Antiplasmodial activity of flavonoids from Macaranga tanarius leaves

by Dr. Eva Marliana

Submission date: 19-Jun-2023 06:12PM (UTC+0700)

Submission ID: 2118988501

File name: Marliana_2018_IOP_Conf._Ser.__Earth_Environ._Sci._144_012011.pdf (1.09M)

Word count: 4889

Character count: 23679

PAPER · OPEN ACCESS

Antiplasmodial activity of flavonoids from Macaranga tanarius leaves

To cite this article: E Marliana et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 144 012011

View the article online for updates and enhancements.

You may also like

- The genetic polymorphism of merozoite surface protein-1 in Plasmodium falciparum isolates from Aceh province, Indonesia K F Jamil, S Supargiyono, D Syafruddin et
- Antiplasmodial Activity shown by Secondary Metabolites Extracted from the Seeds of Pentaclethramacrophylla Benth Grace I. Olasehinde, Raphael C. Mordi, Arnold N. Eluagwule et al.
- Sequence analysis of DBL2 domain of vargene of Indonesian Plasmodium falciparum
 E Sulistyaningsih, B D Romadhon, I Palupi et al.

Antiplasmodial activity of flavonoids from *Macaranga* tanarius leaves

E Marliana^{1,*}, R Hairani¹, T S Tjahjandarie² and M Tanjung²

¹Department of Chemistry, Faculty of Mathematics and Natural Science, Mulawarman University, Samarinda, Indonesia

²Natural Product Chemistry Group, Organic Chemistry Division, Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia

* Corresponding author eva samarinda@yahoo.com

Abstract. Malaria is one of the leading causes of death in the world which is caused by *Plasmodium sp*. This parasite tends to have mutation and shows resistance towards malaria drug. Due to the emergence and spread of *Plasmodium sp*. resistance towards malaria drugs, an exploration to find new effective and selective malaria drug is essential. In this study, four flavonoids, namely nymphaeol C (1), solophenol D (2), nymphaeol A (3), and nymphaeol B (4) were isolated from ethyl acetate fraction of *Macaranga tanarius* leaves. The structures of those compounds were characterized by NMR analysis. Furthermore, antiplasmodial activity of ethyl acetate fraction and four isolated compounds (1–4) were evaluated by Giemsa method against *Plasmodium falciparum* strain 3D7. According to this assay, it showed the IC₅₀ values were 0.30, 0.24, 0.31, 0.05, and 0.05 μg/mL, respectively. The results provide important evidence of the antiplasmodial activity of flavonoids in traditional use. In addition, it can be indicated that *Macaranga tanarius* is potential to be developed as antiplasmodial agents.

1. Introduction

Malaria is known as the world's most important parasitic disease especially when *Plasmodium sp.* is the causative agent. World Health Organization (WHO) has reported that about 300 million people were at risk of malaria with 1.5 million deaths per year caused by *Plasmodium sp.* infections [1]. Kalimantan is one of the malaria endemic areas in Indonesia, therefore, local people in this island try to find the treatment to cure this disease using some medicinal plants [2].

Macaranga is one of plants that is used for malaria treatment. This genus belongs to Euphorbiaceae family containing flavonoids and stilbenoids integrated with terpenoids. Based on the chemical structure, the combination of flavonoids with terpenoids yields many varieties of flavonoid derivatives structures which further provides an opportunity for scientist to discover new compounds and new frameworks that have potency as antiplasmodial agent.

One species of Macaranga genus that had been reported for its antiplasmodial activity is only *Macaranga triloba* which is known containing 6-prenyl-3'-methoxyeriodictyol, nymphaeol B, nymphaeol C, and 6-farnesyl eriodictyol [3]. Another species from this genus named *Macaranga*

IOP Conf. Series: Earth and Environmental Science 144 (2018) 012011

doi:10.1088/1755-1315/144/1/012011

tanarius is suspected also to have antiplasmodial activity due to some compounds in *M. tanarius* also belong to flavonoids. Several isolated compounds from *M. tanarius* had been reported, such as tanariflavanone A, tanariflavanone D, nymphaeol A and nymphaeol B [3, 4].

To date, there is no study about antiplasmodial activity from *M. tanarius*, hence in this study, the isolation of bioactive compounds and the investigation of their antiplasmodial activity from *M. tanarius* leaves were performed to understand the potency of this species.

