing crop insurance participation (acres) to over 90 percent [5]. Across the 140 

three state PNW region, over 75 percent of insurance losses occurred within the iPNW, 141 

with wheat losses being the overwhelming dominant commodity. In addition, acreage data 142 

was not recorded for individual claims until after 2000 as well. As such, we limit our time 143 

frame of insurance loss examination to 2001 to 2022 and narrow our study area region to 144 

the 24-county region of the iPNW (Figure 1). This reduction of data by year additionally 145 

helps to resolve missing data issues in some counties that have no insurance claims, and 146 

thus no revenue loss. 147 

148 

We then use principal component analysis (PCA) to identify commonalities in insurance 149 

claims across years, counties, commodities, and damage claims in the iPNW. PCA is a data 150 

dimensionality reduction technique which computes a new set of variables by maximizing 151 

the variance of all input variables, and then examines the linear combinations of said 152 

variables in orthogonal space [29,30]. PCA notation can be described as follows: 153 

α′
kx = ∑p 1 α

′
k j

x j (1) 

Where: x is a vector of random variables (p) 154 

αk is a vector of p constants 155 

156 

The process is to initially find a linear function of (x, α1
′ k) with a maximum variance. 157 

Next, we find another linear function of (x, α2
′ k) which is uncorrelated with the maximum  158 

variance of (x, α1
′ k). The approach is iterated over the extent of available variables. Ideally  159 

the most variation in x will be accounted for by m principal components where m < p. 160 

161 

Given the nested structure of the data (insurance claims by county, year, commodity, and 162 

damage cause), we construct a multitude of principal components analyses (with damage 163 

cause insurance loss totals (U.S. dollar) as our factor loadings), using differing combinations 164 

of county, commodity, month, and year (county by year, county by month, and county by 165 

commodity), for both the entire PNW three state area, as well as for the wheat growing 166 
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region of the iPNW (Supplemental Figures S15 - S22). The full range of PCA outputs are 167 

provided in our supplemental materials. Using this approach, we create a set of input 168 

variables for our PCA, to examine how damage cause factors were associated, as well as 169 

how counties and years were aligned to these individual factor loading vectors. In order to 170 

evaluate how PCA variables group together, we apply a kmeans algorithm method [31] to 171 

estimate optimal clusters (based on Euclidean distance) for both county and year, based on 172 

our PCA outputs. Kmeans clustering is a vector quantization method which maps input 173 

values from larger to smaller sets. By iteratively partitioning n observations into a known 174 

set of clusters, the kmeans algorithm attempts to converge on an optimum grouping of 175 

clusters, based on a common spatial extent. This two-step clustering analysis has been 176 

noted as an effective approach in combining dimensionality reduction with unsupervised 177 

learning methods [32]. 178 

179 

From the results of our initial data inspection and kmeans-applied PCA, we limit our 180 

commodity analyses to wheat and apples, and narrow our set of damage cause claims to 181 

areas of water scarcity (drought and heat) as well as water excess/cold (freeze, frost, and 182 

hail). We then examine losses for the region, exploring temporal and spatial relationships 183 

on an annual basis.   In addition, we compare insurance loss with overall commodity 184 

production across the 24-county study area from 2001 to 2022. 185 

3. Results 186 

PNW insurance claims from 2001 to 2022 totaled over 33,000, for all commodities, 187 

with overall insured losses of 6.5 billion dollars. Wheat, the dominant commodity for 188 

insurance claims in the three-state region, accounted for approximately 20,600 filings, with 189 

total losses of 3.5 billion dollars for the same time period. Apples and cherries were a 190 

distant second and third in terms of overall losses (Supplemental Figure S5), each with 191 

approximately 600 million dollars, with potatoes and peas adding a minimal contribution 192 

to the overall total ( 250 million dollars each). Narrowing our analysis to the iPNW, we 193 

see that insurance losses there made up approximately 72 percent of the total amount of 194 

loss for PNW as a whole.  Wheat was similarly the predominant commodity incurring 195 

insurance loss for the iPNW, with over 2.5 billion dollars in claims, with apples coming 196 

in a distant second, at 325 million dollars. In term of damage cause, drought resulted in 197 

the largest amount of insurance loss for the PNW overall, at over 1.8 billion dollars, with 198 

decline in price (850 million dollars) and heat (800 million dollars) coming in second and 199 

third, respectively. Focusing in on the iPNW, the leading damage causes for this region 200 

were drought and heat, which combined to account for approximately 2.65 billon dollars in 201 

losses from 2001 to 2022. For all commodities, drought and heat-related claims for the iPNW 202 

accounted for 68 percent of all insurance losses in total for the 2001 to 2022 time period. 203 

