

A unique editing and publishing consultancy

Notification of paper Submission

Letter ID#: icrp-ed-pub-045 Date: 21 Nov, 2019

Dear Rudy Nugroho,

Thank you for submitting your work for editing and publication.

I have reviewed your papers and found that it meets preliminary acceptance requirements set forth for Eurasian Journal of BioSciences and Journal of Environmental Treatment Techniques. But need some serious editing service.

To fulfil the significant requirement for the Scopus indexed journal we have started editing service. Letter of confirmation of your papers will be issued upon the full payment of a fee before 30 November 2019.

Total number of papers =16 Editing and publication fee= 550 USD/paper.

Invoice is valid for 30 November 2019 and cited in the email.

Feel free to contact me (publications@icrp.org.uk), if you have any questions about your submissions. Please reference your submission number when contacting us. This will help us to respond to you most quickly and accurately.

Thank you for your interest, and we look forward to working with you on a successful submission.

Mr James Jalili Editorial Manager International collaboration for Research and Publications (ICRP) +44 151 808 0337

Please save this information for reference.

LIST OF SUBMITTED PAPERS

No	Paper ID	Title
1	Icrp-ed-0201	Melastomataceae Leaf Extract for Masking the Bitter Flavor of Dark Chocolate
2	lcrp-ed-0202	Observation of bitterness reducing ability of Melastomataceae leaf extracts on caffeine and coffee powder
3	lcrp-ed-0203	Characteristic of Water Sources in Malang, Based on the Diversity, Community Structure, and the Role of Herpetofauna as Bioindicator
4	lcrp-ed-0204	Fermentation Duration 60 Hours of Kepok Banana (Musa paradisiaca Linn) Corm Produces the Best Flour Quality
5	lcrp-ed-0205	Inhibition Ability of Local Plant Extracts on The Growth of Staphylococcus aures and Escherichia coli
6	lcrp-ed-0206	Development of biological learning model using curtain mushroom media (Pleuroptus ostreatus) as soger meat ichia coli
7	lcrp-ed-0207	Plants Diversity as A Medicinal Plants by the Tengger Tribe, Bromo Tengger Semeru National Park, East Java, Indonesia
8	lcrp-ed-0208	Modeling of Tannin Mass Transfer on the Averrhoa bilimbi Leaf Extraction Using Box- Behnken Design
9	lcrp-ed-0209	Anti-Inflammatory Activity Study and Secondary Metabolites Detection in Coptosapelta Flavescens Korth Root's Water Extract
10	lcrp-ed-0210	Anti-inflammatory activities of Curcuma aeruginosa with membrane stabilization and carrageenan-induced paw oedema test
11	Icrp-ed-0211	Modeling of Tannin Mass Transfer on The Averrhoa bilimbi Leaf Extraction
12	Icrp-ed-0212	Wound healing potency of Terminalia catappa in mice (Mus musculus)
13	lcrp-ed-0213	Evaluation of Forest Productivity and Governance on the Preservation of Tropical Rain Forests in Kalimantan Using The NGWR-TS Nonparametric Geospatial Method
14	lcrp-ed-0214	Anti-inflammatory activities of Curcuma aeruginosa Roxb. with membrane stabilization and carrageenan-induced paw edema test
15	lcrp-ed-0215	Characteristics of Mangrove Honey from The Komodo National Park Area and Kubu Raya Protected Forest
<mark>16</mark>	<mark>lcrp-ed-0216</mark>	Toxicity test, antioxidant activity test and GC-MS profile of the active fraction of Coptosapelta tomentosa (Blume) root (Merung)

Toxicity test, antioxidant activity test and GC-MS profile of the active fraction of *Coptosapelta tomentosa* (Blume) root (Merung)

Bohari¹, Anita Karolina¹, Djihan Ryn Pratiwi¹, Erwin¹, Anton Rahmadi^{2,3}

 Department of Chemistry, Faculty of Mathematics and Natural Sciences Mulawarman Universi ty, Jalan Barong Tongkok, Kampus Gn. Kelua, Samarinda, East Kalimantan, 75123, Indonesia
 Research Centre for Medicine and Cosmetics from Tropical Rainforest Resources, University of Mulawarman, INDONESIA

3 Dept. of Agricultural Products Technology, Faculty of Agriculture, University of Mulawarman, INDONESIA

*Corresponding author: <u>arahmadi@unmul.ac.id</u>

Abstracts

Merung (*Coptosapelta tomentosa* (Blume)) is commonly found in the forests of Borneo. People in Kalimantan use the extract of merung root as traditional medicine. This study aims to determine the toxicity with the brine shrimp lethality test (BSLT) method and antioxidant activity with the DPPH assay of crude extracts and their fractions from merung roots and to determine the chemical content of the most active fractions using GC-MS. Based on the results of the toxicity test and antioxidant activity test showed that the ethyl acetate fraction was the most active extract compared to the others with LC_{50} and IC_{50} values of 123.83 µg/mL and 31.160 µg/mL, respectively. GC-MS spectrum analysis results of ethyl acetate fraction compared with the database obtained major compounds namely Ethanone, 1- (1,3,4,4a, 5,6,7-hexahydro-2,5,5-trimethyl-2H- 2,4a-ethanonaphthalen-8-ol) - (32.08%), Squalene (26%), Lupeol (24.94%), 7-Hexadecyn-1-ol (2.88%), 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z) - (1.24%), 9,10-Anthracenedione, 1-hydroxy-2- (hydroxymethyl) - (1.23%), and 4-isoquinoline, 3-ethoxy-(1.14%). 9,10-Anthracenedione, 1-hydroxy-2- (hydroxymethyl)- and 4-isoquinoline, 3-ethoxy-potentially as antioxidants.

Keywords: Merung, *Coptosapelta tomentosa* (Blume), antioxidants activity, DPPH radical, toxicity, chemical composition.