2. Materials and Methods

2.1. General information

All reagents used in this research were purchased from Merck Chemical, Co. Vacuum liquid chromatography (V4C) and radial chromatography were conducted using Silica gel 60 GF₂₅₄ and Silica gel 60 FF₂₅₄ and isolation was monitored by Thin Layer Chramatography (TLC) and visualized under UV light at 254 and 356 nm with CeSO₄ as staining agent. Pre-coard silica gel plates (Merck Kieselgel 60 GF₂₅₄, 0.25 mm thickness) were employed for TLC analysis. H and ¹³C NMR spectra of isolated compounds were recorded with a JEOL ECS 400 spectrometer operating at 400 and 100 MHz, respectively, in CDCl₃ and acetone-d6 using TMS as the internal standard.

2. Plant material

The leaves of *Macaranga tanarius* were collected from Samboja forest, Kutai Kartanegara, East Kalimantan. The identification of this plant was taken by Herbarium of Wanariset, East Kalimantan.

2.3. Extraction and isolation

The air-dried powder of *M. tanarius* leaves (2 kg) were extracted by maceration method using methanol at room temperature for two times. The filtrate was avaporated to obtain crude extract (276 g). A part of this crude extract (150 g) was partitioned with *n*-hexane and ethyl acetate, respectively. Ethyl acetate fraction (50 g) was separated using Vacuum Liquid Chromato apply (VLC) and eluted with the mixtures of *n*-hexane and ethyl acetate by increasing the polarity (9:1, 4:1, 7:3, and 1:1) to yield two major fractions, i. And B. Separation of A fraction using column chromatography and eluted with the mixtures of *n*-hexane and ethyl acetate by increasing the polarity (9:1, 4:1, 7:3, and 1:1) yielded three major sub-fractions, i.e. A1, A2, and A3. Further separation of A2 and A3 gave compound 1 (65 mg) and compound 4 (25 mg) While for separation of B fraction using column chromatography and eluted with the mixtures of *n*-hexane and ethyl acetate by increasing the polarity (9:1, 4:1, 7:3, and 1:1) yielded two major sub-fractions, i.e. B1 and B2. Further separation of B1 and B2 gave compound 2 (4.8 mg) and compound 3 (12.7 mg).

2.4. Determination of antiplasmodial activity

Determination of antiplasmodial activity of ethyl acetate fraction and isolate compounds was conducted by Trager and Jensen method [5] and followed by Giemsa staining as described by Widyawaruyanti, et al [6]. In this method, sample was dissolved in 20 μ L of DMSO and diluted with 180 μ L of RPMI 1640 medium until obtained various kinds of concentration. A total of 50 μ L of test solution was inserted into micro well plate, then added 950 μ L of parasitic suspension of *Plasmodium falciparum* strain 3D7, incubated for 48 h, then centrifuged. The top of the suspension (supernatant) was removed until the concentrated suspension was obtained, then the preparation of a thin layer of blood (monolayer) stained with Giemsa 20% was then calculated for the percentage of parasitemia and the growth percentage of *P. falciparum* and its resistance, by counting the number of infected erythrocytes every 1000 erythrocytes under microscope [7]. The test was done in triplicate by varying the concentration of ethyl acetate fraction and isolated compounds. Chloroquine diphosphate was used

as positive control, while solvent was used as negative control. The IC_{50} value evaluation was determined based on Probit Analysis with SPSS program.

3. Results and Discussion

3.1. Flavonoids from Macaranga tanarius leaves

There were four isolated compounds obtained from ethyl fraction of *M. quarius* leaves, named nymphaeol C (1), solophenol D (2), nymphaeol A (3), and nymphaeol B (4). The position of protons and carbons NMR (1D NMR) of compounds 1–4 are presented in table 1. In addition, the Heteronuclear Multiple Bond Correlation (HMBC, 2D NMR) of those compounds are shown in figure 1.

