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 Abstract: It was integrating remote sensing and GIS techniques allowed for the identification of the 13 

 potential water resource zones. Here, climatic, hydrologic, ecological, and topographic data have 14 

 been integrated with microwave and multispectral data. Sentinel-2, SRTM, and TRMM data were 15 

 used to identify the climatic, hydrologic, and topographic features of Wadi Fatimah, a portion of 16 

 western Saudi Arabia that drains to the Red Sea. The Physical characteristics of Wadi Fatimah's 17 

 catchment area that are essential for mapping groundwater potential zones have been derived from 18 

 topographic data, rainfall zones, lineaments, and soil maps through remote sensing data and GIS 19 

 techniques. Twelve factors, including geology, elevation, slope, curvature, TRI, drainage density, 20 

 TWI, distance to river, soil, lineament density, NDVI, and rainfall, were merged by a GIS-based 21 

 knowledge-driven approach after giving a weight for each factor. Processing of recent Sentinel-2 22 

 data acquired on August 4, 2023, verified the existence of a zone of vegetation belonging to promis- 23 

 ing areas of potential water zones. The output map is categorized into six zones: excellent (10.98 %),  24 

 very high (21.98 %), high (24.99 %), moderate (21.44 %), low (14.70 %), and very low (5.91 %). In SAR 25 

 CCD derived from Sentinel-1 from 2022 to 2023 showed that the areas of no coherence are in high- 26 

 activity areas in agricultural and anthropogenic activities. The model predictions were validated 27 

 using receiver operating characteristic (ROC) curves and field data, existing wells' locations, and the 28 

 water-bearing formations' thickness inferred from geophysical data. Their performance was ac- 29 

 cepted (AUC: 0.73). 30 
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name 1. Introduction 33 

Received: date  Many regions in the Great Sahara and Arabian Peninsula are currently experiencing 34 

Revised: date water scarcity, largely driven by frequent droughts and expanding agriculture and set- 35 

Accepted: date tling. Such regions suffer from limited rainfall and surface freshwater, representing <1% 36 

Published: date of the world's freshwater. In comparison, over 30% is preserved in underground aquifer 37 

 water (Chow et al., 1988), supplying ~ 80% of the world's rural population with a safe 38 

 water supply. One of the water supplies that can address the issue of water scarcity is 39 

Copyright: © 2023 by the authors. groundwater. In arid-semi-arid conditions, groundwater resources are significant natural 40 

Submitted for possible open access resources that contribute to potable, industry, and agriculture ~ 50%, 40%, and 20%, re- 41 

publication under the terms and con- spectively (Molden, 2007). Thus, groundwater is vital compared to surface water (Jaafar- 42 

ditions of the Creative Commons At- zadeh et al., 2021). Growing populations and a wide range of social, economic, environ- 43 

tribution (CC BY) license (https://cre- mental, and climatic factors are the primary causes of growing demands on freshwater 44 
ativecommons.org/licenses/by/4.0/).     
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availability. Supplies for water are vital for the growth of urban, agricultural, and indus- 45 

trial activities (Hasanuzzaman et al., 2022). Population growth and food rules are the big- 46 

gest challenges to reaching sustainable development goals (Connor, 2015). The availability 47 

of freshwater resources has become a critical issue due to the high demand for agricul- 48 

tural, domestic, and industrial uses (Hasanuzzaman et al., 2022; Chakraborty et al., 2021; 49 

Shit et al., 2019; Chen et al., 2019; Alshehri et al., 2020). Therefore, > 2 billion people world- 50 

wide are suffering from freshwater scarcity, and it is expected that by 2050, over one-third 51 

of the worldwide population will suffer from water scarcity (WWDR, 2018). Climate 52 

change is one of the prominent challenges in the twenty-first century, contributing to 53 

drought and water insufficiency problems (WHO, 2015) and surface water supply sys- 54 

tems.  55 

The main origin of groundwater is precipitation that penetrates down soil pores into 56 

shallow aquifers. Rainwater may mainly act in infiltration and overflow, depending on 57 

the intensity of the storm, the type of vegetation present, the temperature, and many other 58 

factors, including geology, topography, climatic conditions, soil, land use, land cover, 59 

slopes, distances from rivers, and precipitation levels (Abd Manap et al., 2014; Salman et 60 

al., 2018; Abdelkareem et al., 2023). The use of remote sensing and GIS to map groundwa- 61 

ter resources has grown in popularity (Jha et al., 2007; Sun et al., 2022). Implementing 62 

some of these techniques may be beneficial to reveal potential areas of water resources (Li  63 

et al., 2023; Abdekareem et al., 2023; Abdekareem & Abdalla, 2022). Several studies have 64 

demonstrated the usefulness of using RS and GIS to locate probable groundwater sources 65 