INTRODUCTION

Indonesia is one of the countries rich in biodiversity. The people of Indonesia have long recognized the use of plants in traditional medicine. *Jamu* (herbal medicine) is one example of the heritage of traditional medicine consumed, and it is believed to cure certain diseases. Merung plant (Coptosapelta tomentosa Valeton K. Heyne)1 is one of the plants used in traditional medicine, especially in Kalimantan. Merung (another local name is Manuran/Maniren) by the people of South Kalimantan has long been used in traditional medicine as an aphrodisiac drug and to reduce blood (menstruation). Merung root is used to treat inflammation or swelling, rheumatism, and diarrhea by the people of East Kalimantan². Based on the previous study, the plant may contain substances beneficially ameliorating symptoms caused by bacteria, hepatotoxin, inflammation, virus, diuretics, cough, and hypoglycemi^{a3}.

Previous studies indicate that Merung has a variety of bioactivity for further study. Root extract has antibacterial activity against test bacteria Escherichia coli, and Staphylococcus aureus². Both root and stem extracts are very active as antiplasmodia^{4,5}. While extracts of all parts of plants can be used as an anti-inflammatory, tonic, and can reduce blood glucose levels^{6,7}.

Dayak Kenya (East Kalimantan), since the first harness Merung root as a medicine leucorrhea. Leucorrhea is one of the early symptoms of cervical cancer⁸. Phytochemical screening and toxicity test results show that all parts of Merung contain phenolic and flavonoids, and it shows that root is the most toxic against *Artemia salina* Leach compared to others with LC_{50} value of 173.09 ppm⁹. This study aims to measure antioxidant activity and profile chemical compounds of the ethyl acetate fraction.

METHOD

Extraction and separation

The dried powder of merung root (6 kg) extracted by maceration using methanol for 2 times 24 hours. The filtrate was obtained after filtering, then evaporated under low pressure with rotavapor and obtained a brown crude extract (164.67 grams). The crude extract is redissolved with methanol and then partitioned using n-hexane, and the partition is continued using ethyl acetate. Fractions of n-hexane, ethyl acetate, and methanol were obtained 5.33, 61.13, and 71.13 grams, respectively.

Toxicity test

The sample toxicity test used the Brine Shrimp Lethality Test against *Artemia Salina* Leach shrimp larvae^{9,10,11}.

Antioxidant activity test

The antioxidant activity test was carried out by DPPH radical scavenging method. Vitamin C solutions as controls were made in concentrations of 2, 4, 6, and 8 μ g / mL, respectively. While the sample solution was prepared in concentrations of 20, 40, 60, and 80 μ g / mL, respectively. 2 mL sample/vitamin C and 2 mL of 0.024 μ g / mL DPPH solution was put into the test tube, respectively. After it was homogenized, then incubated for 30 minutes, then measured using a UV-Vis Spectrophotometer at an optimum wavelength of 515 nm. The same treatment is carried out in making blanks without adding samples.

% Inhibition =
$$\frac{\text{Absorbsorbance of blank-Absorbance of sample/vitamin C}}{\text{Absorbance blank}} \times 100\%$$

IC₅₀ values were calculated using the linear regression equation Y = a + bX; if Y is equal to 50, then the value of X is IC₅₀^{11.12,13}.

GC-MS Recording

The GC-MS (Shimadzu GCMS-QP2010 Plus) records the spectrum of the active compounds. The equipment specification includes the mobile phase of Helium Gas, Stationary Phase/Column: RTX-5-MS 30M x 0.15 mm ID x 0.25 um. The peak obtained from the chromatogram was then compared with the internal database.

RESULT AND DISCUSSION

Based on the extraction and fractionation of crude extracts, n-hexane fraction, ethyl acetate fraction, and methanol fraction obtained 164.67, 5.33, 61.13, and 71.13 grams, respectively. The toxicity test was performed using the brine shrimp lethality test (BSLT) method, and the LC₅₀ values obtained for a fraction of n-hexane, ethyl acetate, and methanol were 162.28; 123.83 and 287.12 μ g / mL, respectively. LC₅₀ values obtained indicate that all extracts are toxic to shrimp *Artemia salina* L. (31<LC₅₀ <1000 ppm). However, the ethyl acetate fraction has the lowest LC₅₀ value, so that it has the highest toxicity compared to the others¹⁰.

Extract	Concentration	Absorbance	% inhibition	IC ₅₀	
	(ppm)			(µg/mL)	
	20	0.213	19.623	93.166	High
Crude	40	0,188	29.056		
	60	0,169	36,226		
	80	0.147	44.195		
n-hexane	20	0,161	39,245	49.100	Very
	40	0,139	47.672		high
	60	0.124	53.207		
	80	0,103	61.132		
Ethyl acetate	20	0,145	45,283	31.160	Very
	40	0,124	53,207		high
	60	0.097	63.395		
	80	0,077	70.943		
methanol	20	0,189	28.678	83.097	High
	40	0,171	36.138		
	60	0,162	38.867		
	80	0.130	50.817		
Vitamin C	2	0.220	16.851	5,399	Very
	4	0,167	36,981		high
	6	0,113	57358		
	8	0,070	73.635		

Table 1. Antioxidant activity of extracts of Coptosapelta tomentosa (Blume) root

Based on the results of antioxidant activity tests against DPPH radical scavenging, IC_{50} values for crude extracts, n-hexane, ethyl acetate, and methanol fractions were 93.166, 49.100, 31.160, and 83.097 µg / mL, respectively. Ethyl acetate has the smallest IC_{50} value, so that it has the highest antioxidant properties compared to others.¹⁴

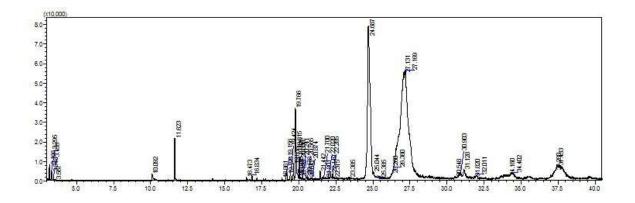


Figure 1. GC chromatogram of ethyl acetate fraction of C. tomentosa (Blume) root

Table 2. Chemical composition of ethyl acetate fraction of C. tomentosa (Blume) root