There was additionally considerable variability across iPNW crop types with regards to 204 

damage-specific insurance claims. For example, wheat insurance losses were dominated 205 

by drought and heat, with apples and cherries claims aligned with freeze, frost, and cold 206 

weather (Figure 2). 207 

208 

In order to address our research questions around spatial and temporal variations of 209 

insurance loss related to water availability, we narrowed our commodity analysis to apples 210 

and wheat, the two dominant commodities for the region. Annual wheat losses specifically 211 

due to drought, heat, and excessive moisture for the iPNW were analyzed for each year in 212 

the period from 2001 to 2022, while apples were examined for the same period, focusing on 213 

freeze, frost, and hail. Our results for this 2001-2022 time period show that the year-to-year 214 

variation of losses for wheat are dominated by drought, with peak years of 2009 and 2021. In 215 

contrast, 2011 had almost no drought or heat insurance losses, with excessive moisture and 216 

rain being the dominant damage cause factors. This annual variability aligns with historical 217 
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(a) (b) 

(c) (d) 

Figure 2. Agricultural insurance loss summaries for the inland Pacific Northwest (iPNW): a) total 

losses by year for all commodities, for the iPNW from 2001 to 2022; b) total losses by commodity,  

from 2001 to 2022; c) wheat total losses by damage cause, for the iPNW from 2001 to 2022; d) apples 

total losses by damage cause, for the iPNW from 2001 to 2022. 

climatological variations. While 2011 was a particularly wet year for the PNW [33], 2021 218 

experienced a significant drought primarily attributed to extreme summer temperatures 219 

during a two week window in June and early July. This event resulted in the highest 220 

recorded mean summer near-surface air temperatures for the PNW from 1950 to 2021 [34], 221 

which is evident in the more than double annual wheat insurance losses, in the range of 700 222 

million dollars (Figure 3). When decline in price is incorporated into this annual view for 223 

wheat, we see certain years where a large majority of claims are associated with economic 224 

decline; for example, in 2009, decline in price claims align with wheat prices declines from 225 

430 dollars /metric ton to 220 dollars /metric ton. Wheat production varies inversely with 226 

losses, with the lowest levels of production occurring in years with the highest levels of 227 

drought/heat insurance loss. Comparatively, apple insurance loss for the region shows a 228 

more gradual increase from 2001 to 2022, with 2020-2022 having a considerable increase      229 

in freeze/frost/hail losses. Apples show a peak loss year of 2022, which coincides with 230 

relatively lower losses for wheat associated with drought and heat, during the same time 231 

frame. Additionally, apple losses, while not typically effected by heat/drought events, still 232 

had relatively large losses in 2021, which is a testament to the severity of 2021 drought/heat 233 

impacts across many commodities. Unlike wheat, apple production is roughly 15 times 234 

larger than insurance loss claims, which may have associations with economic systems,   235 

as well as water availability influences (e.g. drought may have a much greater impact on 236 

insurance claim submittals vs. freeze/frost/hail claims). 237 
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(a) (b) 
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(d) 

1 Lewis: 2 Lincoln: 3 Garfield: 4 Columbia: 5 Walla Walla: 6 Umatilla: 7 Wallowa: 8 Nez Perce: 9 Douglas: 10 

Wasco: 11 Latah: 12 Sherman: 13 Morrow: 14 Union: 15 Adams: 16 Whitman: 17 Asotin: 18 Grant: 19 Benewah: 

20 Spokane: 21 Gilliam: 22 Benton: 23 Idaho: 24 Franklin 

Figure 3. a) Stacked barplot of losses from 2001-1022 for wheat; b) stacked barplot of losses from 

2001-2022 for apples; c) map of wheat insurance loss due to heat and drought, and d) map of apples 

insurance loss due to cold weather, freeze, frost, hail, heat, and wind. 