(Naghibi et al., 2019; Chen et al., 2019; Chen et al., 2020; Jha et al., 2007; Abdelkareem et 66 

al., 2012; Sun et al., 2022; Abdelkareem & El-Baz, 2015). A GIS technique can handle big 67 

data spatial data for processing and combination to predict and allow for finding addi- 68 

tional water resources (Yariyan et al., 2020). For mapping groundwater potentiality, meth- 69 

odologies based on data and knowledge were used (Machiwal et al., 2010). Multiple fields 70 

of knowledge, such as overlay analysis (Zhu & Abdelkareem, 2021), analytical hierarchy 71 

process (AHP) (Razandi et al., 2015; Senthilkumar et al., 2019), Boolean logic (Riad et al., 72 

2011), index overlays, and fuzzy methods (Maity et al., 2022; Muthumaniraja et al., 2019). 73 

The main objective of the present study is to model and delineate groundwater pro- 74 

spective zones GPZs in the Wadi Fatimah basin, western Saudi Arabia. This objective is 75 

achieved by preparing thematic maps for the most important contributing parameters that 76 

indicate groundwater potential, including elevation, slope, curvature, TRI, drainage den- 77 

sity, TWI, distance to river, soil, lineament density, NDVI, and rainfall through the GIS 78 

module. Field observations and geophysical investigations are applied to test the validity 79 

of the resulting GIS module.  80 

2. Study area  81 

Wadi Fatimah is located within the Makkah region (Fig. 1a); it covers a large area of 82 

the south and east of Jeddah and extends from NE to SW with an area that exceeds 100 83 

km2. It is located between longitudes 39° 15` and 40° 30` and latitudes 21° 16` and 22° 15` 84 

N, as shown in Figure 1. Wadi Fatimah drainage basin, which drains toward the Red Sea, 85 

gets its importance from its location in the central-western part of the Kingdom. It is the 86 

closest drainage basin to the three major cities: Jeddah, Makkah, and Taif. The Hijaz Es- 87 

carpment altitude (high Sarawat Mountains) in the east is the primary factor controlling 88 

the quantity and pattern of rainfall, where they act as an orographic cooling barrier and 89 

hence  its  duration,  intensity,  distribution,  and  return  periods  are  major  influences 90 

(Subyani & Alhamadi, 2011). The basin is considered significant, with a greater chance of 91 

collecting more flood and rainwater than the smaller basins. Rainfall occurs during the 92 

spring and summer, where the average annual precipitation varies from >500 mm in the 93 

eastern parts near the Hijaz Escarpment to <100 mm in the western part near the Red Sea 94 

coast, reflecting the effect of topography. The average evaporation rates exceed 2000 95 
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mm/yr. The infiltration rate is low due to the Fatimah group's carbonate and quartz–feld- 96 

spar epiclastic rocks (Moore & Al-Rehaili, 1989). The recharge areas for surficial ground- 97 

water aquifers in Wadi Fatimah lie near Taif province, estimated at 72mm/y (Alyamani & 98 

Hussein, 1995; Alshehri et al., 2023).  99 

Geologically, Wadi Fatimah is located within the Makkah Quadrangle; it comprises 100 

different rock units with ages ranging from the Precambrian basement complex to the 101 

Tertiary sedimentary and lavas and the Quaternary alluvial deposits. These rock units are 102 

affected by structural elements such as faulting and dykes in the area. The thickness of the 103 

Quaternary fill deposits formed from mudstones, sandstones, and conglomerates in the 104 

study area varies from 10 m near the upstream parts to 20 m or more in the downstream 105 

parts (Al Sefry et al., 2003; Alshehri & Abdelrahman, 2023). Geomorphologically, Wadi 106 

Fatimah and its surrounding shows three main geomorphic units. These units are the high 107 

mountainous area (Proterozoic rocks), the hilly area (dissected and weathered rocks), and 108 

the pediment plain (Qari, 2009). Wadi Fatimah comprises sub-catchments like Wadi Ash- 109 

shamiyah, Wadi Alyamaniyah, Wadi Bani Omair, and Wadi Howarah.  110 

 

 

111 

Figure 1. Location map of Wadi Fatimah. 112  
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3. Materials and Methods  113 

3.1. Data used and methods:  114 

This study used remote sensing data and GIS techniques to reveal the prospective 115 

areas of water resources. Integration of multi-criteria such elevation, slope, curvature, TRI, 116 

drainage density, TWI, distance to river, soil, lineament density, NDVI, and rainfall to 117 

reveal possible water resource areas using remote sensing data from radar and optical 118 

sensors (Fig.2). These eleven thematic GIS maps were merged. Digital elevation models 119 

