
Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 82

SOFTWARE QUALITY MEASUREMEN AND METRICS

(REVIEW SOME ARTICLES)

Ramadiani

Program Studi Ilmu Komputer FMIPA Universitas Mulawarman

Email : ilkom.ramadiani@gmail.com

ABSTRACT

Software development processes have less variability than the projects or products upon which

they are applied, a feature that has provided the source for considerable debate on how to capture and

describe software processes for the purposes of understanding or inclusion within Software

Engineering Environments. The software measurement is potentially very diverse in nature, there are

four basic stages of formulation, collection, analysis and interpretation The successful measurement

programmes must support the collection of cost, duration and quality values. There are some varian

measurement metrics such as; performance analysis, deliverable analyses, quality objectives, schedule

analyses, effort analyses etc.

Kata Kunci: Software Quality, Measurement, Matric.

INTRODUCTION

Why should software measurement be problematic?

The answer, in brief, is because software

engineering is a highly complex process producing

highly complex products. Moreover, each project

and its products tend to be something of “one off”

in nature, a point highlighted by Schneidewind as a

difficulty in validating metrics even when a defined

validation methodology is used.

However, software development processes have

less variability than the projects or products upon

which they are applied, a feature that has provided

the source for considerable debate on how to

capture and describe software processes for the

purposes of understanding or inclusion within

Software Engineering Environments. Kitchenham

points out that successful measurement

programmes must support the collection of cost,

duration and quality values to ensure that

measuring one aspect, for example cost, does not

cause the problem to migrate to another aspect such

as quality.

EVALUATION

The general shortage of effective metric methods to

provide advice and guidance for the usage of

measurement is a severe constraint on

management's ability to retain effective control. As

has been suggested, the drive for improvement in

the usage of software metric is now focusing upon

the application of measurement methods. Methods

guide developers on what to do next and limit the

available choices to a structured process of

manageable steps. They are not prescriptive nor do

they provide details about how each step should be

carried out.

There are some template guides for engineers to

define system attributes, using a standard set of

headings e.g. scale, date, test, worst case, from

which terminology can be clarified and measures

established. These features and supportive

principles have value for motivating staff to use

objective measurement as opposed to subjective

measurement based upon checklists of software

attributes. While these are important aspects of the

measurement process they do not on their own

constitute a measurement method, they support

initial definition of a set of standard metrics.

In order to help assess the support for the

measurement process provided by the various

measurement methods it is helpful to break down

the software measurement process into its

constituent stages (as illustrated in Figure 1).

Although software measurement is potentially very

diverse in nature, thereare still only four basic

stages of formulation, collection, analysis and

interpretation with validation as an on-going

activity throughout.

Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 83

Figure1: The Measurement Process

Formulation involves setting measurement goals,

identifying the metrics required and defining them

in terms of the particular measurement

environment. Lines of code seldom has exactly the

same meaning between different software

organisations: one environment might count

delimiters, another number of carriage returns imd

so forth. The diversity of measurement perspectives

e.g. customer, developer, manager and researcher

also need to be catered for by this stage.

Collection is concerned with setting up the actual

measurement processes and any tool development

that might be necessary. It must also address the

training and education of those involved in the

process, il it is to run smoothly software developers

must know what to collect, when, where and how.

Analysis is the stage dealing with measurements

once they have been obtained. Statistical analysis

may be important to help uncover pattems,

discriminate between software components and

identify anomalies. The results can be used to

provide feedback into the software process at all

levels from individual through team to organisation.

Interpretation is the assignment of meaning to the

collected values, determining the cause(s) of the

values, distinguishing which cause was responsible

and identifying the appropriate corrective action to

be &en. The stage is problematic due to each value

having many causes.

Last, and frequently overlooked, is the issue of

validation. Basically, measurers continually need to

ask themselves whether the measurement is a true,

or adequate, representation of whatever atlribute

they believe is being captured. Validation should

take place throughout the measurement process.

SOFTWARE QUALITY

In the field of software engineering, the term

“metrics ” is used in reference to multiple concepts;

for example, the quantity to be measured

(measurand 1), the measurement procedure, the

measurement results or models of relationships

across multiple measures, or measurement of the

objects themselves.

In the software engineering literature, the term was,

up until recently, applied to:

 measurement of a concept: e.g. cyclomatic

complexity [McCabe 1976],

 quality models: e.g. ISO 9126 — software

product quality, and estimation models: e.g.