Table 1. NMR data of compounds 1–4 in CDCl₃ or acetone-d6

Compounds	¹H NMR, 400 MHz	¹³ C NMR, 100 MHz		
•	δ _H (ppm)	$\delta_{\rm C}$ (ppm)		
	10	1		
1	5.49 (1H, dd, J=13.2, 2.8 Hz, H-2), 3.12 (1H, dd,	76.5 (C-2), 42.8 (C-3), 197.1 (C-4), 103.1 (C-		
	J=17.2, 13.2 Hz, H-3 _{ax}), 2.73 (11, dd, $J=17.2$, 2.8 Hz,	4a), 161.5 (C-5), 107.6 (C-6), 161.6 (C-7),		
	$H-3_{co}$), 5.97 (1H, s, H-8), 6.81 (1H, d, J=8.4 Hz, H-5'),	95.7 (C-8), 164.1 (C-8a), 128.7 (C-1'), 126.7		
	6.95 (1H, d, J=8.4 Hz, H-6'), 3.33 (2H, d, J=7.2 Hz,	(C-2'), 142.8 (C-3'), 144.8 (C-4'), 113.1 (C-		
	H-1"), 5.22 (1H, t, J=8.4 Hz, H-2"), 1.80 (3H, s, H-	5'), 118.9 (C-6'), 21.4 (C-1"), 121.6 (C-2"),		
	4"), 1.74 (3H, s, H-5"), 3.44 (2H, d, J=6.8 11z, H-1""),	135.2 (C-3"), 18.1 (C-4"), 26.1 (C-5"), 25.5		
	5.15 (1H, t , J =6.8 Hz, H-2"), 2.05 (2H, t , $\overline{\text{H}}$ -4"), 2.07	(C-1""), 121.8 (C-2""), 138.7 (C-3""), 39.8 (C-		
	(2H, m, H-5"), 5.02 (1H, t, H-6"), 1.58 (3H, 1, H-	4""), 26.6 (C-5""), 123.9 (C-6""), 132.4 (C-		
	8"), 1.65 (3H, s, H-9"), 1.75 (3H, s, H-10"), 12.34	7"), 18.0 (C-8"), 26.0 (C-9"), 16.5 (C-10").		
	(1H, s, 5-OH), 5.64 (1H, s, 4'-OH).			
9	(25/11) 1 1 20 15 11 () (29/11) 1 1 20 15 11	1470 (60) 1252 (60) 17(0 (64) 1047		
2	6.25 (1H, d, J= 2.0 Hz, H-6), 6.38 (1H, d, J=2.0 Hz, H-	147.0 (C-2), 135.3 (C-3), 176.9 (C-4), 104.7		
	8), 6.84 (1H, <i>d</i> , <i>J</i> =8.4 Hz, H-5'), 6.93 (1H, <i>d</i> , <i>J</i> =8.4 Hz, 11-6'), 3.48 (2H, <i>d</i> , <i>J</i> =6.8 Hz, H-1"), 4.98 (1H, <i>t</i> ,	(C-4a), 164.7 (C-5), 99.0 (C-6), 162.5 (C-7), 94.4 (C-8), 158.3 (C-8a), 129.3 (C-1'), 125.0		
	6.8 Hz, H-2"), 1.79 (2H, m, H-4"), 1.86 (2H, m, H-	(C-2'), 142.7 (C-3'), 144.3 (C-4'), 113.1 (C-		
	5"), 5.14 (1H, t, H-6"), 1.57 (3H, s, H-8"), 1.45 (3H, s,	5'), 122.7 (C-6'), 26.6 (C-1"), 123.4 (C-2"),		
	H-9"), 1.49 (3H, s, H-10"), 12.29 (1H, s, 5-OH).	131.6 (C-3"), 40.3 (C-4"), 27.3 (C-5"), 123.6		