(DEMs) generated from the Shuttle Radar Topography Mission's SRTM (30 m cell size) 120 

data. SRTM-30 m resolution NASADEM 1arc second WGS84 data from the SRTM were 121 

utilized to characterize the topographical parameters (elevation, slope, curvature, TRI) 122 

and hydrologic parameters (e.g., drainage density, TWI, distance to the river). The stream 123 

networks were delineated using 8-D approach (O'Callaghan & Mark, 1984) that is very 124 

important in generating stream-density maps, TWI, and distances to rivers (Abdelkareem 125 

et al., 2023).  126  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 127 

Figure 2. Data and methods utilized in the present study. 128 

The Normalized Difference Vegetation Index (NDVI) composites are generated by 129 

computing multiple Advanced Very High-Resolution Radiometer (AVHRR) daily read- 130 

ings to produce a nearly cloud-free image depicting the maximum greenness. The NDVI 131 

ratio from bands one and two of the AVHRR composite is combined to form a derived 132 

NDVI band composite, in addition to vegetation rainfall data. The data on average rainfall 133 

was collected using TRMM satellite observations. Using the kriging interpolating applica- 134 

tion, the generated rainfall average statistics are spatially scattered and cover the period 135 

from January 1, 1998, to November 30, 2015. The information was obtained from this web- 136 

site address: https://giovanni.gsfc.nasa.gov/giovanni/. Two scenes of the Sentinel-2B sat- 137 

ellite were acquired on 04/08/2023 and 19/08/2019. The VIS/NIR bands have pixel sizes of 138 

10 m for the blue B2 (490 nm), green B3 (560 nm), red B4 (665 nm), and infrared B8 (842 139 

nm). The SWIR bands (B11: 1610 nm, B12: 2190 nm) have 20 m-wide pixels. These bands 140 

https://giovanni.gsfc.nasa.gov/giovanni/
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of the Sentinel-2 are rendered as zip-compressed files in Sentinel's exclusive SAFE format. 141 

By stacking the jpg files for bands B2, B3, B4, and B8 with a spatial resolution of 10 m and 142 

B11 and B12 with a resolution of 20 m, a single GeoTIFF file with a consistent pixel size of 143 

10 m is produced. A subset of this data has been handled utilizing SNAP software during 144 

preprocessing to decrease processing time and data. Each pixel in a theme layer corre- 145 

sponds to the same location in the used overlay analysis. In order to produce a ground- 146 

water prospective zones (GWPZs) map as the output, several components of the input's 147 

eleven layers must be integrated. Every layer and subclass has a numerical rank, a crucial  148 

point to remember. The user can mathematically combine the layers to give each pixel on 149 

the final GWPZ map a new rank. The minimal input cell size (90 m) was integrated with 150 

the research area's GWPZs map, which represents the weighted average of the combined 151 

data-based maps (multi-criteria) in this model utilizing a weighted overlay technique 152 

based on geographic information systems (GIS). For this purpose, the following equation- 153 

1 was used.  154 

   

GWPZ   = ∑  × (1)  

  =1   

where Li is the normalized weight of an evidentiary layer of the I parameter and Fi denotes 155 

the magnitude of the inter-map (sub-class) features. This makes it possible to combine the 156 

eleven theme maps on a pixel basis in accordance with the equation.  157 

4. Results and Discussion:  158 

4.1. Factors controlling groundwater occurrence and infiltration  159 

In the present research, we integrate different data sets and measures to obtain an in- 160 

depth comprehension of Wadi Fatima's optimum areas of groundwater. These factors 161 

cover the geologic, climatic, hydrologic, and ecologic features.  162 

4.2. Geology  163 

The characteristics and geometric features of the lithologic units are significant in 164 

controlling the occurrence, movement, and accumulation of groundwater. This is due to 165 

pore spaces (Benjmel et al., 2020; Abdelkareem et al., 2023). For example, zones with well- 166 

sorted clastic deposits would hold water rather than massive bedrock. Based on the geo- 167 

logic map of Saudi Arabian Shieild (1963-1983), Wadi Fatimah is built up of gneiss (ortho- 168 

and  para),  volcaniclastics  belonging  to  basaltic  to  andesitic  rocks  (Jiddah  Group), 169 

metasediments to metavolcanic including marbles (Fatima Group), gabbros, diorites and 170 

various sorts of granites from tonalites to alkali granites either gray or pink colors. These 171 

rocks are partially covered by flood basalts (Fig. 3a). Several wadis dissected these rocks 172 

and filled them with Quaternary deposits, including aeolian sand. Based on the geological 173 

map, the geologic map was simplified into four classes: alluvium, Jaddah-Fatima for- 174 

mation, flood basalt, and granites-gabbros that occupied 9.65, 25.68, 16.42, and 48.25% of 175 

the entire area, respectively (Fig.3 b).  176 
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177 