Halstead ’ s effort equation [Halstead 1977],

COCOMO I and II [Boehm, 1981, 2000], Use

Case Points, etc.

Software engineering definition from IEEE

Computer Society:

“(1) The application of a systematic,

disciplined, quantifiable approach to the

development, operation, and maintenance of

software; that is, the application of engineering

to software. (2) The study of approaches as in

(1) ” [IEEE 610.12]

A measurand is defined as a particular quantity

subject to measurement; the specification of a

measurand may require statements about quantities

such as time, temperature, and pressure [VIM

2007]. In the scientific fields, including

engineering, as well as in others, like business

administration and a significant number of the

social sciences, measurement is one of a number of

analytical tools. Measurement in those sciences is

based on a large body of knowledge built up over

centuries, even millennia, which is commonly

referred to as “ metrology ” .

Software Engineering Metrics: What Do They

Measure and How Do We Know?

by Cem Kaner, Senior Member, IEEE, and Walter

P. Bond (2004),

 Construct validity starts with a thorough

analysis of the construct, the attribute we are

attempting to measure. In the IEEE Standard

1061, direct measures need not be validated.

 "Direct" measurement of an attribute involves

a metric that depends only on the value of the

attribute, but few or no software engineering

attributes or tasks are so simple that measures

of them can be direct. Thus, all metrics should

be validated

The research continues with a framework for

evaluating proposed metrics, and applies it to two

uses of bug counts. Bug counts capture only a small

part of the meaning of the attributes they are being

used to measure. Multidimensional analyses of

attributes appear promising as a means of capturing

the quality of the attribute in question.

Formulation

interpretatio

nn
analysis

collection

Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 84

Defining Measurement

 Fenton and Pfleege provide a concise

definition:

 Formally, we define measurement as a

mapping from the empirical world to the

formal, relational world. Consequently, a

measure is the number or symbol assigned to

an entity by this mapping in order to

characterize an attribute. [p. 28]

 Standard 1061 (section 4.5) lays out

several interesting validation criteria,

which we summarize as follows:

 Correlations

 Consistency

 Tracking

 Predictability

 Discriminative power

 Reliability

Direct Measurement

 The IEEE Standard 1061 answer lies in the

use of direct metrics. A direct metric is "a

metric that does not depend upon a measure of

any other attribute."

 Direct metrics are important under Standard

1061, because a direct metric is presumed

valid and other metrics are validated in terms

of it ("Use only validated metrics (i.e. either

direct metrics or metrics validated with respect

to direct metrics)")

Some common derived metrics in software

engineering are :

a) Programmer productivity (code size/

programming time)

b) Module defect density (bugs / module size)

c) Requirements stability (number of initial

requirements / total number of requirements)

d) System spoilage (effort spent fixing faults /

total project effort)

Standard 1061 offers MTTF (Mean Time To

Failure) as an example of a direct measure of

reliability:

• Mean

• Time

• To

• Failure

But if we look more carefully, we see that this

measure is not direct at all. Its values depend on

many other variables. As we'll see, this is true of

many (perhaps all) software engineering metrics

Consider the four examples of direct measurement

provided by Fenton & Pfleeger:

 Length of source code (measured by lines

of code);

 Duration of testing process (measured by

elapsed time in hours);

 Number of defects discovered during the

testing process (measured by ounting

efects)

 Time a programmer spends on a project

(measured by months worked). [7, p. 40]

The Evaluation Framework

To evaluate a proposed metric, including

one that we propose, we find it useful to ask the

following ten questions:

1) What is the purpose of this measure?

2) What is the scope of this measure

3) What attribute are we trying to measure?

4) What is the natural scale of the attribute we

are trying to measure

5) What is the natural variability of the attribute?

6) What is the metric (the function that assigns a

value to the attribute)?

7) What is the natural scale for this metric?

8) What is the natural variability of readings

from this instrument?

9) What is the relationship of the attribute to the

metric value?

10) What are the natural and foreseeable side

effects of using this instrument?

Applying the Evaluation Framework

 Bug counts are chosen because they are

ubiquitous. For example, in Mad About

Measurement, Tom DeMarco says: "I can only

think of one metric that is worth collecting

now and forever: defect count.“

 Bug counts have been used for a variety of

purposes, including:

• Private, personal discovery by programmers

of patterns in the mistakes they make.