), 12.25 (11,0,5 01).	(C-6"), 130.7 (C-7"), 25.7 (C-8"), 17.6 (C-9"),		
		16.2 (C-10").		
	6	1		
3	5.35 (1H, dd, J=12.8, 2.8 Hz, H-2), 3.11 (1H, dd,	79.9 (C-2), 43.6 (C-3), 197.2 (C-4), 102.8 (C-		
	J=17.2, 12.8 Hz, H-3 _{ax}), 2.70 (1H, dd, $J=17.2$, 2.8 Hz,	4a), 164.8 (C-5), 108.9 (C-6), 162.1 (C-7),		
	$H-3_{eq}$), 6.01 (1H, s, H-8), 7.02 (1H, s, H-2'), 6.85 (2H,	95.2 (C-8), 161.8 (C-8a), 131.5 (C-1'), 114.6		
	d, J=8.4 Hz, H7 '/H-6'), 3.24 (2H, d, J=6.8 Hz, H-1"),	(C-2'), 146.1 (C-3'), 146.4 (C-4'), 119.1 (C-		
	5.24 (1H, brt, H-2"), 1.94 (2H, t, J=8.4 Hz, H-4"), 2.03	5'), 115.8 (C-6'), 21.5 (C-1"), 123.3 (C-2"),		
	(2H, m, H-5"), 5.07 (1H, t, H-6"), 1.55 (3H, s, H-8"),	134.9 (C-3"), 39.4 (C-4"), 27.3 (C-5"), 125.0		
	1.61 (3H, s, H-9"), 1.75 (3H, s, H-10"), 12.47 (1H, s,	(C-6"), 131.5 (C-7"), 17.7 (C-8"), 25.8 (C-9"),		
	5-OH).	16.0 (C-10").		
	5.55 (4H, 41, 4.12.2, 2.0, H-, H.2), 2.12 (4H, 44	3 76 4 (C.2) 42 4 (C.2) 106 5 (C.4) 103 0 (C.		
4	5.55 (1H, dd, J=13.2, 2.8 Hz, H-2), 3.12 (1H, dd, J=17.2, 13.2 Hz, H-3 _{ax}), 2.73 (1H, dd, J=17.2, 2.8 Hz,	76.4 (C-2), 42.4 (C-3), 196.5 (C-4), 103.0 (C-4a), 164.7 (C-5), 96.7 (C-6), 164.2 (C-7), 95.5		
	$H_{-3_{co}}$, 5.99 (1H, d, $J=2.4$ Hz, H_{-6}), 5.95 (1H, d, $J=2.4$	(C-8), 163.4 (C-8a), 128.2 (C-1'), 126.4 (C-		
	Hz H-8), 6.82 (1H, d, J=8.4 Hz, H-5'), 6.94 (1H, d,	2'), 142.5 (C-3'), 144.8 (C-4'), 113.0 (C-5'),		
	$J=8,4$ Hz, H-6'), 3.44 (2H, d, J \overline{Z} .8 Hz, H-1"), 5.15	119.0 (C-6'), 25.4 (C-1"), 121.2 (C-2"), 139.0		
	(1H, brt, J=6.8 Hz, H-2"), 2.05 (2H, brt, J=6.8 Hz, H-	(C-3"), 39.5 (C-4"), 26.2 (C-5"), 123.6 (C-6"),		
	4"), 2.09 (2H, brq, H-5"), 5.01 (1H, brt, J=6.8 Hz, H-	132.3 (C-7"), 17.2 (C-8"), 25.7 (C-9"), 16.3		
	6"), 1.57 (3H, s, H-8"), 1.65 (3H, s, H-9"), 1.75 (3H, s,	(C-10").		
	H-10"), 12.04 (1H, s, 5-OH), 5.63 (1H, s, 4'-OH).	()-		
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

