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A B S T R A C T   

The quality of oil palm fresh fruit bunch (FFB) specified from the maturity level is visually classified based on the 
skin colour of the fruit. The maturity level classification of FFB can be performed automatically using machine 
vision. Classification becomes challenging when machine vision is applied to half-ripe FFB images, which 
generally have uneven colour, and to FFB images where emergent noise partially covers the fruit. In this work, a 
method is proposed to classify the maturity level of FFB into three classes: raw, ripe, and half-ripe. The proposed 
method applied colour and texture features required in the processes of feature selection and classification. The 
process of feature extraction was applied based on the colour and texture followed by feature selection using 
principal component analysis (PCA) to select the most substantial features. Subsequently, an artificial neural 
network (ANN) with a back-propagation algorithm was applied in the classification process to obtain the pre-
diction class. The experiment was conducted using a local dataset consisting of 240 images (80 raw, 80 ripe, and 
80 half-ripe). The results showed that the performance of the proposed method successfully achieved an accuracy 
of 98.3%. This classification based on colour and texture features is not restricted only to palm oil but can also be 
applied to other fruits.   

1. Introduction 

Oil palm (Elaeis guineensis) is an important agricultural plant globally 
because it can be used to produce vegetable oil. This plant has to be 
planted on suitable land to grow well and not harm the surrounding 
environment (Hamdani et al., 2016). It has become the basic material 
used to produce several types of products, including food products, such 
as instant noodles, butter, jam, bread, and cake, and non-food products, 
such as washing powders, shampoo, soap, and biodiesel (Tapar-
ugssanagorn et al., 2015). Therefore, the demand for high-quality palm 
oil is continuously increasing. The quality of oil palm is determined by 
the maturity level of the harvested fruit. The maturity levels of oil palm 
FFB are visually determined based on the skin colour of the fruit. Raw oil 
palm fruit has a dark colour (dark purple) and gradually turns orange 
when it ripens. Technology to detect the maturity of oil palm FFB has 
been developed using various tools, such as image-based laser systems 
(Ali et al., 2020; Shiddiq et al., 2017), Kinect cameras (Pamornnak et al., 

2017), smartphones (Sinambela et al., 2020; Taparugssanagorn et al., 
2015), and other sensor devices (Hafiz et al., 2012; Mohammed et al., 
2012). 

To date, the field of agriculture has implemented machine vision- 
based technology to complete several tasks. These tasks include moni-
toring plant growth (Fahmi et al., 2018; Pérez-Zavala et al., 2018), 
identifying crop diseases that occur in stems (Khaled et al., 2018) and 
leaves (Aji et al., 2013; Darwish et al., 2020), segmenting fruit 
(Pérez-Zavala et al., 2018, Septiarini et al., 2020) and estimating the 
volume and mass of fruits and vegetables (Jana et al., 2020). In addition, 
machine vision techniques have also been developed to classify the 
maturity of several types of fruit (Munera et al., 2019; Piedad et al., 
2018; Tan et al., 2018) and vegetables (Ji et al., 2019; Palacios-Morillo 
et al., 2016). There are two main processes involved in performing 
maturity classification, namely, feature extraction and classification. 