Figure 3. (a) Geologic map of the studied Wadi Fatima; (b) simplified geologic map. 178 

4.3. Elevation 179 

Elevation affects the direction, surface runoff, and groundwater recharging (Abdalla 180 

et al., 2020; Abdelkareem et al., 2023; Yousefi et al., 2020). Groundwater potential is signif- 181 

icantly influenced by elevation (Naghibi et al., 2019; Abdelkareem et al., 2023), unlike how 182 

it relates to the groundwater resource (Karimi-Rizvandi et al., 2021; Li et al., 2023). Because 183 

of the low topography downstream, precipitation cannot concentrate in locations of high 184 

height (Abdelkareem & Abdalla, 2022). The elevation chart of the research area (Fig. 4a) is 185 

separated into five zones: 0-369, 369.1-756, 756.1-1096, 1097-1440, and 1441-2290m, which 186 

cover 30.45, 20.97, 23.01, 16.58, and 9% of the basin, respectively. The topography layer is 187 

an important layer that governs the direction of water flow over the land; it also controls 188 

the occurrence of groundwater and recharge potential (Maity et al., 2022; Abdalla et al., 189 

2020). 190 

Table 1. Factors controlling groundwater occurrence and infiltration. 191  
 

Geology Rank Normalized weight % Area % 

Alluvium 7 0.389 9.56 

Flood basalt 5 0.278 16.42 

Jaddah-Fatima Group 4 0.222 25.68 

Granites-Gabbros 2 0.111 48.25 

   Elevation  

1441 – 2290 2 0.067 9 

1097 – 1440 4 0.133 16.58 

756.1 - 1096 7 0.233 23.01 

369.1 - 756 8 0.267 20.97 

0-369 9 0.300 30.45 

   Slope  

0 – 4.347 8 0.320 46.19 

4.348 – 10.14 7 0.280 22.73 

10.15 – 17.18 5 0.200 16.29 

17.19 – 25.67 3 0.120 10.31 

25.68 – 52.78 2 0.080 4.48 
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    Curvature   

 -5 to -0.388 2 0.182 14.01  

  0 4 0.364 69.48  

 0.001 to 5.21 5 0.455 16.50  

    TRI   

 0.111 – 0.379 6 0.353 17.71  

 0.379 – 0.483 5 0.294 33.73  

 0.483 – 0.590 4 0.235 33.14  

0.590 – 0.888 2 0.118 15.42  

    Dd   

 0.091 – 0.594 2 0.095 11.38  

 0.594 – 0.808 4 0.190 30.19  

 0.808 – 1.006 7 0.333 40  

1.007 – 1.456 8 0.381 18.43  

    TWI   

 4.25 – 7.02 2 0.10 36.20  

7.02 – 8.72 4 0.20 34.16  

 8.72 – 10.85 6 0.30 21.34  

10.86 – 17.83 8 0.40 8.29  

    Distance to River   

 0 – 281.6 8 0.50 47.14  

 281.7 - 609 6 0.38 34.80  

609.1 - 1670 2 0.13 18.06  
    Rainfall   

 0.192 – 0.2677 1 0.071 19.93  

 0.2678 – 0.3652 3 0.214 15.18  

 0.3653 – 0.4527 4 0.286 43.34  

0.4528 – 0.6209 6 0.429 21.55  
    NDVI   

 400 - 820 2 0.111 23  

 821 - 1400 3 0.167 34.04  

 1400 - 1800 5 0.278 19.43  

1800 - 9315 8 0.444 23.53  

    Soil   

 Loam3 2 0.133 81.26  

 Loam2 3 0.200 13.22  

 Loam1 4 0.267 3.16  

 Sandy loam 6 0.400 2.36  

    Lineaments   

 0 – 7.95 2 0.074 22.10  

 7.95 – 18.5 4 0.148 26.04  

 18.76 – 29.83 6 0.222 24.30  

 29.84 – 42.33 7 0.259 20.09  

 42.34 – 72.45 8 0.296 7.47  

 

4.4. Slope 192 

The occurrence and infiltration capacity of groundwater flow is directly influenced 193 

by surface slope, one of the most crucial control parameters (Al Saud, 2018). It may be 194 

used as a general factor in the direction of groundwater flow (Gupta & Srivastava, 2010). 195 
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The slope is a crucial component of watershed governance and the possibility of ground- 196 

water zone mapping (Al Saud, 2018). The likelihood of finding groundwater varies greatly 197 

depending on the terrain: extremely high, high, moderately high, low, and very low 198 