IOP Conf. Series: Earth and Environmental Science 144 (2018) 012011

doi:10.1088/1755-1315/144/1/012011

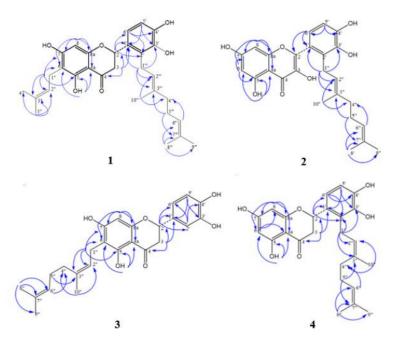


Figure 1. HMBC of nymphaeol C (1), solophenol D (2), nymphaeol A (3) and nymphaeol B (4)

Compound 1 was obtained as yellow oil. The UV spectra in methanol gave the maximum absorption at λ_{max} nm (log ϵ): 243 (4.69), 291.50 (4.67), (MeOH+NaOH): 300 (4.58), 330 (4.66, (MeOH+AlCl₃): 297.5 (3.94), (MeOH+AlCl₃+HCl): 308 (4.00) 361 (3.57). The UV spectrum profile of the isolated compound indicated that the compound belong to flavanone derivative. In addition to (MeOH+AlCl₃), a batochromic shift and absorption change after addition of HCl indicated that the compound can be classified as vanone having ortho-dihydroxy [8]. H NMR spectra analysis of mpound 1 (table 1) indicated the presence of flavanone moiety which showed by three proton of doublet-doublet signals at δ_H 5.49 ppm (J=13.2, 2.8 Hz, H-2), 3.12 ppm (J=13.2, 17.2 Hz, H-3ax), and 2.73 ppm (J=17.2, 2.8 Hz, H-3eq). In addition, the spectra exhibited proton signals of five methyl singlets ($\delta_{\rm H}$ 1.80, 1.74, 1.58, 1.65, 1.75 ppm) along with three vinyl triplet signals ($\delta_{\rm H}$ 5.24, 5.15, 5.02 ppm) and four methylene signals (δ_H 3.33, 3.44, 2.05, 0.07 ppm), indicated that the isolated compound has one isoprenyl group and one geranyl group. Spectral analysis of ¹³C NMR of compound 1 (table 1) showed 30 perfectly separate carbon signals comprising seven methyl carbon atoms, five methylene carbon atoms, five methyl carbon atoms, and thirteen quartz carbon atoms. The 13C NMR spectra exhibited a carbonyl carbon signal (δ_C 197.1 ppm), an oxy carbon methyl carbon signal (δ_C 76.5 ppm), and five oxy acetyl carbon signals ($\delta_{\rm C}$ 164.1, 161.6, 161.5, 144.8, 142.8 ppm) which are the basic skeleton of eriodictyol derivatives. Based on HMBC (figure 1), the correlation of two methyl signals with one methyl carbon signal (δ_C 121.6 ppm) and one squarterner carbon signal (δ_C 135.2 ppm) indicated the isoprenyl substituent bound at C-6. Based on ID and 2D NMR spectral data, compound 1 was identified as 6-isoprenyl-2'-geranyleriodictyol or known as nymphaeol C according to the previous study that reported nymphaeol C from M. triloba having molecular formula C₃₀H₃₆O₆ and molecular mass m/z=492 [9].

Compound 2 was obtained as yellow solid. The UV spectra of compound 2 in methanol displayed maximum absorption at λ_{max} nm (log ϵ): 255 (4.30), 297.50 (3.96) and 348 sh (4.02) which is a characteristic of flavone or flavonol [7]. The maximum absorption of compound in (MeOH+NaOH) λ_{maks} nm (log ϵ): 270 (4.21), 325 (3.86), (MeOH+AlCl₃): 265 (4.60), 297 (4.14) (MeOH+AlCl₃+HCl): 256 (4.83), 302.50 (4.24), 362 (4.17). In addition to MeOH+AlCl₃ a shift in batochromic and absorption cha 4e after addition of HCl indicated that the compound belong to flavonol having orthodihydroxy. ¹H NMR spectra anglysis of compound 2 (table 1) showed a pair of ortho doublet proton signals in the aromatic region (J=8.4 Hz) at $\delta_{\rm H}$ 6.84 ppm and 6.93 ppm (1H each), corresponding to the compound pattern of nymphaeol C i.e. 2', 3', 4'-trisubstitutes in ring B. The presence of three signals of methyl singlet (δ_H 1.57, 1.45, 1.49 ppm) together with two vinyl triplet signals (δ_H 6.8, 6.8 ppm) and three methyl doublet doubles (δ_H 3.48, 1.79, 1.86 ppm), indicated that this compound has one geranyl group. ¹³C NMR analysis (table 1) showed 25 perfectly segregated carbon signals, comprising six methyl carbon atoms, three methylene carbon atoms, three methyl carbon atoms, and 13 quartz carbon atoms. The position of geranyl substituent of compound 2 was determined by HMBC (figure 1). The correlation of proton aromatic signals at δ_H 6.93 ppm (H-6') with two quarterner carbon signals (δ C 147.0, 129.3 ppm) showed δ _C 147.0 ppm bound in C-2 and δ _C 129.3 ppm in C-1'. The correlation of methylene signals in δ_H 3.48 ppm with four quaternary carbon signals (δ_C 142.7, 131.6, 129.3, 125.0 p(\mathbf{r}) and one methyl signal ($\delta_{\rm C}$ 123.4 ppm) indicated geranyl substituent bound at C-2'. Based on UV, ID and 2D NMR data, compound 2 was identified as 2'-geranylquercetin or known as solophenol D, corresponds to an isolated compound from propolis with a positive quasi-molecular ion mass at m/z=439.1679 and molecular formula= $C_{25}H_{27}O_7$ [10].