Feature extraction in this application is divided into three types: 
colour, texture, and shape (Hameed et al., 2018). The types of features 
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used depend on the variety of fruit. Colour provides valuable informa-
tion to classify the level of maturity and quality of fruit. Therefore, both 
of these characteristics in several fruits are determined based on the peel 
colour. There are several colour spaces commonly used to detect fruit 
maturity, i.e., red, green, blue (RGB), hue, saturation, intensity (HSI), 
luminance, in-phase, quadrature-phase (YIQ), blue-difference chroma, 
red-difference chroma (YCbCr), and L*a*b*. RGB is applied to detect the 
maturity of various fruits, such as dates (Zhang et al., 2014), bananas 
(Piedad et al., 2018), passion fruits (Tu et al., 2018), and oil palm 
(Fadilah et al., 2012; Ali et al., 2020; Taparugssanagorn et al., 2015). 
Furthermore, HSI is applied to blueberries (Li et al., 2014), mangoes 
(Mim et al., 2018), and oil palm (Makky and Soni, 2013; Shabdin et al., 
2016). In contrast, L*a*b* is implemented on bananas (Sanaeifar et al., 
2016; Xie et al., 2018), blueberries (Tan et al., 2018), pomegranate fruits 
(Munera et al., 2019), and eggplant fruits (Tsouvaltzis et al., 2020). 
Furthermore, other colour spaces were designed for pomegranate fruits 
(Fashi et al., 2019) and paprika (Palacios-Morillo et al., 2016). Several 
types of colour features have been widely used in previous works, such 
as the mean and standard deviation (Fashi et al., 2019; Mim et al., 2018; 
Septiarini et al., 2019) and the discretization of histograms (Tapar-
ugssanagorn et al., 2015; Zhang et al., 2014). However, in several cases, 
to achieve high optical performance, the maturity classification of 
colour features was combined with texture, shape, or both features. 
Texture features such as contrast, entropy, variance, homogeneity, and 
skewness were used to classify pomegranate and date fruits (Fashi et al., 
2019; Zhang et al., 2014). Moreover, shape features, including area, 
perimeter, euler, convex area, solidity, and thickness, as well as minor 
and major arc lengths, were applied to classify apricots (Yang et al., 
2019). 

Feature extraction generally produces a large number of features. 
Some of these features are not of value and so have to be discarded 
through the process of feature selection. PCA is a popular feature se-
lection method and has been widely used in various cases (Fadilah et al., 
2012; Munera et al., 2019; Zhang et al., 2014). Other feature selection 
methods include the correlation-based attribute evaluator, best first 
search (Mim et al., 2018), and the forward feature selection algorithm 
(Li et al., 2014). 

In classification, several methods can produce optimal performance. 
K-nearest neighbour (KNN) is the simplest method and has been 
implemented to detect the maturity of oil palm fruit based on the RGB 
and HSI colour spaces (Makky and Soni, 2013). In another case, 
histogram-oriented gradient (HOG) feature vectors based on the L*a*b* 
colour space were used for blueberry maturity detection. At present, 
learning methods such as support vector machines (SVMs), ANNs, and 

convolutional neural networks (CNNs) have been widely implemented. 
An SVM with features generated based on a RGB colour space was 
applied to detect defective apples (Tan et al., 2018), perform the cultivar 
classification of apricots (Yang et al., 2019), and grade oil palm fruits 
(Septiarini et al., 2019). 

Furthermore, ANNs have been used to classify various fruits, such as 
oil palm fruit in the HSI colour space (Shabdin et al., 2016), bananas by 
converting the RGB colour space into HSV and L*a*b* colour spaces 
(Sanaeifar et al., 2016), and pomegranates using fifteen features pro-
duced from the colour spaces of RGB, HSV, YCbCr, and YIQ (Fashi et al., 
2019). Subsequently, a CNN was applied to determine kinds of fruits and 
vegetables (Le et al., 2019; Steinbrener et al., 2019). Several other 
methods have been applied for fruit classification, such as the random 
forest for banana classification based on colour features using RGB 
colour values and shape features using the length of the top middle 
finger of the banana tier (Piedad et al., 2018), linear discriminant 
analysis for grading the maturity of oil palm fresh fruit bunches in the 
RGB colour space (Ali et al., 2020), and clustering to identify blueberries 
on the red (R), blue (B) and hue (H) channels selected using a forward 
feature selection algorithm (Li et al., 2014). 

In particular, this work proposed a maturity classification method of 
FFB based on a machine vision approach using mean and entropy fea-
tures in the YIQ and YCbCr colour spaces combined with back-
propagation as the classifier. This method aimed to determine the 
maturity level of the FFB based on the input image. The maturity level 
was divided into three classes: raw, ripe, and half-ripe. 

