

Chem-588

Synthesis of Antimicrobial Edible Film From Mahakam River Pole Shrimp Chitosan (Macrobrachium Rosenbergii)

Daniel^{1,2,a)}, Djihan Ryn Pratiwi^{1,2}, Eva Marliana^{1,2}, Rita Hairani^{1,2}, A R Magdaleni³
¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University,
Samarinda, East Kalimantan, Indonesia
²Organic Chemistry Laboratory, Faculty of Mathematics and Natural Sciences, Mulawarman
University, Samarinda, East Kalimantan, Indonesia

³Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, Indonesia

a)Corresponding Author: daniel_trg08@yahoo.com

Abstract

Synthesis of N-salicyl chitosan with the addition of honey as an development of antimicrobial edible film was experimented. The synthesis process of N-salicyl chitosan was carried out by reacting chitosan with methyl salicylate derived from esterification of salicylic acid with methanol. Edible film was made by dissolving N-salicyl chitosan with 1% lactic acid solution and then added with honey. The analysis result of N-salicyl chitosan compound with FT-IR showed the functional groups 0-H, N-H, C-H sp^3 , C-H sp^2 , C=O Amide, C=C aromatic, C-O-C, C-OH and C-N. The characteristics of edible film were 0.32 gr (size 2x2 cm), 16.20% moisture content, 0.41 mm thickness, water vapour transmission rate 18.36 gr/m²/hour, tensile strength 1 N mm^2 and 10% elongation percentage. Based on results of the antibacterial activity test of N-salicyl chitosan with the addition of honey, it inhibited $Salmonella\ typhi\ ATCC\ 422$ and did not inhibit $Streptococcus\ sobrinus\ KCCM\ 11898$.