Compound 3 was gained as yellow oil and the UV spectra in methanol showed the maximum absorption at λ_{max} nm (log ϵ): 291.50 (4.60), 331 sh (3.91) (MeOH+NaOH): 330 (4.64), (MeOH+AlCl₃): 294.50 (4.69), 348 sh (3.91), (MeOH+AlCl₃+HCl): 301.50 (4.59), 354.50 sh (3, 92). ¹H NMR spectra allysis of compound 3 (table 1) indicated the presence of flavanone moiety which showed by three signals of doublet doublet proton at δ_H 5.35 ppm (J=12.8, 2.8 Hz, H-2), 3.11 ppm $(J=12.8, 17.2 \text{ Hz}, H-3_{ax})$, and 2.70 ppm $(J=17.2, 2.8 \text{ Hz}, H-3_{eq})$. In addition, the spectra also showed three signals of methyl singlet proton ($\delta_{\rm H}$ 1.55, 1.61, 1.75 ppm) to gather with two vinyl triplet signals $(\delta_{\rm H}$ 5.24, 5.07 ppm) and three methylene signals $(\delta_{\rm H}$ 3.24, 1.94, 2.03 ppm) indicated the presence of one geranyl group. ¹³C NMR spectra analysis of compound 3 (table 1) showed 24 carbons signals which representative 25 carbon atoms comprising seven of methine carbon atoms, four methylene carbon atoms, three methyl carbon atoms, and ten quarterne carbon atoms. Likewise with compound 2, this compound also has eriodictyol meiety. Geranyl position was determined by HMBC correlation (figure 1). It showed singlet signal at δ_H 12.47 ppm (5-OH) with three quarternary carbon atoms aromatic (δ_C 164.8, 108.9, 102.8 ppm) placed carbon signal δ_C 164.8 ppm at C-5, δ_C 108.9 ppm st C-6, and $\delta_{\rm C}$ 102.8 ppm at C-4a. The spectra indicated one geranyl group bounded at C-6. Based on TD and 2D NMR, compound 3 was identified as 6-geranyleriodictyol or nymphaeol A which had been isolated from M. alnifolia with structure formula $C_{25}H_{29}O_6$ and m/z [M+H]⁺=425.1948 [11].

Compound 4 was isolated as yellow oil and UV spectra in methanol showed maximum absorption at pada λ_{maks} nm (log ϵ): 289 (4.86), 327.50 *sh* (4.16) (MeOH+NaOH) 324.50 (4.92), (MeOH+AlCl₃): 308.50 (4.94) 375 *sh* (4.15), (MeOH+AlCl₃+HCl): 308 (4.85), 374.50 *sh* (4.12) 3 nalysis of ¹H NMR spectra of compound 4 also indicated flavanone moiety i.e. the presence of three doublet doublet proton signals at δ_{H} 5.55 ppm (J=13.2, 2.8 Hz, H-2), 3.12 ppm (J=13.2, 17.2 Hz, H-3ax), and 2.73 ppm (J=17.2, 2.8 Hz, H-3eq). The isolated compound spectra exhibited proton signals of three methyl singlets (δ_{H} 1.57, 1.65, 1.75 ppm) along with two vinyl triplet signals (δ_{H} 5.15, 5.01 ppm), and three methylene signals (δ_{H} 3.44, 2.05, 2.09 ppm), indicated that the isolated compound has one gingival group. ¹³C NMR spectra analysis of compound 4 showed 25 perfectly segregated carbon signals,

comprising seven methyl carbon atoms, four methylene carbon atoms, three methyl carbon atoms and 11 quartz carbon atoms. This compound also has an eriodictyol skeleton. The geranyl substituent position that bounded at C-2' was defined by HMBC (figure 1). Based on 1D dan 2D NMR spectrum, compound 4 was identified as 2'-geranyleriodictyol or known as nymphaeol B which had been isolated from M. triloba with m/z = 424 ($C_2 + H_{28}O_6$) [9].

3.2. Antiplasmodial activity

Antiplasmodial activity test was conducted on ethyl acetate fraction and four isolated compounds of M. tanarius leaves using Giemsa method against P. falciparum strain 3D7. Levels of antiplasmodial activity were expressed in concentration inhibition (IC₅₀) value, the concentration required to inhibit 50% of parasitemia.