2. Materials and methods 

2.1. Oil palm fresh fruit bunch samples 

The dataset used in this work was a set of images of oil palm FFB 
acquired from an oil palm plantation in Paser District, East Kalimantan, 
Indonesia. The images were captured using a built-in digital camera on a 
smartphone (Samsung A50) and collected in JPEG format measuring 
4032 × 3024 pixels. The acquisition process was carried out in an out-
door area with sufficient bright lighting within an approximate distance 
of ± 10 cm between the FFB and the camera. The dataset consisted of 
three classes of FFB maturity levels: raw, ripe, and half-ripe. A total of 
240 FFB images were collected with 80 images for each class. The im-
ages were then randomly divided into two sets: a training set and a 
testing set. Both of the sets consisted of 120 images (40 raw, 40 ripe, and 
40 half-ripe). Examples of FFB images with different maturity levels are 
presented in Fig. 1. 

Fig. 1. Examples of FFB images with various levels of maturity: (a) raw, (b) ripe, and (c) half-ripe.  
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2.2. Proposed method of maturity classification 

The proposed method aimed to predict the maturity class of all FFB 
images in the testing set. It was divided into two stages, namely, training 
and testing, where the input for each stage was acquired from the 
training set and testing set. Both of the stages had two main processes: 
(1) pre-processing and (2) feature extraction. However, each stage was 
implemented differently. In the training stage, pre-processing was 
applied by converting the RGB colour space into HSI, HSV, YCbCr, and 
YIQ colour spaces. Afterwards, feature extraction was performed on the 
five colour spaces. Subsequently, the process of feature selection was 
implemented to select the most important features and to simplify the 
classification process in the testing stage. In the testing stage, pre- 
processing only converted RGB to the selected colour space from the 
feature selection. In the proposed method, the selected features were 
generated based on the colour spaces of YIQ and YCbCr. Furthermore, 
the selected extracted feature was applied by referring to the result of 
feature selection. In the last stage, classification was performed to obtain 
a prediction class (raw/ripe/half-ripe) from an input of selected fea-
tures. An overview of all processes in the training and testing stages is 
depicted in Fig. 2. 

2.2.1. Pre-processing 
The appropriate pre-processing scheme reduces the computation 

time. In previous works, the optimization of the computation time was 
overcome by decreasing the image resolution and reforming the original 
images to square images (Darwish et al., 2020; Le et al., 2019; Zhang 
et al., 2014). This work formed a square subimage by resizing the 
original image from 4032 × 3024 pixels to 640 × 640 pixels (Le et al., 

2019). In pre-processing, it is necessary to convert the colour space to an 
appropriate colour space in order to optimize the classification results. 
RGB is a general colour space used in work related to the maturity 
classification of fruit. Nevertheless, previous works used other colour 
spaces, such as HSI, HSV, YCbCr, and YIQ. The use of these colour spaces 
requires a conversion process based on the values in the RGB colour 
space, which are defined as follows (Garcia-Lamont et al., 2018): 

HSI colour space 
Converting RGB to the HSI colour space produced elements of hue 

(H), saturation (S), and intensity (I). Those values were computed using 
Eqs. (1) ̶ (4). 

H =

{
θ, B ≤ G

360 − θ, B > G (1)  

where 

θ = cos− 1

⎧
⎪⎨

⎪⎩

1
2 [(R − G) + (R − B)]

[
x(R − G)2

+ (R − B)(G − B
]1/2

⎫
⎪⎬

⎪⎭
(2)  

S = 1 −
[min(R,G,B)]

I
(3)  

I =
1
3
(R+G+B) (4) 

HSV colour space 
Converting RGB to the HSV colour space generated the hue (H) el-

ements calculated by Eq. (1)-(2), saturation (S), and value (V). The 
values of S and V were computed using Eqs. (5) - (6). 