(Elewa & Qaddah, 2012; Zhu & Abdelkareem, 2021). The infiltration is inversely related 199 

to the slope (Adiat et al., 2012). When it rains, water runs off steep slopes quickly, not 200 

having enough time to percolate beneath the surface and replenish the saturated zone. As 201 

a result, locations with steeper slopes produce less recharge due to high surface runoff 202 

velocity and vertical percolation (i.e.,), thus affecting water occurrences. The slope angle 203 

controls recharge by influencing the amount of land surface infiltration, runoff, drainage, 204 

and subsurface drainage (Naghibi et al., 2019). On an elevation map of the study area (Fig. 205 

4b), five zones have been recognized: 0-4.34, 4.34-10.14, 10.15-17.18, 17.19-25.67, and 25.68- 206 

52.78, that covering 46.19, 22.73, 16.29, 10.37, and 4.48% of the basin, respectively (Fig. 2b). 207 

4.5. Surface curvature  208 

Water accumulation, the rate of infiltration, and overflow are all influenced by the 209 

curvature of the land surface [Benjmel et al., 2020; Yariyan et al., 2020; Abdelkareem et al 210 

2023). The DEM is used to initiate a land surface curvature map, which is classified into 211 

three categories: concave, convex, and flat (Figure 4c) each class has a certain capability 212 

for holding water and may cause runoff. For instance, flat and areas of curvature, which 213 

also have a higher infiltration rate, are better at collecting water than convex surfaces. Flat  214 

and concave land surfaces are where water tends to collect and penetrate; hence, places 215 

with high levels of curvature (or vice versa) are given high weight values (Mukherjee, and 216 

Singh 2020; Abdelkareem et al., 2023; Abd El-Hamid at el. 2023). The output curvature 217 

map was divided into three categories: (- 5.60 to - 0.38), (0), and (0.0001 – 5.21); (Fig. 4c). 218 

4.6. Terrain roughness index  219 

The TRI is a geomorphic parameter that is used in revealing groundwater occur- 220 

rences. The presence of groundwater potentiality corresponds to the TRI values. It was 221 

established to assess the landscape's diversity and can be applied to investigating ground- 222 

water [Kalantar et al., 2019; Moghaddam et al., 2020; Abdelkareem et al., 2023; Li et al., 223 

2023]. This factor can be determined through the formula -2 below:  224 
   

= √(      2 −   2) (2)  

Based on the accumulation and infiltration of groundwater, the TRI map results have 225 

been classified into four zones: 0.11–0.37, 0.37–0.48, 0.48–0.59, and 0.59–0.88 that covering 226 

17.71, 33.73, 33.14, and 15.42, respectively (Fig. 4d).  227 
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Figure.4 (a) elevation; (b) slope; (c) curvature; (d) TRI 228 

4.7. Drainage density 229 

The present and past climatic and hydrologic conditions, as well as the recharge ca- 230 

pacity of shallow alluvial aquifers, mainly depend upon the characteristics and geometry 231 

of the stream (Fig. 5a). Drainage density is an important hydrologic factor in mapping 232 

prospective areas of water infiltration and accumulation. Drainage density is calculated 233 

by dividing the combined length of all the streams and rivers in a drainage basin by its 234 

overall area Harini et al. (2018). An area's drainage system is impacted by the type of veg- 235 

etation, the type of soil, infiltration, slope gradient, and the composition and structure of 236 

the bedrock (Abd Manap et al., 2014). An area with less drainage density results in greater 237 

infiltration and less surface runoff. Accordingly, groundwater development is appropriate 238 

in locations with low drainage density (Magesh et al., 2012). Furthermore, because drain- 239 

age density is a measurement of surface runoff, it infers groundwater recharge indirectly 240 

(Jha et al., 2007). According to Cevik and Topal (2003), higher drainage densities result in 241 

less infiltration and faster surface flow. According to Yeh et al. (2009) and Pinto et al. 242 

(2015), high drainage density values suggest a low groundwater potential zone since they 243 

are conducive to runoff. The drainage density of the studied basin (Fig. 5b) ranges from 244 

0.091 to 1.456, which is classified into four classes: 0.091 – 0.594, 0.594 – 0.808, 0.0808 – 245 

1.006, 1.007 – 1.456, that occupying an area of 11.38, 30.19, 40, and 18.43%, respectively. 246 
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4.8. Topographic wetness factor (TWI)  247 

The TWI is a secondary topographic factor that is employed to reveal topographic 248 

effects on the location and capacity of runoff and infiltration capability (Rahmati et al., 249 

2018), and thus groundwater occurrences (Li et al., 2023; Abdelkareem et al., 2022, 2023). 250 

