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Abstract—An earthquake is a sudden, rapid shaking
of the ground caused by the shifting of the Earth’s
tectonic plates. Earthquakes pose serious threats that cause
economic losses and casualties. To mitigate such risks, it
is crucial to better understand earthquakes through data-
driven analysis. In this paper, we propose an approach
to time series analysis over earthquake data, consisting
of two steps: exploration and prediction. The exploration
step relies on exploratory data analysis (EDA) comprising
descriptive statistics and data visualization, whereas the
prediction step focuses on how to predict the number of
earthquakes for the following years. We perform our time
series analysis using various machine learning techniques
over a global earthquake dataset from 1965-2016 and
report insights as well as lessons learned from the study.

Keywords—Earthquake, Time Series Analysis, EDA,
Machine Learning, Linear Regression, LSTM, Prophet

I. INTRODUCTION

An earthquake is a natural phenomenon occurring
when there is a sudden, rapid shaking of the ground.
Earthquakes are usually caused by the breaking
and displacement of rocks below Earth’s crust [1].
The deadliest earthquake ever recorded happened
in 1556, striking the province of Shaanxi, China,
and claiming the lives of about 830,000 people at
the time.! In Indonesia, over 200,000 people lost
their lives in the 2004 Indian Ocean earthquake and
tsunami. Without a doubt, earthquakes may bring

Uhttp://content.time.com/time/specials/packages/completelist/0,
29569,1953425,00.html
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tremendous (negative) impacts to human lives and
also the economy.

In light of the (potential) damage of earthquakes,
a number of studies have been done in order to
better understand how, when, and where earth-
quakes may occur. Rouet-Leduc et al. [2] predicted
so-called labquakes (that is, earthquakes in the
laboratory settings) using machine learning (ML)
techniques. The predictions were made based on
the immediate characteristics of the acoustic signal
without considering its history. In [3], Martinez-
Alvarez et al. proposed the use of seismicity in-
dicators to predict earthquakes in Chile and the
Iberian Peninsula based on the application of ar-
tificial neural networks (ANNs). The work relied
on Weka,? an off-the-shelf ML tool, and focused
on forecasting earthquake occurrences in a reduced
area with a temporal horizon of 5-7 days. Asim et
al. [4] employed an earthquake prediction system
based on Support Vector Regressor (SVR) and Hy-
brid Neural Network (HNN) on Hindukush, Chile,
and Southern California regions. Anagnostopoulos
and Moretti [5] proposed assessment criteria as to
how earthquakes may affect the overall safety of
a building based on the damage of its compo-
nents. Their work may serve as guidelines regarding
which residential areas are better/less prepared for
earthquakes (should they occur). Other efforts in
predicting earthquakes also existed, which were

Zhttps://www.cs.waikato.ac.nz/ml/weka/
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based on electromagnetic waves, seismic waves,
foreshocks, seismicity & chemistry changes, or plate
tectonic settings, as surveyed in [6]. Given these
research results, predicting earthquakes in general
is, however, still deemed to be a difficult (if not
impossible) task [7].

Time series analysis is performed over observa-
tions collected in time sequences [8]. Earthquakes
are inherently time series data, as their occurrences
can be grouped by time (e.g., year). In this paper,
we propose an approach to time series analysis
over earthquake data, consisting of two steps: explo-
ration and prediction. Our exploration step makes
use of descriptive statistics as well as data visualiza-
tion, while our prediction step applies different ML
techniques to forecast the number of earthquakes in
future years. We perform our time series analysis
over a global earthquake dataset in the period of
1965-2016, provided by the US Geological Sur-
vey [9]. We hope that the exploration and prediction
results of this work may shed some light on how
to approach the problem of analyzing earthquakes
wrt. specificities in terms of tectonic plates and time
Zones.

The rest of the paper is structured as follows.
Section II provides preliminaries, while Section III
describes the research methodology. Section IV
reports and visualizes our exploration. Section V
discusses how we predict the number of earthquakes
in the future based on past trends. We conclude our
work in Section VI.

II. PRELIMINARIES

Earthquakes. Earthquakes are mainly studied in
geology, which is the science that deals with the
composition and dynamics of the Earth. The Earth’s
lithosphere (i.e., outer layer) is composed of tectonic
plates, such as the Pacific Plate, the North American
Plate, and the African Plate. An earthquake is an
intense shaking of Earth’s surface, caused by the
shifting of the Earth’s tectonic plates. The Ring
of Fire is a seismically and volcanically active
area where the Pacific Plate meets its neighboring
tectonic plates, accounting for around 90% of the
world’s earthquakes.?