Fig. 2. Overview of all processes in the proposed method of maturity classification.  
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S =

⎧
⎪⎨

⎪⎩

0, max(R,G,B) = 0

1 −
min(R,G,B)
max(R,G,B)

, otherwise
(5)  

V = max(R,G,B) (6) 

YCbCr colour space 
Converting from RGB to the YCbCr colour space produced three el-

ements: luminance (Y), the blue-difference component (Cb) and the red- 
difference component (Cr). The value of each element in the colour 
space was calculated using Eq. (7). 
⎡

⎣
Y
Cb
Cr

⎤

⎦ =

⎡

⎣
16
128
128

⎤

⎦+

⎡

⎣
65.481 128.553 24.966
− 37.797 − 74.203 112.00
112.00 − 93.786 − 18.214

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ (7) 

YIQ colour space 
Converting from RGB to the YIQ colour space resulted in three 

components: the luminance (Y) and I and Q, both of which represent the 
chromatic components. The values of the YIQ colour space elements 
were calculated using Eq. (8). 
⎡

⎣
Y
I
Q

⎤

⎦ =

⎡

⎣
0.299 0.587 0.114
0.596 − 0.274 − 0.322
0.211 − 0.523 0.312

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ (8) 

Fig. 3 shows several examples of the pre-processing results for im-
ages with a maturity levels of raw, ripe, and half-ripe. The resizing of the 
form to a square image is depicted in Fig. 3. Column (a) in Fig. 3 shows 
the results in the RGB colour space, followed by the HSI, HSV, YCbCr, 
and YIQ colour spaces depicted by columns (b), (c), (d), and (e), 
respectively. 

2.2.2. Feature extraction 
Feature extraction was carried out based on colour and texture 

because both features have been used successfully in previous works 
related to the classification of fruit and other objects (Duysak and Yigit, 
2020; Fashi et al., 2019; Mim et al., 2018; Y. Zhang et al., 2014). This 
process was applied to five colour spaces: RGB, HSI, HSV, YCbCr, and 
YIQ. A total of 40 features were extracted in this work. Those features 
were (1) the mean (µ) of each monochrome channel in the five colour 
spaces: the mean value of the R channel (μR), the mean value of the G 
channel (μG), and the mean value of the B channel (μB) for the RGB 

colour space; the mean value of the H channel (μH), the mean value of 
the S channel (μS1), and the mean value of the I channel (μI1) for the HSI 
colour space; the mean value of the H channel (μH), the mean value of 
the S channel (μS2), and the mean value of the V channel (μV) for the HSV 
colour space; the mean value of the Y channel (μY), the mean value of the 
Cb channel (μCb), and the mean value of the Cr channel (μCr) for the 
YCbCr colour space; and the mean value of the Y channel (μY), the mean 
value of the I channel (μI2), and the mean value of the Q channel (μQ) for 
the YIQ colour space. This feature is defined in Eq. (9): 

μX =
1

MN

∑M

i=1

∑N

j=1
pij (9)  

where X is the monochrome channel, M and N are the image dimensions, 
and pij is the value of the monochrome channel in row j and column i. 

The aforementioned features were used to calculate (2) the mean of 
the monochrome grey channel in the RGB (μRGB), HSI (μHSI), HSV (μHSV), 
YCbCr (μYCbCr), and YIQ (μYIQ) colour spaces. These features were 
generated by replacing the value of pij in Eq. (9) with the value of the 
monochrome grey channel. Subsequently, (3) the variance (σ2) values in 
the RGB (σ2

RGB), HSI (σ2
HSI), HSV (σ2

HSV), YCbCr (σ2
YCbCr), and YIQ 

(σ2
YIQ) colour spaces, (4) the kurtosis (γ) values in the RGB (γRGB), HSI 

(γHSI), HSV (γHSV), YCbCr (γYCbCr), and YIQ (γYIQ) colour spaces, (5) the 
skewness (θ) values in the RGB (θRGB), HSI (θHSI), HSV (θHSV), YCbCr 
(θYCbCr), and YIQ (θYIQ) colour spaces, and (6) the entropy (Hn) values in 
the RGB (HRGB), HSI (HHSI), HSV (HHSV), YCbCr (HYCbCr), and YIQ (HYIQ) 
colour spaces were also computed. These features are defined in Eqs. 
(10)-(13) (Attique et al., 2018; Turkoglu and Hanbay, 2019): 