Such a factor determines the relationship between the earth's surface wetness and slope 251 

variation (Pourghasemi, 2014; Alshehri et al., 2023). Moreover, it defines how the water 252 

accumulation in a place is influenced by topography. Thus, zones of high slope angle and 253 

areas of high altitudes have more runoff, which minimizes their capability for holding 254 

water resources. On the other hand, areas of low elevation tend topographical wetness or 255 

water accumulation (Abdelkareem et al., 2023; Hasanuzzaman et al., 2022). The TWI map 256 

is classified into three categories (Fig. 5c): 4.25 – 7.02, 7.02 – 8.72, 8.72 – 10.85, 10.86 – 17.83, 257 

covering 36.20, 34.16, 21.34, 8.29, respectively.  258 

4.9. Distance to River  259 

Water flow in a basin can be aided by recharging the stream bed and the nearby areas 260 

to stream flow (Abdelkareem et al., 2023; Sun et al., 2022; Li et al., 2023). In arid, high- 261 

elevation, and desert areas, the infiltration comes from drainage systems holding water 262 

from precipitation. Such water seeped into groundwater aquifers (Cuthbert et al., 2016).   263 

The distances between locations and rivers indicate that groundwater harvesting may be 264 

possible (Golkarian et al., 2018). With increasing distance from rivers, recharge of ground- 265 

water frequently decreases. In order to lead to stream water loss, bedrock reservoirs in 266 

valleys do so (Rahmati et al., 2018). In Arc GIS 10, the spatial analyst tools, we used the 267 

Euclidean distance tool to extract the distance to river categories (Jaafarzadeh et al., 2021; 268 

Abdelkareem et al., 2023). The resulting map (Fig. 3d) is classified 0 – 281.6, 281.7 – 609, 269 

and 609.1 – 1670, occupying 47.14, 34.80, and 18.06, respectively.  270 
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Figure 5. (a) streams; (b) Dd; (c) TWI; (d) Distance to River. 272 

4.10. Vegetation 273 

For groundwater potential zones, the NDVI is a commonly used parameter (Singh et 274 

al. 2009, Senthil kumar et al. 2019). The density and coverage of the vegetation were dis- 275 

played on a map using the Normalized Difference Vegetation Index (NDVI). The NDVI 276 

ranges from -1 to 1. The NDVI result map of the study area is classified into 4 categories 277 

based on the natural break method; are 210–900, 900–1500, 1500-2500, and 2500-10000, re- 278 

spectively (Fig. 4a), covering areas of 23, 34.04, 19.43, and 23.53 % of the area, respectively 279 

(Table 1). 280  
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281 

Figure 6. (a) NDVI; (b) Rainfall; (c) Soil; (d) Lineament density. 282 

4.11. Rainfall 283 

Precipitation is one of the essential hydrologic components that has been recognized 284 

as a significant source of aquifer recharge and a primary source of groundwater availabil- 285 

ity, especially in arid areas (Guru et al., 2017; Avand et al., 2020; Magesh et al., 2012; Shek- 286 

har & Pandey, 2015). Rainfall percolation within the soil promotes the shallow aquifers to 287 

be recharged, and the precipitation significantly affects percolation (Adiat et al., 2012). The 288 

upstream of the Wadi Fatimah basin receives an annual rainfall of 300 to 360 mm (Al Sefry 289 

et al., 2003). Rainfall patterns and intensity control the water availability in any basin. In 290 

order to identify groundwater potential zones and to recharge aquifers hydrologically, 291 

rainfall is one of the most important components (Abdelkareem et al., 2012 and 2022). 292 

The eastern part (high elevation) receives approximately greater precipitation yearly 293 

than the western (low height). The possibility of groundwater in a given geographical area 294 

increases due to precipitation (Hong & Abdelkareem, 2022; Jaafarzadeh et al., 2021). Using 295 

rainfall data from the TRMM satellite, investigators may monitor, document, and measure 296 

the precipitation patterns for the watershed under consideration. The mean annual rain- 297 

fall over the study area was interpolated depending on the Kriging method. Five catego- 298 

ries for the rainfall intensity map (Fig. 6b) are 0.192 – 0.267, 0.267 – 0.365, 0.365 -0.452, and 299 

0.452 – 0.620, covering 19.93, 15.18, 43.34, and 21.55, respectively. 300  
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Due to its geographical characteristics, located in western Saudi Arabia, Wadi Fati- 301 

mah is frequently subjected to flash flood storms due to excessive, highly intense rainfall. 302 