Peak	Retention	Peak	Base	Molecule	Molecule	Compounds

	Time	Area	peak	weight	Formula		
1	2.1.66	%	m/z	112	C II		
1	3.166	0.49	55.00	112	C ₈ H ₁₆	Cyclohexane, 1,3-dimethyl-	
2	3.294	0.20	55.05	112	C ₈ H ₁₆	Cyclopentane, 1-ethyl-3-methyl-	
3	3.348	0.22	55.05	112	C ₈ H ₁₆	Cyclopentane, 1-ethyl-2-methyl-, cis-	
4	3.455	0.12	55.05	112	C ₈ H ₁₆	Cyclohexane, 1,3-dimethyl-, trans-	
5	3.567	0.07	55.00	97	C ₅ H ₇ NO	Acetamide, N-2-propynyl-	
6	10.092	0.38	105.00	382.4	$C_{20}H_{18}N_2O_6$	Cyclobutane-1,1-dicarboxamide, N,N'-di- benzoyloxy-	
7	11.623	1.24	69.05	154.2493	$C_{10}H_{18}O$	2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-	
8	16.473	0.08	148.95	270.71	$C_{13}H_{15}ClO_4$	Phthalic acid, 2-chloropropyl ethyl ester	
9	16.834	0.16	139.00	284	C ₁₈ H ₃ 6O ₂	cis-9,10-Epoxyoctadecan-1-ol	
10	18.861	0.09	124.00	334	C ₂₁ H ₃₄ O ₃	Myristic acid, 4-methoxyphenyl ester	
11	19.156	0.31	55.00	138	C ₁₀ H ₁₈	Cyclooctane, ethenyl-	
12	19.195	0.24	123.00	164	C10H16Si	Diallyldivinylsilane	
13	19.424	0.43	97.00	138	C ₉ H ₁₄ O	2,6-Heptadienal, 2,4-dimethyl-	
14	19.638	0.72	148.95	356	$C_{22}H_{28}O_4$	1,2-Benzenedicarboxylic acid, bis(2-	
					- 22 20 - 4	methylpropyl) ester	
15	19.766	2.88	55.05	238	C ₁₆ H ₃₀ O	7-Hexadecyn-1-ol	
16	19.815	1.14	133.00	186	$C_{11}H_{11}NO_2$	4-isoquinolinol, 3-ethoxy-	
17	19.910	0.15	80.00	95	$C_{H5}NO_2S$	Methane sulfonamide	
18	19.925	0.16	95.00	166	$C_{11}H_{18}O$	4-(1,2-Dimethyl-cyclopent-2-enyl)-butan-2-	
10		0.10	95.00	100	0111180	one	
19	19.975	0.07	95.00	110	C ₈ H ₁₄	1,4-Pentadiene, 2,3,4-trimethyl-	
20	20.036	0.76	69.00	168	$C_{10}H_{16}O_2$	Cyclopropanecarboxylic acid, 3-(3-butenyl)- 2,2-dimethyl-	
21	20.128	0.12	57.00	92	C ₄ H ₉ Cl	Propane, 2-chloro-2-methyl-	
22	20.241	0.14	91.00	370	C ₂₅ H ₃₈ O ₂	9,12-Octadecadienoic acid (Z,Z)-,	
	20.211	0.11	21.00	570	023113802	phenylmethyl ester	
23	20.478	0.24	69.05	156	C ₁₀ H ₂₀ O	Cyclopentaneethanol, .beta.,2,3-trimethyl-	
24	20.565	0.09	57.00	296	$C_{10}H_{11}F_7O_2$	3,5-Octanedione, 6,6,7,7,8,8,8-heptafluoro-	
						2,2-dimethyl-	
25	20.642	0.10	148.95	418	$C_{21}H_{23}BrO_4$	Phthalic acid, 4-bromophenyl heptyl ester	
26	20.874	0.14	57.00	254	C_9H_{19I}	Nonane, 1-iodo-	
27	21.442	0.25	206.90	163	C ₈ H ₅ NO ₃	1H-Isoindole-1,3(2H)-dione, 2-hydroxy-	
28	21.700	0.09	69.00	207	C ₁₀ H ₉ NO ₄	Cyclopropanecarboxylic acid, 4-nitrophenyl	
20	21.001	0.16	(7.00)	104	G U O	ester	
29	21.801	0.16	67.00	194	$C_{12}H_{18}O_2$	1,6-Bis(2-propyn-1-yloxy)hexan	
30	22.020	0.10	57.00	240	C ₈ H _{17I}	Octane, 1-iodo-	
31	22.149	0.28	189.00	204	C ₁₄ H ₂₀ O	Lilial	
32	22.285	0.33	71.00	152	$C_{11}H_{20}$	4-t-Pentylcyclohexene	
33	22.375	0.10	221.90	128	$C_8H_{16}O$	Cyclohexanol, 3,5-dimethyl-	
34	23.385	0.10	71.00	250	$C_{12}H_{26}O_3S$	Sulfurous acid, nonyl 2-propyl ester	
35	24.687	26.31	69.05	410	$C_{30}H_{50}$	Squalene	
36	25.044	0.17	151.00	236	C ₁₅ H ₁₂ N ₂ O	1,3-Dihydro-5-phenyl-2H-1,4-benzodiazepin- 2-one	
37	25.385	0.07	91.00	358	C ₂₆ H ₄₆	Benzene, (1-propylheptadecyl)-	
38	26.260	0.17	67.00	202	$C_{9}H_{15}Br$	Cyclohexane, (2-bromocyclopropyl)-, trans-	
39	26.380	0.44	96.10	410	C ₃₀ H ₅₀	Olean-12-ene	
40	27.131	32.08	146.00	246	C ₁₇ H ₂₆ O	Ethanone, 1-(1,3,4,4a,5,6,7-hexahydro-2,5,5-	
10	27.131	52.00	110.00	210	C1/11260	trimethyl-2H-2,4a-ethanonaphthalen-8-yl)-	
41	27.169	24.94	105.05	246	C ₃₀ H ₅₀ O	Lupeol	
42	30.548	0.14	81.00	156	$C_9H_{16}O_2$	Acetic acid, trans-4-methylcyclohexyl ester	
74						Acetic acid, trans-4-methylcyclohexyl ester Furazan-3,4-diamine, N,N'-dimethyl-N,N'-	