σ2 =

∑M
i=1

∑N
j=1

(
pij − μ

)2

MN − 1
(10)  

γ =
∑M

i=1
∑N

j=1

(
pij − μ

)4

MNσ4 − 3 (11)  

θ =

∑M
i=1

∑N
j=1

(
pij − μ

)3

MNσ3 (12)  

Hn =
∑M

i=1

∑N

j=1
p(i, j)log2p(i, j) (13) 

Fig. 3. The resulting images of pre-processing in different colour spaces: (a) RGB, (b) HSI, (c) HSV, (d) YCbCr, and (e) YIQ.  
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2.2.3. Feature selection 
In this work, a total of 40 features were extracted. This required time- 

consuming computations and led to a complicated classification process. 
Therefore, feature selection was needed to obtain dominant features 
with an important role in the classification. Such features were only 
extracted in selected colour spaces. Three feature selection method-
s—principal component analysis (PCA), correlation feature selection 
(CFS), and the gain ratio—were performed due to their ability to suc-
cessfully and significantly reduce the number of features while pro-
ducing optimal classification results in previous works. Moreover, these 
methods have been applied to various types of objects related to this 
work (Fadilah et al., 2012; Zhang et al., 2014; Munera et el., 2019). 
These studies used Weka 3.8 to obtain the selected features. The results 
of the PCA, CFS, and gain ratio methods consisted of five features (HYIQ, 
μCr, HYCbCr, μI2, μYIQ), two features (μYCbCr, HYCbCr), and six features 
(HYCbCr, μS, μCb, μI2, μCr, γYCbCr), respectively. Examples of the selected 
features of images with different maturity levels are presented in 
Table 1. 

2.2.4. Classification 
The selected features were generated by applying the PCA, CFS, and 

gain ratio methods and subsequently used as inputs in the classification 
process. To justify the proposed methods, three popular classi-
fiers—naïve Bayes, SVM, and ANN—were used to obtain the optimal 
results. These methods have been widely implemented because they 
have successfully classified various types of fruit objects (Yang et al., 
2019; Piedad et al., 2018; Tu et al., 2018). In this work, an ANN was 
implemented because it obtained the optimal classification results with 
five features using PCA (HYIQ, μCr, HYCbCr, μI2, μYIQ). An ANN is a su-
pervised method that is generally applied in the classification process. A 
feedback neural network with a back-propagation training algorithm 
was implemented. This network operates by adapting biological neurons 
with a structure consisting of three layers: an input layer, hidden layers, 
and an output layer. The number of hidden layers is one or more, and the 
justification of the number of layers does not have certain rules; the 
number is determined based on empirical experiments (Yang et al., 

2019; Nturambirwe and Opara, 2020). The input layer consisted of five 
neurons according to the number of features, while the output layer 
included three neurons. Moreover, the number of hidden layers (l) was 
obtained based on the number of neurons in the output layer (m) and the 
number of neurons in the input layer (n), and a constant value (a) be-
tween 0 and 10. Thus, the number of hidden layers was computed using 
Eq. (14) (Yang et al., 2019): 

l < (m+ n) + a (14) 

There were three values of parameters needed to build the ANN 
structure, namely, the maximum iteration or epoch, the learning rate, 
and the error rate; the values used in this work were 100, 0.1, and 
0.0004, respectively (Yang, 2019). To evaluate the proposed method, a 
training dataset consisting of 120 images (40 raw, 40 ripe, and 40 half- 
ripe) was used at this stage. 