3https://www.nationalgeographic.org/article/plate- tectonics-ring-
fire
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Exploratory Data Analysis. Exploratory Data Anal-
ysis (EDA) is a (graphical) approach for analyz-
ing data in order to learn data characteristics, de-
tect outliers/anomalies, and test underlying assump-
tions [10]. EDA provides guidelines as to how to
look and interpret data, and is usually a precursor
to more advanced data analysis techniques (e.g.,
statistical modeling and machine learning). Visual-
ization techniques in EDA often leverage the use of
raw data plots, such as histograms and barcharts,
as well as simple statistical plots, such as boxplots
and meanplots. With respect to earthquake data,
which is temporal and spatial by nature, EDA is
also equipped with line charts (suitable for showing
data changes over time) and map plotting (suitable
for visualizing the spatial aspect of data). Details
regarding how we perform EDA over earthquakes
are given in Section III.

Machine Learning. Machine Learning (ML) con-
cerns how to build a model from data/experience.
Supervised learning is an ML approach where a
predictive model is learned from labeled (train-
ing) data. In this paper, we specifically rely on
two supervised learning methods: linear regression
and Recurrent Neural Networks (RNNs). Linear
regression assumes a linear relationship between the
input variables and a numerical output. A linear
regression task involves the finding of the best-
fitting straight line through data points. RNNs are
a neural-network family with cyclic connections,
suitable to model sequence data. Long Short-Term
Memory (LSTM) is an improved RNN developed
to overcome RNN’s modeling weaknesses (e.g.,
vanishing gradients) [11]. LSTM has been applied
to various domains [12], such as sentiment classifi-
cation, handwriting recognition, and time series pre-
diction, and is often regarded as a forefront in deep
(machine) learning. In addition to linear regression
and RNNs, we also use Prophet [13], a forecasting
modeling approach by Facebook. Prophet is based
on an additive model that is able to fit to non-
linear trends. Prophet is claimed to be robust to
missing data, trend shifts, and outliers. As for model
evaluation, we will use K2, a common metric for
evaluating time series. The metric R? measures the
proportion of variation over a dependent variable
that can be attributed to the independent variables.
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III. METHODOLOGY

In this section, we describe the methodology
of our research. We first introduce the earthquake
dataset used in this research, followed by explaining
approaches to explore and make predictions based
on the dataset.

Dataset. For our work, we use the Significant Earth-
quakes dataset, provided by the U.S. Geological
Survey [9]. The dataset consists of 23,412 recorded
global earthquake occurrences with magnitude of
5.5 or higher from the period between 1965 and
2016. The dataset consists of 21 columns, which can
be categorized into the main ones (i.e., Date, Lati-
tude, and Longitude) and the geology-specific ones
(like Azimuthal Gap, Depth Seismic Stations, and
so on). As we investigate mainly the temporal and
spatial aspect of earthquakes, we only take the main
columns. Additionally, we also rely on a dataset
about plate boundaries by Peter Bird [14], which
has been parsed and cleaned.* This dataset consists
of earth plate coordinates as well as boundaries, and
can be used to group earthquakes by plates. We will
later refer to this dataset as the GeoJSON dataset.

Exploration. First of all, we need to explore and
see how our dataset looks like. The exploration
step relies on data visualization, so that we may
learn the characteristics of our earthquake data. The
visualization is done by drawing tables, graphs, and
plot earthquake locations on the map.

In this paper we propose two categories of visu-
alization based on the spatial nature of earthquakes.
The first categorization is based on earth plates.
The GeoJSON dataset, as mentioned before, con-
tains boundary coordinates of earth plates from all
over the world. To determine on which plate an
earthquake occurs, we check whether the earthquake
coordinate is contained within the polygon shape
of some plate. The second category is based on
time zones. We rely on the Greenwich Mean Time
(GMT) standard to divide the earthquake locations
into 24 time zones.

Prediction. Here, we propose an approach to predict
the number of earthquakes in a certain year based
on the number of earthquakes in the previous years.

*https://github.com/fraxen/tectonicplates
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The workflow of our prediction step is shown in
Fig. 1. As previously mentioned, earthquakes can
be grouped based on two categories, resulting in: 52
groups based on earth plates, and 24 groups based
on time zones. Moreover, for each group there are
two time series variants: the normal and stationar-
ized time series. A stationary time series would have
constant statistical properties (e.g., mean, variance)
over time, which might improve its predictability.
We rely on three different prediction modeling tech-
niques: linear regression, LSTM, and Prophet. In
total, there are 152 model settings: 52x2 models
from earth plate categorization and 24x2 models
from time zone categorization.

All the steps mentioned above are implemented
using Python with external libraries. We use pandas®
for feature engineering, matplotlib® and folium’ for
data visualization, and keras® and scikit-learn® for
machine learning.