						dinitro-
44	31.128	1.23	224.95	254	$C_{15}H_{10}O_4$	9,10-Anthracenedione, 1-hydroxy-2-
						(hydroxymethyl)-
45	31.820	0.15	133.00	244	$C_{12}H_{14}ClFO_2$	6-Chlorohexanoic acid, 3-fluorophenyl ester
46	32.011	0.33	148.95	390	$C_{24}H_{38}O_4$	Bis(2-ethylhexyl) phthalate
47	34.160	0.11	133.00	252	$C_{15}H_{16}N_4$	Bicyclo[2.2.1]heptane, 2,5-diphenyl-1,2,4,5-
						tetraaza-
48	34.402	0.61	69.10	362	$C_{21}H_{30}O_3S$	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-9-
						(phenylsulfonyl)-, (E,E)-
49	37.280	0.12	79.00	150	$C_{10}H_{14}O$	5,6-Epoxy-2,2-dimethyloct-7-ene-3-yne
50	37.433	0.24	149.10	426	$C_{30}H_{50}O$	alphaAmyrin

GC-MS results on the ethyl acetate fraction obtained major compounds are Ethanone, 1-(1,3,4,4a,5,6,7-hexahydro-2,5,5-trimethyl-2H-2,4a-ethanonaphthalen-8-ol)-(40), Squalene (35), Lupeol (41), 7-Hexadecyn-1-ol (15), 2,6-Octadient-1-ol, 3,7-dimethyl-, (Z) - (7),), 9,10 -Anthracenedione, 1-hydroxy-2- (hydroxymethyl) - (44), dan 4- isoquinoline, 3-ethoxy- (16). The (44) is a phenolic compound, and the (16) is an aromatic alkaloid, which is hydroxyl group substituted, both of these compounds have antioxidant potential. Characteristics of potent antioxidant compounds have one or more aromatic rings with one or more –OH groups capable of donating $H^{11,15,16}$.

In addition, other minor aromatic (phenolic) compounds can also be potential as antioxidants such as Cyclobutane-1,1-dicarboxamide, N,N'-di-benzoyloxy- (6), Phthalic acid, 2-chloropropyl ethyl ester (8). Myristic acid, 4-methoxyphenyl ester (10), 9,12-Octadecadienoic acid (Z,Z)-, phenylmethyl ester (22). Phthalic acid, 4-bromophenyl heptyl esrter (25), 1H-Isoindole-1,3(2H)-dione, 2-hydroxy- (27), Cyclopropanecarboxylic acid, 4-nitrophenyl ester (28), Lilial (31), 1,3-Dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one (36), 6-Chlorohexanoic acid, 3-fluorophenyl ester (45), Bis(2-ethylhexyl) phthalate (46), Bicyclo[2.2.1]heptane, 2,5-diphenyl-1,2,4,5-tetraaza-(47), 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-9-(phenylsulfonyl)-, (E,E)- (48).

CONCLUSION

The ethyl acetate fraction was the most active extract compared to the others for the toxicity test and antioxidant activity test with LC_{50} and IC_{50} values of 123.83 µg / mL and 31.160 µg/mL, respectively. The content profile of the chemical compounds of ethyl acetate fraction

shows various types of secondary metabolites, and there are several types of phenolic or aromatic compounds that have the potential as antioxidants.

ACKNOWLEDGMENT

The authors would like to appreciate and thank the ISDB that has funded this research under contract number: 137 / UN.17.11 / PL / 2019.

REFERENCE

- Fitryana, 1st International Conference on Tropical Studies and Its Application (ICTROPS) IOP Conf. Series: Earth and Environmental Science 144, 1(2018), DOI: DOI:10.1088/1755-1315/144/1/012020
- Hermanda, R., Widayat, W., dan Rijai, L. Prosiding Seminar Nasional Kefarmasian Ke-4, Samarinda, 324(2016).
- 3. Kardinan A, Kusuma FR. *Meniran penambah daya tahan tubuh alami*. Jakarta: Agromedia Pustaka, 6(2004).
- 4. Arnida and Supomo, *RJPBC*, 8, 43(2017).
- 5. Arnida, Sahi, E.K. and Sutomo, Jurnal Ilmiah Ibnu Sina, 2(2), 270(2017).
- 6. Minh, V.V., Yen, N.T.K., and Thoa, P.T.K. Journal of Medicinal Plants Studies, 2 (3), 64(2014)
- 7. Nugrahani, S.S. 2012, Jurnal Kesehatan Masyarakat, 8(1), 51(2012)
- Supriningrum, R., Sapri, dan Pranamala, V.A. Uji Toksisitas Akut Ekstrak Etanol Akar KB (*Coptosapelta tomentosa* Valeton ex K.Heyne) Dengan Metode *Brine Shrimp Lethality Test* (BSLT), Jurnal Ilmiah Manuntung, 2(2), 161(2016)
- 9. Karolina, A., Pratiwi, D.R., and Erwin, Jurnal Atomik, 03 (2), 79(2018).
- 10. Meyer, B.N., Ferrigny, N.R., Putnam, J.E., Jacobsen, L.B., Nicols, D.E., McLaughlin, J.L. *Journal of Medical Plant Research*. 45, 31(1982).
- 11. Erwin, Pusparohmana, W.R., Sari, I.P., Hairani, R. and Usman, *F1000Research*, 7 (1977), 1(2018,). DOI : https://doi.org/10.12688/f1000research.16643.1
- 12. Erwin, Indonesia Chimica Acta. 8(20): 11(2015).