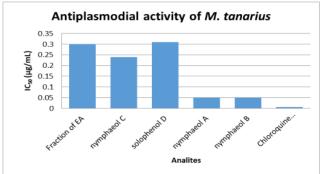


Figure 2. Antiplasmodial activity

Based on the result in figure 2, it showed that ethyl acetate fraction and four isolated compounds (1–4) are active fraction and active compounds in antiplasmodial activit with IC₅₀ values of 0.30, 0.24, 0.31, 0.05, and 0.05 µg/mL, respectively. In this study, chloroquine was used as positive control with IC₅₀ value of 0.006 µg/mL. If compared with chloroquine, the ethyl acetate fraction and four isolated compounds (1–4) have lower activity than chloroquine. Even though ethyl acetate fraction has higher IC₅₀ value than chloroquine, the IC₅₀ value indicated that this fraction can be categorized as an active fraction. Previous study stated that the extract with IC₅₀ value < 25 µg/mL is categorized as an active extract in determination of antiplasmodial activity [12]. The same result also be found for isolated compounds which belong to flavonoids, but particularly, those isolated flavonoids can be categorized as active compounds in inhibiting plasmodial.

There are two main targets of the mechanism of flavonoids that capable for inhibiting the growth of plasmodium: 1) malaria parasite food vacuoles by inhibiting the process of hemoglobin degradation [13]; 2) membranes formed intra eristrositic stage malaria parasite i.e. Nov Permeation Pathway (NPP) by inhibiting the transport of nutrients needed by parasites [14]. The high antiplasmodial activity of the compounds is suspected from the mechanisms that act on food vacuoles. Flavonoid and its derivatives play a role in blocki 2 the formation of hemozoin by the formation of free heme complexes with active compounds. Heme free (Fe³⁺) is highly toxic because it car cause highly reactive oxygen species which can trigger oxidative reactions so that the parasites die. Therefore, the parasite converts into a non-toxic substance by forming a polymer from the heme residues by a coordination bond between Fe³⁺ heme with another heme hydroxyl group to form the β -hematin molecule, further forming a larger aggregate called hemozoin. This aggregate formation process of hemozoin is a process that can be used as a target for antimalarial therapy.

Pharmacokinetic effects of compounds can be reviewed from three aspects of physical properties of the compound including electronic effects, hydrophobic and molecular size [15]. The presence of terpenyl substituent can increase the lipophilic properties of compound. In this study, nymphaeol C (1), solophenol D (2), nymphaeol A (3), and nymphaeol B (4), having terpenyl substituent at C-6 and or C-2', can inhibit the growth of *P. falciparum*. The lipophilic aspect contributes to the activity of the compound in terms of its ability to bypass the semi-permeable lipid membrane of parasite. Solophenol D (2) which belongs to flavonol has lower antiplasmodial activity than nymphaeol C (1), nymphaeol A (3) and nymphaeol B (4) which belong to flavanones. The presence of double bonds on aromatic bridges and substituent of 3-OH in solophenol D (2) can reduce the antiplasmodial activity. Solophenol D (2) is more polar, so its lipophilic property is less than flavanones. Flavonol has a low solubility in fat, hence, it cause a reduced ability of compound to pass through semi permiabel lipid membrane of parasite. Furthermore, it can make the compound complicate to enter the food vacuole for inhibiting the formation of heme polymers (hemozoin) [7]. The nature of lipophilic is also associated with the mechanism of inhibition of the NPP by inhibiting the transport of nutrients needed parasites [14].

For pharmacodynamic effects of compounds can be evaluated based on the types and position of terpenyl substituent bound to flavonoids. Substitution of isoprene chain in the basic framework of flavonoids may increase the antiplasmodial activity [16]. Nymphaeol A (3) and nymphaeol B (4) exhibited the highest activity as antiplasmodial, this can be noticed that the presence of terpenyl group at C-6 or C-2' play important role in antiplasmodial activity.

4. Conclusions

According to the results, it can be concluded that flavonoids from *M. tanarius* leaves showed good activity in antiplasmodial screening. Compounds 3 and 4 which have ortho-ditadroxy in ring B and have a terpenyl substituent at C-6 or C-2' are active against *P. falciparum*. The presence of two terpenyl substituents at C-6 and C-2' (compound 1) exhibited lower activity compare with compound 3 and 4. Moreover, the presence of double bonds on the aromatic ring bridge in compound 2 decreases antiplasmodial activity. Particularly, it can be stated that *M. tanarius* leaves has a potency as antiplasmodial activity in the future.

Acknowledgment

Thanks are extended to the Institute of Tropical Disease Laboratory, Airlangga University, for assisting in determination of antiplasmodial activity and NMR instrument.