During flood periods, the portion of infiltrating water that reaches the water table is con- 303 

sidered the most important source of the local alluvial aquifers recharge in arid and semi- 304 

arid regions (Morin et al., 2009; Dahan et al., 2007). Figure 5 shows the areas recently sub- 305 

jected to rainfall storms in Wadi Fatimah. Alshehri and Abdelrahman (2023) calculated a 306 

coarse drainage texture of 0.059 within the Wadi Fatimah basin, promoting additional 307 

groundwater recharge from precipitation during flood periods and the rainy season. The 308 

recharge of the local alluvial aquifer in the area was confirmed by the rise in water levels 309 

along the wadi after the rainfall period (Al Sefry et al., 2003). In addition, the amount of 310 

infiltrating water into the aquifer was calculated to occur at a rate of roughly 72 mm/y 311 

(Alyamani & Hussein, 1995) and 85 mm/y (Memon & Kazi, 1984).  312  
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Figure 7. Rainfall accumulation during the rainstorm. 314 

4.12. Soil 315 

The soil texture is another effective element for determining places appropriate for 316 

recharging processes. Regarding groundwater recharge and agricultural production, soil 317 

type is a crucial factor. Thus, knowledge of soil texture is crucial for understanding inva- 318 

sion rats (Jaafarzadeh et al., 2021). The sort of soil has a major impact on the flow volume 319 

and infiltration (Bera et al., 2020). Sand is an example of fine-grained, well-sorted soil 320 

whose infiltration rate is lower than coarse-grained soil (Senanayake et al., 2016; Abdel- 321 

kareem et al., 2012). Rocks' porosity, permeability, and geometrical characteristics are thus 322 

significant in determining a region's GPZs. The dimensions, shape, and arrangement of 323 

soil grains and the pore structures connected to them can have a major impact on water 324 

transport (Opp & Bodenkörper, 2011). Sandy soil has a rapid rate of infiltration; more- 325 

coarse, loamy soil with a high sand content has been given higher importance; and fine 326 

soil with a smaller rate of infiltration owing to a greater amount of clay has been allocated 327 

low priority (Shekhar & Pandy, 2015). The studied basin is characterized by sandy loam 328 

to loam of different proportions of sand, silt, and clay (Fig. 4c). Thus, it is classified into 329 

sandy loam, loam 1, loam 2, and loam 3, ordered from high to infiltration capacity and 330 

covering 2.36, 3.16, 13.22, and 81.26, respectively. 331 
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4.13. Lineaments  332 

Lineaments have a significant impact on groundwater circulation and storage, as well 333 

as how surface runoff gets absorbed into the ground (Subba Rao 2009). Groundwater 334 

recharge systems, as well as movement directions, are controlled by fracture and fault 335 

systems. The fracture and fault systems are controlling the groundwater recharge systems 336 

and movement directions. They are linear features that promote secondary porosity. Ge- 337 

ologic characteristics known as lineaments are linear or curved and have a major role in 338 

the development and transport of groundwater in crystallized terrain. The infiltration of 339 

surface runoff and replenishment of the hard-rock aquifer are caused by lineaments, in- 340 

cluding cracks, fissures, and joints, which often form because of tectonic stress/strain.   341 

Many authors have highlighted that a high lineament density leads to a high well output 342 

by using the connection between the presence of groundwater and lineaments (Achu et 343 

al. 2020; Hung et al. 2005). The area is classified into five classes (Fig. 4d) including 0 – 344 

7.95, 7.95 – 18.75, 18.76 – 29.83, 29.84 – 42.33, and 42.34 – 72.45, respectively.  345 

4.14. Groundwater prospective map GPZs  346 

The GPZs were established by combining elevation, slope, curvature, drainage den- 347 

sity, distance to river, TWI, rainfall, TRI, NDVI, soil, and lineaments data from satellite 348 

pictures, hydrologic, and geologic. According to the likelihood of GW, the area was sepa- 349 

rated into different six zones (Fig. 6). The six categories are excellent (10.98 %), very high 350 

(21.98 %), high (24.99 %), moderate (21.44 %), low (14.70 %), and very low (5.91 %). The 351 

region with the highest potential is now clearly visible. The GW recharge zones are sup- 352 

ported by sand and gravel, depressions, and a high flat or gentle slope in this area. The 353 

gathered wells confirmed the GPZs in order to validate the estimated model. Additionally, 354 

places with vegetation and agricultural activities are connected with good groundwater 355 

potential zones. Zones with a high slope, elevated ranges, and low density have little in- 356 

filtration. Dams in this range would make it possible to capture water and protect the 357 

downstream areas as well as newly growing urban areas (Souissi et al., 2018). Zones with 358 

well-sorted sand that promote high porosity variations reveal high infiltration capability. 359 

According to the computational models, high-ranking probabilities are consistent 360 

with the well location and vegetated areas. As a result, abundant spring sites coincident 361 

with the area of high to excellent potentiality, which doesn't display more springs from 362 

"Low" potential zones.  The GWPZ map of the research area is confirmed through the 363 

ROC curve (Fig. 9). The usefulness of the system's assessment is shown by the fact that the 364 