IV. EXPLORATION

In this section, we report on the results of our
time series exploration over the global earthquake
dataset. Fig. 2 plots the earthquake locations (based
on the earthquake coordinates) on the world map
along with plate boundaries. At first glance, we
observe that most earthquakes occurred near the
plate boundaries. This might be due to the existence
of subduction zones at plate boundaries, which
may generate many earthquakes [15]. Moreover, we
notice that different plate boundaries have differ-
ent earthquake frequencies. For example, there are
much more earthquakes happening on the Pacific
Plate and Australian Plate than, e.g, the African
Plate. This phenomenon could be due to the fast
slip-rate characteristics of those two plates [15].

Fig. 3 visualizes the number of earthquakes per
year from 1965 to 2016. In general, we observe an
increasing trend of earthquake occurrences, reaching
the peak at 712 occurrences in 2011. Note that the
year 2011 is when the Great Tohoku earthquake
happened, considered to be the strongest earthquake

Shttps://pandas.pydata.org/
Shetps://matplotlib.org/
"https://python-visualization.github.io/folium/
Bhttps://keras.io/
*https://scikit-learn.org/stable/
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Fig. 1. Flowchart of Earthquake Prediction

Fig. 2. Earthquakes and Plate Boundaries Plotted on the World Map

recorded in the Japan history.'? Also, we notice that
the earthquake occurrences from 1990 onwards tend
to fluctuate more. This might be due to the more
frequent occurrences of large earthquakes (with a
magnitude of > 8.3 My) in the following years after
1990 [16] along with the theory of energy release
in aftershocks [17].

Now, we would like to examine the interplay
between the spatial and temporal aspect of earth-

10https://www.nationalgeographic.org/thisday/mar1 1 /tohoku-
earthquake- and-tsunami/
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408

Authorized licensed use limited to: Universitas Indonesia. Downloaded on February 02,2021 at 14:33:39 UTC from IEEE Xplore. Restrictions apply.



quakes. As previously observed, the earthquake oc-
currences are unevenly distributed across tectonic
plates. Fig. 4 gives a closer look at the number
of earthquakes per year in three different plates:'!
the Sunda Plate, which is tectonically active; the
African Plate, which is tectonically passive; and the
Burma Plate, which exhibits irregularity. As seen
in the figure, the number of earthquakes in the
Sunda Plate is consistently higher than that of the
African Plate during the whole period. Indeed, on
average there are about 40 earthquakes per year in
the Sunda Plate compared to just 6 in the African
Plate. Furthermore, the average number of annual
earthquakes per plate is around 9, so the Sunda
Plate significantly deviates from the majority. As for
the Burma Plate, we observe an anomaly: though
it generally has a low number of earthquakes per
year, in the year of 2004 and 2005, there are
spikes in the number of earthquakes, that is, 78
and 77, respectively. We suspect that this irregu-
larity is associated with the magnitude 9.1 Sumatra-
Andaman earthquake on December 26, 2004, which
took place on the interface between the India and
Burma Plates.'?

As an alternative to the tectonic plate categoriza-
tion, we also explore the grouping of earthquakes
based on time zones. Fig. 5 shows the number of
earthquakes per year on the time zones of GMT+10,
GMT-10, and GMT+6. The figure exhibits a similar
pattern as that in Fig. 4:13 the GMT+10 time zone
has a significantly higher number of earthquakes
(averaging at 67 of annual earthquakes) than that of
the GMT-10 time zone (averaging at just 5 of annual
earthquakes) for the whole period, and the GMT+6
time zone (where the Burma Plate is located) has
an anomaly in year 2004 and 2005.

V. PREDICTION

In this step, we aim to predict the number of
earthquakes in the future based on that of past years.
The implementation of the prediction follows the
methodology (see Section III). In particular, we vary

"'We take these three as representatives out of all the 52 plates.

11hli:ps:»"J’t&w\"'v\‘f.l.lsgs.go\n‘nevers‘findia.n-or;exl.n-tsumimi-n‘:rxlt‘:mbert':d-
scientists-reflect-2004-indian-ocean-killed-thousands

3By similar, we mean that there are groups with a high number of
earthquake occurrences, groups with a low number, and groups with
an anomaly.
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Fig. 6. Input-Output Pair for Window Size 3

the window size for training (and testing) from 3
to 5. Fig. 6 illustrates the input-output pair for the
window size of 3. In the figure, the number of
earthquakes in year y is predicted based on the
number of earthquakes in the past 3 years. The
input-output pairs for the other window sizes follow
the same scheme. Note that the window size settings
would only apply to linear regression and LSTM,
while Prophet does not have such a window size
setting (as per the Prophet documentation).'* When
building our models, we set the earthquakes in year
1965-2006 as the training data, and the earthquakes
in year 2007-2016 as the testing data.