- Supomo1, Syamsul, E. S., Apriliana, A., Saleh, C., Erwin and Lestari, D., *Rasayan J. Chem.*, 12(3), 1340-1346 (2019). DOI: http://dx.doi.org/10.31788/RJC.2019.1235264
- 14. P. Molyneux, J. Sci. Technol., 26(2), 211(2004).
- 15. Brewer, M.S. *Comprehensive Reviews in Food Science and Food Safety*, 10, 221(2011). DOI:10.1111/j.1541-4337.2011.00156.x
- 16. R. Kartika, R., SudrajaT, Bustanussalam and P. Simanjuntak, P. *Rasayan J. Chem.*, 12(3), 1022-1026 (2019)., DOI: http://dx.doi.org/10.31788/RJC.2019.1235186

Performance

This text scores better than 99% of all text checked by Grammarly where comparable goals were set.

Word Count

Characters	14,956	Reading time	7 min 58 sec
Words	1,994	Speaking time	15 min 20 sec
Sentences	150		
Readability	/	Metrics compared to othe	r Grammarly users
Word length	3.1		Below average
Sentence length	13.3		Above average
Readability score	42 (i)		

Your text compares in readability to The New York Times. It is likely to be understood by a reader who has at least a 10th-grade education (age 16).

Dr. Erwin, M.Si. <erwinakkas@fmipa.unmul.ac.id>

Fwd: Query

1 message

Dr. Rudy Agung Nugroho <rudyagung.nugroho@fmipa.unmul.ac.id> To: erwinakkas@fmipa.unmul.ac.id Mon, Sep 28, 2020 at 6:00 PM

------Forwarded message ------From: International collaboration for Research & publications cpublications@icrp.org.uk>
Date: Mon, Dec 16, 2019 at 11:50 PM
Subject: Re: Query
To: Dr. Rudy Agung Nugroho <rudyagung.nugroho@fmipa.unmul.ac.id>

Dear sir,

please checking and confirm up to tomorrow

We are preparing part 1 of the proofs of the accepted articles. We will send the remaining proofs soon.

Please note that a figure and a table is missing in EJOBIOS-218.

Best regards,

Sender notified by Mailtrack

companies shall be understood as neither given nor endorsed by ICRP and ICRP accepts no responsibility for the same. All liability arising from or in connection

Universitas Mulawarman Mail - Fwd: Query

with computer viruses and/or corrupted e-mails is excluded to the fullest extent permitted by law.

6 attachments

- BJOBIOS-215-v1.pdf
- BJOBIOS-212-v1.pdf
- EJOBIOS-217-v1.pdf
- **EJOBIOS-216-v1.pdf** 191K
- BJOBIOS-214-v1.pdf 397K
- EJOBIOS-218-v1.pdf 547K

Toxicity test, antioxidant activity test and GC-MS profile of the active fraction of *Coptosapelta tomentosa* (Blume) root (Merung)

Bohari ^{1*}, Anita Karolina ¹, Djihan Ryn Pratiwi ¹, Erwin ¹, Anton Rahmadi ¹

¹ Department of Chemistry, Faculty of Mathematics and Natural Sciences Mulawarman University, Jalan Barong Tongkok, Kampus Gn. Kelua, Samarinda, East Kalimantan, 75123, INDONESIA *Corresponding author: Bohari

Abstract

Merung (Coptosapelta tomentosa (Blume)) is one of the plants of the genus Coptosapelta, commonly found in the forests of Borneo. People in Kalimantan, especially in East Kalimantan and South Kalimantan, use the extract of merung root as traditional medicine for aphrodisiacs, blood clots (menstruation), inflammatory or swollen pain, rheumatism, and diarrhea. This study aims to determine the toxicity with the brine shrimp lethality test (BSLT) method and antioxidant activity with the DPPH radical scavenging method of crude extracts and their fractions from merung roots and to determine the chemical content of the most active fractions using GC-MS. Based on the results of the toxicity test and antioxidant activity test showed that the ethyl acetate fraction was the most active extract compared to the others with LC₅₀ and IC₅₀ values of 123.83 μ g/mL and 31.160 μ g/mL, respectively. GC-MS spectrum analysis results of ethyl acetate fraction compared with the database obtained major compounds namely Ethanone, 1- (1,3,4,4a, 5,6,7-hexahydro-2,5,5-trimethyl-2H-2,4a-ethanonaphthalen-8-ol) - (32.08%), Squalene (26%), Lupeol (24.94%), 7-Hexadecyn-1-ol (2.88%), 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z) - (1.24%), 9,10-Anthracenedione, 1-hydroxy-2-(hydroxymethyl) - (1.23%), and 4-isoquinoline, 3-ethoxy- (1.14%). 9,10-Anthracenedione, 1-hydroxy-2- (hydroxymethyl)- and 4-isoquinoline, 3-ethoxy- potentially as antioxidants. There are also several other minor aromatic (phenolic) compounds which can have antioxidant potential.

Keywords: Merung, *Coptosapelta tomentosa* (Blume), antioxidants activity, DPPH radical, toxicity, chemical composition

Bohari, Karolina A, Pratiwi DR, Erwin, Rahmadi A (2019) Toxicity test, antioxidant activity test and GC-MS profile of the active fraction of *Coptosapelta tomentosa* (Blume) root (Merung). Eurasia J Biosci 13: 1-4.

© 2019 Bohari et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

INTRODUCTION

Indonesia is one of the countries rich in biodiversity. The people of Indonesia have long recognized the use of plants in traditional medicine. Jamu (herbal medicine) is one example of the heritage of traditional medicine consumed, and it is believed to cure certain diseases. Merung plant (Coptosapelta tomentosa Valeton K. Heyne) (Fitryana 2018) is one of the plants used in traditional medicine, especially in Kalimantan. Merung (another local name is Manuran/Maniren) by the people of South Kalimantan has long been used in traditional medicine as an aphrodisiac drug and to reduce blood (menstruation). Merung root is used to treat inflammation or swelling, rheumatism, and diarrhea by the people of East Kalimantan (Hermanda et al. 2016). The plant may contain substances beneficially to ameliorate symptoms caused by bacteria, hepatotoxin, inflammation, virus, diuretics, cough, and hypoglycemi (Kardinan and Kusuma 2004).