• Evaluation (by managers) of the work of

testers (better testers allegedly find more

bugs) and programmers (better

programmers allegedly make fewer bugs).

In this research, the discussion to two attributes,

that are popularly "measured" with bug counts.

a. Quality (skill, effectiveness, efficiency,

productivity, diligence, courage, credibility)

of the tester. Whatever the variation, the idea

is that more bugs indicate better testing (and

fewer bugs indicate worse testing).

b. Status of the project and readiness for

release. One of the key release criteria for a

project is an acceptably low count of

significant, unfixed bugs

c. A group of test managers has been

developing this approach for their use, and

many of them are now experimenting with

Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 85

it, to the extent that they can in their jobs.

There are too many simplistic metrics that

don't capture the essence of whatever it is

that they are supposed to measure. There are

too many uses of simplistic measures that

don't even recognize what attributes are

supposedly being measured. Starting from a

detailed analysis of the task or attribute

under study might lead to more complex,

and more qualitative, metrics, but we believe

that it will also leads to more meaningful

and therefore more useful data.

A Software Metrics Case Study

 a case study on gathering process and

performance metrics, which is useful in

improving software engineering processes.

 The metrics gathered by a large multi-

project-team, software engineering

outsourcing company, staffed with over

500 engineers, with clients throughout

USA, Asia and Europe.

 Metric data has been collected over a

period of five years, across hundreds of

projects, with an average project size of 60

man-months, and team sizes from 6-12

members.

PROCESS IMPROVEMENT CYCLE
(AGILIS SOLUTIONS 2009)

Performance Analysis

• Team size increased over plan from 12 to 14

• Actual effort is 43.43% below plan

Deliverable Analyses

• Indicator of where and when problem may

exist in anya project

• 20.26% changes deviation equalizes the

differences

• Data aggregated and compare with

performance norms

Quality Objectives

Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 86

• 20% Improvement in times raises some

questions.

• 43.08% Leakage will cause someone to ask if

quality assurance team actually caught the

defect.

• 40.11% correction cost will definitely raise the

question

Schedule Analyses

 Analyzing schedule is look at the macro view of

the deliverable schedule

 Product represent aggregated deleverables

55.88% schedule delay in code release.

Effort Analyses

• Compare the percent requirement to percent in

design

• Look at the anomalies between actual and

planned percentage

• Requirement took much less effort than

expected

Effort Analyses

• To indicate either the maturity of the

development team or difficulty of a new

technology.

• Too much time testing and correcting spot

poor coding technique

• Handle by strengthening the review process,

training personnel on coding and technique.

CONCLUSION

 There are too many simplistic metrics that

don't capture the essence of whatever it is that

they are supposed to measure.

 There are too many uses of simplistic

measures that don't even recognize what

attributes are supposedly being measured.

 Starting from a detailed analysis of the task or

attribute under study might lead to more

Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 87

complex, and more qualitative, metrics, but

we believe that it will also leads to more

meaningful and therefore more useful data.

 Decision of whether to change a work process,

provide employee training, modify the

estimation tool or some other action subject to

judgement of the evaluator.

 The metrics collected must be specifically

relevant to improving the engineering process.

REFFERENCES

[1] Alain Abra.n, 2010 Software Metrics and

Software Metrology, Copyright IEEE

Computer Society.

[2] Agilis Solution, 2009. Software Metrics Case

Study

[3] Cem Kaner, Senior Member, IEEE, and Walter

P. Bond (2004), Software Engineering

Metrics: What Do They Measure and How

Do We Know?, 10TH International

Software Metrics Symposium, Metrics

2004

[4] IEEE, "IEEE Std. 1061-1998, Standard for a

Software Quality Metrics Methodology,

revision." Piscataway, NJ,: IEEE

Standards Dept., 1998.

[5] Linda Westfall (2005), 12 Steps to Useful

Software Metrics, The Westfall Team,

westfall@idt.net

[6] N. E. Fenton, 1999. "Software Metrics:

Successes, Failures & New

Directions,"presented at ASM 99:

Applications of Software Measurement,S a

n J o s e , C A ,

http://www.stickyminds.com/s.asp?F=S26

24_ART_2

[7] N. E. Fenton and S. L. Pfleeger, "Software

Metrics: A Rigorous and Practical

Approach," 2nd Edition Revised ed.

Boston: PWS Publishing, 1997.