 
Spatially, while total 2001 to 2022 wheat losses (all damage causes) were highest in 238 

Adams county, WA (232 million dollars), wheat insurance loss due to drought and heat 239 

were highest in Lincoln county, WA (133 million dollars), as well as counties along the 240 

northeastern portion of the Oregon high desert (Umatilla county, OR at 119 million dollars 241 
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and Morrow county, Oregon at 68 million dollars). From a percentage breakdown, over 50 242 

percent of all damage cause losses in Umatilla were a result of drought/heat, with over   243 

40 percent attributable to drought/heat in Adams and Lincoln counties, Washington. If  244 

we specifically examine spatial differences in wheat drought/heat insurance loss by year, 245 

we see notably different patterns of loss concentrations between 2009 and 2021. For 2009, 246 

the region’s few drought and heat claims were concentrated in the north central portion  247 

of the region, with losses in the highly productive Columbia river region being relatively 248 

low. In contrast, 2021 wheat losses due to drought and heat were concentrated in the 249 

upper portion of the Washington Palouse region (Whitman, Lincoln, Adams, and Douglas 250 

counties), with additional loss concentrations falling along the Columbia river valley and 251 

in the western portion of the Palouse (Figure 3). In order to better understand the factorial 252 

relationships of damage causes, two principal component analyses were run for the iPNW 253 

region for both wheat and apples, to explore 1) spatial (county) as well as 2) temporal (year) 254 

variation. Both PC analyses use damage causes as the factor loadings, with all data scaled 255 

by the unit variance. Additionally we use singular value decomposition (SVD), a form of 256 

matrix factorization which is considered a superior method for PCA computation [35]. For 257 

wheat by county, approximately 53 percent of total variance of insurance loss by county 258 

level damage cause can be attributed to the first two principal components, with water 259 

scarcity (drought/heat/fire) damage causes having a negative coordinate alignment in 260 

terms of the first principal component (PC1) vector loading directions. For apples by county, 261 

over 90 percent of total variance can be attributed to the first two principal components, 262 

with excessive water and cold-related damage causes. When we examine variation by 263 

year, we see less explained variance for the first two principal components, with wheat 264 

accounting for 48 percent explainability, and 62 percent for apples (Figure 4). Examining 265 

PC loadings by county, we see a clear alignment of water scarcity damage causes in highly 266 

productive wheat counties (Umatilla county, OR, Lincoln and Whitman counties, WA), with 267 

orthogonal damage causes (excessive moisture/freeze/frost) aligning with counties that 268 

are typically in highly productive fruit production regions (e.g. Grant and Benton counties, 269 

WA). Applying a kmeans clustering algorithm with an elbow cluster optimization selection 270 

method, we identified two key clusters in the two-dimensional PCA space, that additionally 271 

support the differentiation of water scarcity PC1 loadings from PC2 water excess. When 272 

PCA was run using year as the independent factor (2001 to 2022) and applying a kmeans 273 

clustering algorithm with an elbow cluster optimization selection method, we identified 274 

two key clusters. The identified clusters support the differentiation of water scarcity PC1 275 

loadings from PC2 water excess. Most notably, 2009, 2018, and 2021 are within a distinct 276 

cluster falling along damage cause groupings for drought, fire, and heat (Figure 4). 277 

4. Discussion 278 

Given our exploratory data analysis to examine iPNW spatiotemporal variations 279 

of insurance loss in relationship to climatic damage causes, our results identify several 280 

unique spatial and temporal patterns that appear to align with historical climatological 281 

trends. The considerable crop-specific variations in terms of damage causes (e.g. wheat 282 

effects due to drought and heat, vs excessive freeze/cold weather for apples) provide 283 

a clear and straightforward signal for generalized climatological extreme comparisons 284 

with crop insurance fluctuations. As previously noted, the extreme increases in drought 285 

and heat claims for 2021 closely align with the extreme summer heat event in the PNW, 286 

which effect not only cereal systems, but also impact fruit commodities. In addition, such 287 

patterns provide an important perspective on climate variability vs. economics, and the 288 

sensitivities of agricultural systems to differing effects.  Of particular interest were the 289 

differences in iPNW wheat insurance loss, comparing 2009, 2021, and 2022, in terms of 290 

the drought, heat, excessive moisture, and decline in price total losses. While 2009 and 291 