Previous studies indicate that Merung has a variety of bioactivity for further study. Root extract has antibacterial activity against test bacteria Escherichia coli, and Staphylococcus aureus (Hermanda et al. 2016). Both root and stem extracts are very active as antiplasmodia (Arnida and Supomo 2017, Arnida et al. 2017). While extracts of all parts of plants can be used as an anti-inflammatory, tonic, and can reduce blood glucose levels (Minh et al. 2014, Nugrahani 2012).

Dayak Kenya (East Kalimantan), since the first harness Merung root as a medicine leucorrhea. Leucorrhea is one of the early symptoms of cervical cancer (Supriningrum et al. 2016). Phytochemical screening and toxicity test results show that all parts of Merung contain phenolic and flavonoids, and it shows that root is the most toxic against *Artemia salina* Leach compared to others with LC_{50} value of 173.09 ppm (Karolina et al. 2018). This study aims to measure

Received: February 2019 Accepted: August 2019 Printed: December 2019 EurAsian Journal of BioSciences 13: 1-4 (2019)

 Table 1. Antioxidant activity of extracts of Coptosapelta tomentosa (Blume) root

Extract	Concentration (ppm)	Absorbance	% inhibition	IC₅₀ (µg/mL)	
	20	0.213	19.623		
Crudo	40	0,188	29.056	93.166	High
Crude	60	0,169	36,226	93.100	nigii
	80	0.147	44.195		
	20	0,161	39,245		
n hovono	40	0,139	47.672	49.100	Very high
n-nexane	60	0.124	53.207	49.100	verynigi
	80	0,103	61.132		
	20	0,145	45,283		Very high
Ethyl a satata	40	0,124	53,207	21 160	
Elliyi acelale	60	0.097	63.395	31.160	
	20 40 40 60 80 20 40 60 80 20 40 60 80 20 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 80 20 40 60 80 20 40 60 80 20 40 60 80 2 2 Vitamin C 4	0,077	70.943		
	20	0,189	28.678		
mothemal	40	0,171	36.138	02.007	Literte
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 2 Vitamin C 4	0,162	38.867	83.097	High	
	80	0.130	50.817		
	2	0.220	16.851		
Vitamin C	4	0,167	36,981	E 200	Vonthia
vitamin C	6	0,113	57358	5,399	Very hig
	8	0,070	73.635		

antioxidant activity and profile chemical compounds of the ethyl acetate fraction.

MATERIALS AND METHODS

Extraction and Separation

The dried powder of merung root (6 kg) extracted by maceration using methanol for 24 hours, repeated two times. The obtained filtrate was then evaporated under low pressure with rotavapor and obtained a brown crude extract (164.67 grams). The crude extract is redissolved with methanol and then partitioned using n-hexane, and the partition is continued using ethyl acetate. Fractions of n-hexane, ethyl acetate, and methanol were obtained 5.33, 61.13, and 71.13 grams, respectively.

Toxicity Test

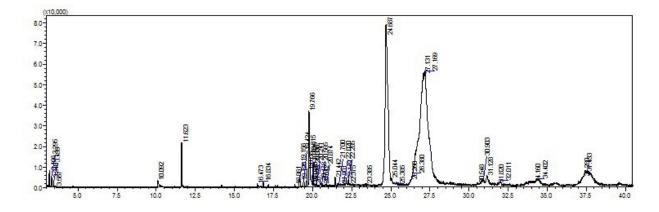
The sample toxicity test used the Brine Shrimp Lethality Test against *Artemia Salina* Leach shrimp larvae (Erwin et al. 2018, Karolina et al. 2018, Meyer et al. 1982).

Antioxidant Activity Test

The antioxidant activity test was carried out by DPPH radical scavenging method. The standard vitamin C solutions were prepared in concentrations of 2, 4, 6, and 8 μ g/mL, respectively. The sample solution was prepared in concentrations of 20, 40, 60, and 80 μ g/mL, respectively. 2 mL sample/vitamin C and 2 mL of 0.024 μ g / mL DPPH solution was put into the test tube, respectively. After homogenization, the samples were incubated for 30 minutes, then measured using a UV-Vis Spectrophotometer at the optimum wavelength of 515 nm. The same treatment is carried out in making blanks without adding samples.

% Inhibition = Absorbsorbance of blank-Absorbance of sample/vitamin C Absorbance blank ×100%.

 IC_{50} values were calculated using the linear regression equation Y = a + bX; if Y is equal to 50, then the value of X is IC_{50} (Erwin 2015, Erwin et al. 2018, Supomo et al. 2019).


GC-MS Recording

The GC-MS (Shimadzu GCMS-QP2010 Plus) records the spectrum of active fractions. The equipment specification includes the mobile phase of Helium Gas, Stationary Phase/Column: RTX-5-MS 30M x 0.15 mm ID x 0.25 um. The peak obtained from the chromatogram was then compared with the internal database.

RESULTS AND DISCUSSION

Based on the extraction and fractionation of crude extracts, n-hexane fraction, ethyl acetate fraction, and methanol fraction obtained 164.67, 5.33, 61.13, and 71.13 grams, respectively. The toxicity test was performed using the brine shrimp lethality test (BSLT) method, and the LC₅₀ values obtained for a fraction of n-hexane, ethyl acetate, and methanol were 162.28; 123.83 and 287.12 μ g / mL, respectively. LC₅₀ values obtained indicate that all extracts are toxic to shrimp *Artemia salina* L. (31<LC₅₀ <1000 ppm). However, the ethyl acetate fraction has the lowest LC₅₀ value, so that it has the highest toxicity compared to the others (Meyer et al. 1982).

Based on the results of antioxidant activity tests against DPPH radical scavenging, IC_{50} values for crude extracts, n-hexane, ethyl acetate, and methanol fractions were 93.166, 49.100, 31.160, and 83.097 µg / mL, respectively. Ethyl acetate extract has the smallest IC_{50} value. As a consequence, it has the highest antioxidant properties compared to other extracts (Molyneux 2004).