3. Result 

3.1. Performance measures 

The performance of the proposed method was evaluated based on the 
confusion matrix that presents the information regarding the predicted 
class of oil palm fruit maturity as a result of the proposed method against 
the actual class. The maturity level of oil palm fruit was divided into 
three classes: raw (A1), ripe (A2), and half-ripe (A3). The confusion 
matrix for the multiple classes in this work is depicted in Fig. 4. In this 
matrix, Nij denotes the number of images that should be classified as 
class Ai but are instead classified as class Aj by the proposed method. 

In this work, three parameters were employed to represent the per-
formance of the proposed method: precision, recall, and accuracy. Each 
of these values were between 0 and 1. The proposed method was 
declared robust and successful if the value was close to 1. The perfor-
mance measures were computed using Eqs. (15)-(17) with n as the 
number of images in the testing dataset (Deng et al., 2016): 

Precision =
Nii

∑n
k=1Nki

(15)  

Recall =
Nii

∑n
k=1Nik

(16)  

Table 1 
The results of implementing the extracted features with three different feature 
selection methods  

ROI image Features selection method 
PCA CFS Gain ratio 
HYIQ = 5.35  μYCbCr = 121.04  HYCbCr = 6.18  
μCr = 129.14  HYCbCr = 6.18  μS = 0.41  
HYCbCr = 6.18   μCb = 126.94  
μI2 = 0.01   μI2 = 0.01  
μYIQ = 37.12   μCr = 129.14    

γYCbCr = 1.88  

HYIQ = 6.69  μYCbCr = 125.27  HYCbCr = 7.06  
μCr = 147.75  HYCbCr = 7.06  μS = 0.41  
HYCbCr = 7.06   μCb = 114.55  
μI2 = 0.12   μI2 = 0.12  
μYIQ = 49.86   μCr = 147.75    

γYCbCr = 0.43  

HYIQ = 6.18  μYCbCr = 126.99  HYCbCr = 6.80  
μCr = 141.72  HYCbCr = 6.80  μS = 0.32  
HYCbCr = 6.80   μCb = 122.67  
μI2 = 0.07   μI2 = 0.07  
μYIQ = 48.11   μCr = 141.72    

γYCbCr = 1.25   

Fig. 4. Confusion matrix for multiple classes classification  

Table 2 
The results of implementing various feature extraction and classification 
methods  

Classifier Features selection Performance measures 
Prec (%) Rec (%) Acc (%) 

Naïve Bayes PCA 98.3 96.7 96.7 
CFS 93.2 92.5 92.5 
Gain ratio 96.2 95.8 95.8 

SVM PCA 97.6 97.5 97.5 
CFS 93.5 93.3 93.3 
Gain ratio 96.2 95.8 95.8 

ANN PCA 98.4 98.3 98.3 
CFS 96.2 95.8 95.8 
Gain ratio 98.4 98.3 98.3  
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Accuracy =
∑n

i=1Nii
∑n

i=1
∑n

j=1Nij
(17)  

3.2. Performance evaluation 

The performance evaluation of the proposed method was carried out 
by applying different feature selection and classification methods to 
justify the most appropriate and robust method against the dataset used. 
In this work, a testing dataset consisting of 120 images (40 raw, 40 ripe, 
and 40 half-ripe) was used to perform the evaluation. The performance 
evaluation results obtained by implementing the various methods of 
feature selection and classification based on three parameters, namely, 
precision (Prec), recall (Rec), and accuracy (Acc), are summarized in 
Table 2. 