2021 have large dollar losses in terms of drought and heat, 2022 additionally had relatively 292 

larger values with regards to cold weather, rain, and freeze. While increased drought and 293 

heat losses in 2021 align well with regional drought conditions [36], increased drought 294 
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(a) (b) 
 

(c) (d) 

Figure 4. Principal component analysis (PCA) showing top damage cause factor loadings for iPNW 

wheat and apples insurance loss, from 2001 to 2022: a) wheat PCA for counties as the independent 

variable; b) wheat PCA for years as the independent variable; c) apples PCA for counties as the 

independent variable; and c) apples PCA for years as the independent variable. Clustering was 

constructed using a kmeans technique. 

 
and heat claims for 2009 seem to conflict with comparable climate conditions for that year, 295 

which indicates that the iPNW was not in a period of drought [37]. These insurance loss 296 

comparisons between 2009 and 2021 suggest that, in compromised economic conditions     297 

(e.g. price decline), claims due to climatic damage causes may increase, even though 298 

actual climatic conditions do not warrant such increases [38,39]. This may also indicate       299 

that particular commodity-specific thresholds exist where economic factors dominate over 300 

climatic impacts, resulting in a broad distribution of claim loss across a range of damage 301 

causes. 2011 losses were interestingly juxtaposed to 2009 and 2021, with very little drought 302 

or heat insurance claims, but with the largest amount of excessive moisture filings of any     303 

year in the period of analysis. Additionally, we saw an inverse relationship between annual 304 

wheat production and drought/heat insurance loss, with 2021 being the only year in this    305 

time period where losses were higher than production. Work by Quiggin et al. [40], Miranda 306 

and Glauber [3], and Glauber [41] all reference the relationships of insurance loss with    307 

overall crop production, supporting this inverse relationship scenario. Spatial variations    308 

of wheat insurance losses due to drought and heat provide an additional perspective in 309 
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terms of locational sensitivities to climate. With variations of phenology, claim frequency, 310 

regional crop development, irrigation, and cropping practices, commodity-based insurance 311 

claim analysis for agriculturally homogeneous regions may provide the best framework for 312 

delineating differences in claim/loss variation, based on time and the cause of damage.           313 

5. Conclusions 314 

The distinct differences in annual variation, as well as commodity/damage cause, 315 

suggest insurance loss analysis may serve as a more effective barometer in gauging climatic 316 

influences [42]. Our results additionally highlight that insurance losses likely integrate 317 

aspects of climate and economic impact together (e.g., comparisons of 2009 and 2015 318 

damage causes), given that farmer decisions regarding whether to file a loss claim or not 319 

typically take into account these two factors simultaneously. Decisions regarding whether 320 

to file a crop insurance claim depend upon a multitude of dynamic and changing factors, 321 

which may be directly or indirectly impacted by extreme climatological/meteorological 322 

events [43]. For example, during economically stable periods (e.g. high commodity prices), 323 

a farmer may be disincentivized to file a drought-associated claim, particularly given the 324 

balance between production value and insurance payout. Conversely, during periods of 325 

economic instability when commodity prices may be declining, farmers may be incentivized 326 

to initiate a claim in periods of moderate drought. 327 

328 

The results of this work highlight several areas of potential future research, par- 329 

ticularly around understanding the interactions between insurance loss, conservation 330 

practices, economic factors, climate influences, and policy effects, as well as regional dif- 331 

ferences/similarities of damage cause influences across a range of commodities other 332 

than wheat.  Under changing climate and conservation practice conditions, there may 333 

be situations where crop insurance risk management may incentivize, or disincentivize, 334 

farm practices that reduce agricultural climate change impacts, given their individualized 335 

economic implications. Additionally, this work may assist future research in identifying 336 

the financial impacts of a changing climate on insurance loss, over time and differing 337 

geographies. 338 
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