Deals	Retention	Peak	Base	Molecule	Molecule	O annu ann da
Peak	Time		peak m/z	weight	Formula	Compounds
1	3.166	0.49	55.00	112	C ₈ H ₁₆	Cyclohexane, 1,3-dimethyl-
2	3.294	0.20	55.05	112	C ₈ H ₁₆	Cyclopentane, 1-ethyl-3-methyl-
3	3.348	0.22	55.05	112	C ₈ H ₁₆	Cyclopentane, 1-ethyl-2-methyl-, cis-
4	3.455	0.12	55.05	112	C ₈ H ₁₆	Cyclohexane, 1,3-dimethyl-, trans-
5	3.567	0.07	55.00	97	C ₅ H ₇ NO	Acetamide, N-2-propynyl-
6	10.092	0.38	105.00	382	C ₂₀ H ₁₈ N ₂ O ₆	Cyclobutane-1,1-dicarboxamide, N,N'-di-benzoyloxy-
7	11.623	1.24	69.05	154	C ₁₀ H ₁₈ O	2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-
8	16.473	0.08	148.95	270	C13H15CIO4	Phthalic acid, 2-chloropropyl ethyl ester
9	16.834	0.16	139.00	284	C ₁₈ H ₃ 6O ₂	cis-9,10-Epoxyoctadecan-1-ol
10	18.861	0.09	124.00	334	C ₂₁ H ₃₄ O ₃	Myristic acid, 4-methoxyphenyl ester
11	19.156	0.31	55.00	138	C ₁₀ H ₁₈	Cyclooctane, ethenyl-
12	19.195	0.24	123.00	164	C10H16Si	Diallyldivinylsilane
13	19.424	0.43	97.00	138	C ₉ H ₁₄ O	2,6-Heptadienal, 2,4-dimethyl-
14	19.638	0.72	148.95	356	C22H28O4	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester
15	19.766	2.88	55.05	238	C ₁₆ H ₃₀ O	7-Hexadecyn-1-ol
16	19.815	1.14	133.00	186	C11H11NO2	4-isoquinolinol, 3-ethoxy-
17	19.910	0.15	80.00	95	CH5NO2S	Methane sulfonamide
18	19.925	0.16	95.00	166	C11H18O	4-(1,2-Dimethyl-cyclopent-2-enyl)-butan-2-one
19	19.975	0.07	95.00	110	C ₈ H ₁₄	1,4-Pentadiene, 2,3,4-trimethyl-
20	20.036	0.76	69.00	168	C ₁₀ H ₁₆ O ₂	Cyclopropanecarboxylic acid, 3-(3-butenyl)-2,2-dimethyl-
21	20.128	0.12	57.00	92	C ₄ H ₉ Cl	Propane, 2-chloro-2-methyl-
22	20.241	0.14	91.00	370	C ₂₅ H ₃₈ O ₂	9,12-Octadecadienoic acid (Z,Z)-, phenylmethyl ester
23	20.478	0.24	69.05	156	C ₁₀ H ₂₀ O	Cyclopentaneethanol, .beta.,2,3-trimethyl-
24	20.565	0.09	57.00	296	C ₁₀ H ₁₁ F ₇ O ₂	3,5-Octanedione, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-
25	20.642	0.10	148.95	418	C ₂₁ H ₂₃ BrO ₄	Phthalic acid, 4-bromophenyl heptyl ester
26	20.874	0.14	57.00	254	C ₉ H ₁₉₁	Nonane, 1-iodo-
27	21.442	0.25	206.90	163	C ₈ H ₅ NO ₃	1H-Isoindole-1,3(2H)-dione, 2-hydroxy-
28	21.700	0.09	69.00	207	C ₁₀ H ₉ NO ₄	Cyclopropanecarboxylic acid, 4-nitrophenyl ester
29	21.801	0.16	67.00	194	C ₁₂ H ₁₈ O ₂	1,6-Bis(2-propyn-1-yloxy)hexan
30	22.020	0.10	57.00	240	C ₈ H ₁₇₁	Octane, 1-iodo-
31	22.149	0.28	189.00	204	C ₁₄ H ₂₀ O	Lilial
32	22.285	0.33	71.00	152	C ₁₁ H ₂₀	4-t-Pentylcyclohexene
33	22.375	0.10	221.90	128	C ₈ H ₁₆ O	Cyclohexanol, 3,5-dimethyl-
34	23.385	0.10	71.00	250	C ₁₂ H ₂₆ O ₃ S	Sulfurous acid, nonyl 2-propyl ester
35	24.687	26.31	69.05	410	C ₃₀ H ₅₀	Squalene
36	25.044	0.17	151.00	236	C ₁₅ H ₁₂ N ₂ O	1,3-Dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one
37	25.385	0.07	91.00	358	C ₂₆ H ₄₆	Benzene, (1-propylheptadecyl)-
38	26.260	0.17	67.00	202	C ₉ H ₁₅ Br	Cyclohexane, (2-bromocyclopropyl)-, trans-
39	26.380	0.44	96.10	410	C ₃₀ H ₅₀	Olean-12-ene
40	27.131	32.08	146.00	246	C ₁₇ H ₂₆ O	Ethanone, 1-(1,3,4,4a,5,6,7-hexahydro-2,5,5-trimethyl-2H-2,4a-ethanonaphthalen-8-yl)-
41	27.169	24.94	105.05	246	C ₃₀ H ₅₀ O	
42	30.548	0.14	81.00	156	C ₉ H ₁₆ O ₂	Acetic acid, trans-4-methylcyclohexyl ester
43	30.903	0.74	67.10	218	C4H6N6O5	Furazan-3,4-diamine, N,N'-dimethyl-N,N'-dinitro-
44	31.128	1.23	224.95	254	C ₁₅ H ₁₀ O ₄	9,10-Anthracenedione, 1-hydroxy-2-(hydroxymethyl)-
45	31. 820	0.15	133.00	244	C ₁₂ H ₁₄ CIFO ₂	6-Chlorohexanoic acid, 3-fluorophenyl ester
46	32.011	0.33	148.95	390	C ₂₄ H ₃₈ O ₄	Bis(2-ethylhexyl) phthalate
47	34.160	0.11	133.00	252	C ₁₅ H ₁₆ N ₄	Bicyclo[2.2.1]heptane, 2,5-diphenyl-1,2,4,5-tetraaza-
48	34.402	0.61	69.10	362	C ₂₁ H ₃₀ O ₃ S	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-9-(phenylsulfonyl)-, (E,E)-
49	37.280	0.12	79.00	150	C ₁₀ H ₁₄ O	5,6-Epoxy-2,2-dimethyloct-7-ene-3-yne
50	37.433	0.24	149.10	426	C ₃₀ H ₅₀ O	alphaAmyrin