Table 2 shows that for all of the evaluation results, an accuracy of 
90% was achieved by successfully using various methods of feature se-
lection and classification. The highest accuracy was 98.3%, which was 
obtained using the PCA and ANN methods as well as the gain ratio and 
ANN. Therefore, the proposed method implemented the PCA and ANN 
methods because PCA only produced five features (HYIQ, μCr, HYCbCr, μI2, 
μYIQ), while the gain ratio generated six features (HYCbCr, μS, μCb, μI2, μCr, 

γYCbCr). 
To present the details of the comprehensive analysis, several exam-

ples of the confusion matrix that correspond to the results of the per-
formance evaluation (Table 2) are depicted in Fig. 5. There were three 
types of misclassifications of maturity levels that occurred. First, the 
half-ripe FFB in the actual class was classified as ripe in the predicted 
class; this error occurred most frequently. This misclassification was 
caused because the colours of the half-ripe and ripe FFB visually appear 
more similar to each other than do the half-ripe and raw FFB and the ripe 
and raw FFB. Moreover, the occurrence of uneven colour changes is 
shown in Fig. 6 (a). The feature values of the FFB tend to be closer be-
tween half-ripe and ripe fruits, as shown in Table 1. Second, ripe FFB in 
the actual class was classified as raw in the predicted class. This 
misclassification occurred only once for each classification result. It 
occurred against the ripe image where the fruit area was covered by 
noise such as sand or dark soil, which consequently made the colour of 
the FFB resemble the level of raw maturity, as shown in Fig. 6 (b). 

4. Discussion 

Determining the maturity level of oil palm fruit plays an important 
role in the harvesting process because it affects the amount of oil 

Fig. 5. Confusion matrix of classification results (raw, ripe, and half-ripe)  

Fig. 6. Misclassification examples of images: (a) half-ripe classified as raw, (b) half-ripe classified as raw, and (c) half-ripe classified as raw  
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produced. The palm oil produced will be optimal if the fruit is harvested 
at the appropriate maturity level. If oil palm fruit is harvested at half- 
ripe or overripe levels, the amount of oil produced will be lower. This 
work developed a classification method for the maturity level by 
combining the PCA (which generated five features) and ANN methods. 
The proposed method can distinguish three levels of maturity (raw, ripe, 
and half-ripe) in accordance with the objectives of this work and in-
dicates favourable performance, achieving a 98.3% accuracy. 

The performance of the proposed method showed that this technique 
can compete with the methods developed in previous works. In previous 
works related to the maturity classification of FFB, an ANN was applied 
(Fadilah et al., 2012) using the features extracted from the hue channel 
and successfully achieved an accuracy of 93.33%. In addition, using the 
features produced based on the HIS colour space achieved an accuracy of 
70% (Shabdin et al., 2016). In contrast, two colour spaces (RGB and HSI) 
were used to obtain texture features by applying the squared Euclidean 
distance in the classification process, achieving an accuracy of 93.53% 
(Makky and Soni, 2013). Partial least squares and PCA methods were 
applied with the features from the RGB colour space to determine the 
maturity level consisting of three classes, namely, unripe, ripe, and 
overripe, using linear discriminant analysis and a quadratic discriminant 
as a classifier that succeeded in achieving an accuracy exceeding 85% 
(Ali et al., 2020). Furthermore, an inductive sensor system aimed to 
identify FFB maturity on smartphones was developed and achieved an 
accuracy of 100%; nevertheless, the system only distinguished two 
classes, namely, ripe or unripe (Sinambela et al., 2020). 

5. Conclusion 

This work proposed a maturity classification method of oil palm FFB 
using colour and texture features. Forty features were extracted from 
several colour spaces, which were reduced to five features (HYIQ, μCr, 
HYCbCr, μI2, μYIQ) using the PCA method to optimize the computation 
time. Furthermore, the classification was applied using an ANN to 
distinguish three classes: raw, ripe, and half-ripe. The proposed method 
was evaluated using a local testing dataset of 120 images consisting of 
those classes. Measurements of precision, recall, and accuracy indicated 
that the proposed method successfully achieved values of 98.4%, 98.3%, 
and 98.3%, respectively. The misclassification of half-ripe FFB as ripe 
FFB occurred due to uneven fruit colour changes. The limitation of this 
work will be enhanced by improving the image acquisition technique 
and discarding detailed noise covering the fruit area. Moreover, the 
classification method is still widely open to further development to 
distinguish FFB into more than three classes. 
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