References

- Laurent D and Pietra F 2006 Antiplasmodial Marine Natural Product in the Perspective of Current Chemotherapy and Prevention of Malaria A Review Mar Biotechnol 8 pp 433-47
- [2] Kuswantoro F 2017 Traditional anti malaria plants species of Balikpapan Botanic Garden, East Kalimantan–Indonesia ICBS Conference Proceedings, International Conference on Biological Science pp 78–85
- [3] Zakaria I, Ahmat N, Jaafar F M et al 2012 Flavonoids with Antiplasmodial and Cytotoxic Activities of Macaranga triloba Fitoterapia 83 pp 968–72
- [4] Phommart S, Sutthivaiyakit P, Chimnoi N et al 2005 Constituents of the Leaves of Macaranga tanarius J Nat Prod 68 pp 927–30
- [5] Trader W and Jensen JB 1976 Human malaria parasites in continuous culture Science 193 pp 673-5
- [6] Widyawaruyanti A, Zaini N C, and Syafruddin 2011 Antimalarial activity and Mechanism of action of flavonoid compounds isolated from Artocarpus champeden Spring stembark JBP

- 13(2) pp 67-77
- [7] Diallo D, Maiga A, Diakite C et al 2004 Malarial-5: Development of an Antimalarial Phytomedicine in Mali ed Willcox M, Bodeker G and Rasoanaivo P (Boca Raton: CRC Press) pp 1–14
- [8] Mabry T J and Markham K R 1970 Flavonoids: The Systematic Identification of Flavonoid (New York: Sringer-Verlag) pp 35–61
- [9] Zakaria I, Ahmat N, Ahmad R and Jaafar F M 2010 Flavanones from the Flower of Macaranga triloba World Appl Sci J 9(9) pp 1003–7
- [10] Kumazawa S, Murase M, Momose M and Fukumoto S 2014 Analysis of antioxidant prenylflavonoids in different parts of *Macaranga tanarius*, the plant origin of Okinawan propolis *Asian Pac J Trop Med* 7(1) pp 16–20
- [11] Yoder B J 2007 Isolation and Structure Elucidation of Cytotoxic Natural Products from The Rainforest of Madagascar and Suriname (Faculty of The Virginia Polytechnic Institute and State University) Dissertation pp 42–7
- [12] Kohler I, Siems K J, Siems K et al In vitro Antiplasmodial Investigation of Medicinal Plants from El Salvador Z. Naturforsch 57c pp 277–81
- [13] Sun S, Chen W, Cao W et al 2008 Research on the chelation between quercetin and Cr(III) ion by Density Functional Theory (DFT) method J Mol Struct THEOCHEM 860 40-4
- [14] Sherman I W 1998 Malaria, Parasite Biology, Phatogenesis and Protection (Washington DC: ASM press)
- [15] Hansch C, Lien E J and Helmer F 1968 Structure-Activity Correlations in the Metabolism of Drugs Arch Biochem Biophys 128(2) pp 319–30
- [16] Widyawaruyanti A, Zaini N C and Syafruddin 2011 Mekanisme dan Aktivitas Antimalaria dari Senyawa Flavonoid yang Diisolasi dari Cempedak (*Artocarpus champeden*) JBP 13(2) pp 67–77

Antiplasmodial activity of flavonoids from Macaranga tanarius leaves

ORIGINA	LITY REPORT				
	5% RITY INDEX	19% INTERNET SOURCES	17% PUBLICATIONS	21% STUDENT PAP	ERS
PRIMARY	SOURCES				
1	text.123				7%
2	Submitte Student Paper	ed to Federal Ui	niversity of Ted	chnology	6%
3	Submitte Student Paper	ed to iGroup			3%
4	asianjou Internet Sourc	rnalofchemistry ^e	/.co.in		2%
5	www.sch	nolarsresearchli ^e	brary.com		2%
6	WWW.SCr Internet Sourc				1 %
7	downloa Internet Source				1 %
8	Khalil. "Is	mad Nazeri, N. solation of Four of Macaranga H	Flavanones fr	om the	1 %

Zoll.) Müll.Arg", International Journal of Engineering & Technology, 2019

Publication

Submitted to Higher Education Commission
Pakistan
Student Paper

www.mdpi.com
Internet Source

1 %

Exclude quotes On Exclude matches < 1%

Exclude bibliography On