EurAsian Journal of BioSciences 13: 1-4 (2019)

GC-MS results on the ethyl acetate fraction obtained major compounds are Ethanone, 1-(1,3,4,4a,5,6,7-hexahydro-2,5,5-trimethyl-2H-2,4a-ethanonaphthalen-8-ol)-(40), Squalene (35), Lupeol (41), 7-Hexadecyn-1-ol (15), 2,6-Octadient-1-ol, 3,7-dimethyl-, (Z) - (7),), 9,10 -Anthracenedione, 1-hydroxy-2- (hydroxymethyl) - (44), dan 4- isoquinoline, 3-ethoxy- (16). The (44) is a phenolic compound, and the (16) is an aromatic alkaloid, which is hydroxyl group substituted, both of these compounds have antioxidant potential. Characteristics of potent antioxidant compounds have one or more aromatic rings with one or more –OH groups capable of donating H (Brewer 2011, Erwin et al. 2018, Kartika et al. 2019).

In addition, other minor aromatic (phenolic) compounds can also be potential as antioxidants such as Cyclobutane-1,1-dicarboxamide, N,N'-di-benzoyloxy-(6), Phthalic acid, 2-chloropropyl ethyl ester (8). Myristic acid, 4-methoxyphenyl ester (10), 9,12-Octadecadienoic acid (Z,Z)-, phenylmethyl ester (22). Phthalic acid, 4-bromophenyl heptyl esrter (25), 1H-Isoindole-1,3(2H)-dione, 2-hydroxy- (27), Cyclopropanecarboxylic acid, 4-nitrophenyl ester (28), Lilial (31), 1,3-Dihydro-5-phenyl-

2H-1,4-benzodiazepin-2-one (36), 6-Chlorohexanoic acid, 3-fluorophenyl ester (45), Bis(2-ethylhexyl) phthalate (46), Bicyclo[2.2.1]heptane, 2,5-diphenyl-1,2,4,5-tetraaza-(47), 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-9-(phenylsulfonyl)-, (E,E)- (48).

CONCLUSION

The ethyl acetate fraction was the most active extract compared to the others for the toxicity test and antioxidant activity test with LC₅₀ and IC₅₀ values of 123.83 μ g / mL and 31.160 μ g/mL, respectively. The content profile of the chemical compounds of ethyl acetate fraction shows various types of secondary metabolites. Several phenolic or aromatic compounds have been identified. The compounds may have antioxidant properties.

ACKNOWLEDGEMENT

The authors would like to appreciate and thank the ISDB that has funded this research under contract number: 137 / UN.17.11 / PL / 2019.

REFERENCES

Arnida, Sahi EK, Sutomo (2017) Jurnal Ilmiah Ibnu Sina, 2(2): 270.

Arnida, Supomo (2017) RJPBC, 8(43). https://doi.org/10.20885/JKKI.Vol8.lss3.art5

Brewer MS (2011) Comprehensive Reviews in Food Science and Food Safety, 10: 221. https://doi.org/10.1111/j.1541-4337.2011.00156.x

Erwin (2015) Indonesia Chimica Acta, 8(20): 11.

- Erwin, Pusparohmana WR, Sari IP, Hairani R, Usman (2018) F1000Research, 7(1977): 1. https://doi.org/10.12688/f1000research.16643.1
- Fitryana (2018) 1st International Conference on Tropical Studies and Its Application (ICTROPS) IOP Conf. Series: Earth and Environmental Science, 144(1). https://doi.org/10.1088/1755-1315/144/1/012020
- Hermanda R, Widayat W, Rijai L (2016) Prosiding Seminar Nasional Kefarmasian Ke-4, Samarinda, 324.

Kardinan A, Kusuma FR (2004) Meniran penambah daya tahan tubuh alami. Jakarta: Agromedia Pustaka, 6.

Karolina A, Pratiwi DR, Erwin (2018) Jurnal Atomik, 03(2): 79.

- Kartika R, Sudraja, Bustanussalam, Simanjuntak P (2019) Rasayan J. Chem., 12(3): 1022-1026. https://doi.org/10.31788/RJC.2019.1235186
- Meyer BN, Ferrigny NR, Putnam JE, Jacobsen LB, Nicols DE, McLaughlin JL (1982) Journal of Medical Plant Research, 45: 31. https://doi.org/10.1055/s-2007-971236
- Minh VV, Yen NTK, Thoa PTK (2014) Journal of Medicinal Plants Studies, 2(3): 64.

Molyneux P (2004) J. Sci. Technol., 26(2): 211. https://doi.org/10.1136/inpract.26.4.226

- Nugrahani SS (2012) Jurnal Kesehatan Masyarakat, 8(1): 51.
- Supomo, Syamsul ES, Apriliana A, Saleh C, Erwin, Lestari D (2019) Rasayan J. Chem., 12(3): 1340-1346. https://doi.org/10.31788/RJC.2019.1235264
- Supriningrum R, Sapri, Pranamala VA (2016) Uji Toksisitas Akut Ekstrak Etanol Akar KB (Coptosapelta tomentosa Valeton ex K.Heyne) Dengan Metode Brine Shrimp Lethality Test (BSLT). Jurnal Ilmiah Manuntung, 2(2): 161.

www.ejobios.org