Let us now describe the evaluation results. Note
that there are mainly two categorizations, based on
tectonic plates and time zones. Table 1 and Table 2
show the average of our model evaluation for repre-
sentative plates and time zones, respectively.’> We
take the window size of 3 to be shown in Table 1
since the overall prediction performance for that size
wrt. plate categorization is better compared to the
other sizes. On the other hand, wrt. time zones the

“https://facebook.github.io/prophet/

We take representatives as the raw data is too large to be shown
here.
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Table 1
EVALUATION OF PREDICTION RESULTS FOR PLATE CATEGORIZATION

Model Plate Normal Data  Stationarized Data
Niuvafo’ou 0.19 0.65

LSTM, Easter 0.04 0.63
Window Size 3 Pacific -0.71 0.21
Burma -3168.72 -238.56

Niuafo’ou -0.22 0.50

Linear Regression, Easter -0.08 0.34
Window Size 3 Pacific -0.87 0.47
Burma -138.70 -17.31

Niuafo’ou -0.01 0.01

Easter -0.20 -0.10

Prophet Pacific 047 004
Burma -15.54 -0.21

Table 2

EVALUATION OF PREDICTION RESULTS FOR TIME ZONE CATEGORIZATION
Model Plate Normal Data  Stationarized Data
GMT+1 -0.04 0.68
LSTM, GMT-7 -0.03 0.66
Window Size 4 GMT+10 0.15 0.62
GMT+6 -135.32 -1591.69
GMT+1 0.08 0.21
Linear Regression, GMT-7 0.16 0.71
Window Size 4 GMT+10 0.02 045
GMT+6 -148.81 -35.18
GMT+1 -1.30 -0.91
GMT-7 -0.98 -0.23
Prophet GMT+10 1.04 094
GMT+6 =277 -0.09

window size of 4 has the best performance, hence
shown in Table 2. Note we regard the Burma Plate
and the time zone GMT+6 (where the Burma Plate
resides) as an outlier, and that we do not consider
such an outlier in computing the overall prediction
performance. We nevertheless show the Burma Plate
results as a reference.

In both categorizations, we observe from the re-
sults that the stationary transformation does improve
the prediction performance in terms of R2. For
instance, the R? scores for the Niuafo’ou Plate and
the Pacific Plate in Table 1 increase from 0.19 to
0.65 and -0.71 to 0.21, respectively.

Now, let us compare the prediction performance
in terms of modeling techniques. Both tables show a
mixed observation: that in some plates/time zones,
LSTM performs better that linear regression, and
the other way around in other plates/time zones.
Nevertheless, the average R? among all the plates
in our stationarized data for LSTM is lower than

978-1-7281-9279-6/20/$31.00 ©) 2020 IEEE

that of linear regression (i.e., -0.35 vs. 0.18), and the
average R? wrt. all the time zones for LSTM is also
lower compared to linear regression (i.e., -0.14 vs.
0.19). The Prophet-based modeling, however, does
not exhibit a satisfactory result in our experiments.

A closer look at the comparison between the
stationary-model prediction for the window size of 3
of LSTM and linear regression, and the ground truth
is exemplified in Fig. 7. The x-axis of the figure
represents the year, whereas the y-axis represents
the difference of the number of earthquakes from
the previous year. Both the models are able to
capture the earthquake fluctuations, though the exact
predicted number of earthquakes still deviates from
the ground truth.

Let us sum up the results in the prediction step.
First, the stationary transformation may improve
the prediction performance. Second, plates and time
zones may vary in their prediction results. Finally,
though in some cases LSTM could perform better
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Fig. 7. Comparison of Stationary Prediction and Ground Truth for
the Pacific Plate

than linear regression, in general linear regression
still has a better performance than LSTM, possibly
due to the small size of data.'s

VI. CONCLUSIONS

Analyzing earthquakes is indeed a challenging
task. Nevertheless, we have proposed an approach to
time series analysis over earthquake data, consisting
of two steps: exploration and prediction. As for
the exploration step, we have made visualizations
using map plotting and line charts. From these, we
have gained insights, for example, the earthquake
distribution on interfaces between plate boundaries
(particularly wrt. convergent boundaries, such as the
Pacific Plate and Australian Plate, and divergent
boundaries, such as the African Plate and Ara-
bian Plate)!’, and the temporal characteristics of
earthquakes. As for the prediction step, we have
compared the performance of prediction models in
terms of normal vs. stationarized data, plate vs. time
zone categorizations, and modeling techniques (i.e.,
LSTM, linear regression, and Prophet). The pre-
diction models basically have various performance
results depending on the plate and time zone.

Future directions include the inclusion of other
time series modeling techniques (e.g., ARIMA),
more fine-grained time units for prediction, and
the incorporation of geology-specific aspects in the
exploration and prediction.

1S STM tends to require large data than that of linear regression.
"By convergent and divergent, we mean colliding and spreading,
respectively.
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