AUC can be utilized to define the system's ability to properly anticipate both the occur- 365 

rence of "groundwater" and its absence from the system. Values for the AUC range from 366 

0 to 1 (Fig. 9), with lower values denoting beneficial predictions and higher values denot- 367 

ing more reliable estimations. The AUC for the model is 0.73, which indicates improved 368 

accuracy. As multiple wells are compatible with the zones of high prospective, the field 369 

investigations verified the GWPZ map. Several farms also correlate with those zones (Fig.  370 

8). Based on the Sentinel-2 band combined 12, 8, 3, in R, G, and B, accordingly, vegetation 371 

and water resources make up the majority of the extremely high to extreme GWPZs (Fig. 372 

9).  373 
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378 

Figure 10. Excellent groundwater prospective zone overlain by main roads,streams and water- 379 

shed. 380 

5. Discussion 381 

Wadi Fatima’s geologic and topographic setting in western Saudi Arabia promotes 382 

the rainfall conditions at the elevated upstream areas that drain to the Red Sea at Jeddah 383 

city. Such a setting gave it a promising area for water harvesting and accumulation. The 384 

applied model utilized multi-criteria of topography, meteorology, geology, structures, 385 

and hydrology parameters. Areas of high potentiality are consistent with zones of low 386 

topography, high lineament density, and flat to gentle slopes (Li et al., 2023; Zhu & Ab- 387 

delareem, 2021). Additionally, areas with loose sediments in the downstream and highly 388 

vegetated areas would promote infiltration and minimize runoff (Sun et al., 2023). 389  
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Figure 11. Sentinel-2 12, 8, and 3 of the studied basin that overlain by well locations; (b, d, f, h) 416 

Sentinel-2 image subset; (c, e, g,i) In SAR CCD. 417 
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The wet and moist soil in these locations is another effect of the high TWI values 418 

[Beven et al., 1979; Sun et al., 2023]. This suggests that groundwater has accumulated in 419 

these areas. The combined data in a GIS model allowed highlighting such promising areas 420 

consistent with groundwater sites. Such source of water allowed the reclamation of land 421 

for diverse agricultural purposes and the development of new settlements at the down- 422 

and midstream areas (Fig. 11). Sentinel-1 imagery employing InSAR CCD data proves 423 

significant variations in LU/LC, particularly in the context of agricultural and other hu- 424 

man activities in the essentially downstream region.  425 

The validity of the developed model was verified against the field observations, pre- 426 

vious geophysical investigations, well yield, and the location of groundwater wells that 427 

present in areas with the highest potential of groundwater occurrence in the study area. 428 

The results of the GWPZ map are consistent with geoelectric results (Alshehri & Abdelrah- 429 

man,2023) which implied high potential amounts of groundwater at the shallow ground- 430 

water aquifer in Wadi Fatimah. Additionally, the highest density of wells, along with the 431 

high transmissivity values of the shallow aquifer, range between 300 m2/d and 1800 m2/d 432 

(Al Sefry et al., 2003), while the storativity values are averaged at 0.06, and the specific 433 

yield values ranged from 0.12 to 0.2 ((Sen, 1995; Dawson & Istok, 1991). These values in- 434 

dicate that the aquifer yields range from mid to high potential and water accessibility to 435 

the wells. According to Al Sefry et al. (2003) and based on the aquifer testing and geophys- 436 

ical surveys, the estimated groundwater volume is around 42x106m3. Thus, the verifica- 437 

tion proved that the GWPZ generated from GIS techniques is reliable and representative. 438 

6. Conclusions  439 

Groundwater is a vital water source for sustainable development, particularly for dry 440 

and hyper-arid regions. Remote sensing imagery and GIS techniques were efficiently 441 

merged to uncover, assess, and monitor exploration data for water resources in varied 442 

climatic conditions. In order to determine probable zones of groundwater potentiality, W. 443 

Fatima, located in the Makka region, is explored using GIS and satellite imagery methods.  444 

Many GIS maps that show the geology, geomorphic, climatic, and hydrologic conditions 445 

have been processed, normalized, and revealed the groundwater potential zones, which 446 

are categorized into five zones: excellent (10.98%), very high (21.98%), high (24.99%), mod- 447 

erate (21.44%), low (14.70%), and very low (5.91%). Overall, investigating the GWPZ area 448 

utilizing GIS and remote sensing methods is extremely beneficial to sustainability and 449 

decision-makers. The GWPZ map was tested and compared to the receiver operating char- 450 

acteristic (ROC) curves and field data, locations of existing wells, and thickness of the wa- 451 

ter-bearing formations inferred from geophysical data. Thus, the verification proved that 452 

the GWPZ generated from GIS techniques is reliable and representative.  453 
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