Positive Impact of Ethyl Acetate Fraction of *Kalanchoe pinnata* on Anti-Smith Antibody and T Reg in Lupus Mice

(Dampak Positif Fraksi Etil Asetat dari *Kalanchoe pinnata* terhadap Antibodi Anti-Smith dan Sel T Reg pada Mencit Lupus)

NIKEN INDRIYANTI1,2*, JUNAIDI KHOTIB2, JOEWONO SOEROSO3

1Faculty of Pharmacy, Mulawarman University, Jl. Penajam Kampus Unmul Gunung Kelua, Samarinda, East Kalimantan
2Faculty of Pharmacy, Universitas Airlangga, Jl. Dharmawangsa Dalam, Surabaya, East Java
3Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo, Surabaya, East Java

Submitted 22 Desember 2016, Accepted 20 Februari 2017

Abstract: *Kalanchoe pinnata* (Lmk) Pers is a medicinal plant that has many activities, such as antioxidant, anti-inflammation and immunosuppressant activities. Based on our previous study, aqueous extract of this plant leaves has a repairing effect on lupus nephritis model. The expected active compounds are flavonoids. Those compounds are separated in the ethyl acetate fraction. Therefore, this study observed the activity of the ethyl acetate fraction of *Kalanchoe pinnata* (Lmk) Pers on reducing the level of Anti-Smith autoantibody and the regulation function of CD4\(^+\)CD25\(^+\) T reg in lupus mice. The experimental groups were a negative control group that received placebo, ethyl acetate fraction of *Kalanchoe pinnata* (Lmk) Pers (EF-KP) group and a positive control group that received cyclophosphamide. The anti-Sm level was measured by using indirect ELISA. The spleen cells were prepared for CD4\(^+\)CD25\(^+\) T reg assay using flow cytometry. The result of this experiment was a reduction of anti-Sm antibody level. The decrease was sufficient to stabilize lupus condition. The flow cytometry assay results showed the increase in the relative percentage of CD4\(^+\)CD25\(^+\) T reg. This function can inhibit the reactivity of autoantigens, so it prevents tissue and organ damage from lupus. However, further research is needed to observe the complete mechanism.

Keywords: *Kalanchoe pinnata* (Lmk) Pers, lupus, anti-Sm, CD4\(^+\)CD25\(^+\) T reg, immunosuppressant.

Kata kunci: *Kalanchoe pinnata* (Lmk) Pers, lupus, Anti-Sm, sel T CD4\(^+\)CD25\(^+\), imunosupresan.

* Correspondent author, Phone: 0541-749343
 email: niken@farmasi.unmul.ac.id
INTRODUCTION

THE MEDICINAL plant is a promising topic for lupus drug development. One of the potential herbal medicines is Kalanchoe pinnata (Lmk) Pers. According to previously reported research, flavonoid compounds that expected to be separated in ethyl acetate fraction have immunosuppressant, antiinflammation and antioxidant activity(2,3,8,9). Compounds found on Kalanchoe pinnata (Lmk) Pers are quercetin glycosyl conjugates, rutin, stigmasterol, 3,8-dimethoxy-4,5,7-trihydroxyflavone, friedelain, epigallocatechin-3-o-syringate, luteolin, kaempferol and quercetin(1). The ethyl acetate fraction activity needs to be tested using in vivo model. Lupus has many manifestations. One of them is the presence of specific antibody for lupus, i.e., Anti-Smith antibody, anti-ribosomal P and anti-dsDNA(9). These autoantibodies attack autoantigens from self. Then, this immune disorder develops as systemic inflammation. Autoantigens attached by Anti-Sm are U1, U2, U4-6 snRNP (protein B’, D, E, F, G)(9). This antibody present in Pristane-treated mice CD4+CD25+ could be a trigger that makes a cell population induce autoimmune diseases, in immunocompromised patients. High CD25 expression (CD4+CD25+) on Treg cells shows that there is an immunosuppressive activity(10).

This research observed how the active compounds in ethyl acetate fraction of Kalanchoe pinnata (Lmk) Pers impacted on the Anti-Smith antibody level in the blood. In addition, the spleen cells were isolated to measure the percentage of CD4+CD25+ Treg in lupus mice.

MATERIALS AND METHODS

MATERIALS. Kalanchoe pinnata (Lmk) Pers fresh leaves were taken from a cultivation farm in Trenggalek, East Java. It was identified botanically by Conservation Unit of Indonesian Institute of Science, Purwodadi with the identification number of 0284/IPH.06/II/2015. Female Balb/c mice aged four weeks were received from LPPT UGM. These mice were species pathogen free with the certificate number of 352/LP3HP/29/VII/2015. TMPD (Pristane) (Cat. Number P2870 SIGMA, >98% purity) was purchased from Sigma-Aldrich, Singapore. The Mouse anti-Smith antibody ELISA Kit (Code: CSB-E15976) was purchased from Cusabio via CV. Kristallindo Biolab as an Indonesian supplier. The anti-CD4 and anti-CD25 were obtained from Biogenesis, USA and purchased by Laboratory of Molecular Biology, Biology Department of Brawijaya University. The PBS and aqua bidestillata (Ikaparhindo) were obtained from LDB Laboratory. The Verify reagent strips for urinalysis were purchased from CV. Rachmandjaya Surabaya. The ethyl acetate (pro analysis grade) was obtained from Merck via PT Dianum Surabaya.

METHODS. The Flavonoid-Rich Compound in Aqueous Extract of Kalanchoe pinnata (Lmk) Pers. Leaves were Separated Using Liquid-Liquid Extraction (LLE). The solvent was aquadest and ethyl acetate. The profiling was done by using a UPLC-QTOF-MS/MS system (Waters). Then, the rutin profile was analyzed by using densitometry method with Camag 3 densitometer.

The experimental groups were a negative control group that received placebo, ethyl acetate fraction of Kalanchoe pinnata (Lmk) Pers (EF-KP) group with a dose that similar to 400 mg/kg BW of crude extract and a positive control group that received cyclophosphamide with a dose of 1 mg/kg BW. The treatment lasted for 21 days. The proteinuria measurement was done every 7 days. At the end of the experiment, mice were sacrificed. The blood plasma was used for measuring the Anti-Sm level by using indirect ELISA. Then, the fresh spleen cells immediately prepared to be measured by using flow cytometry method. This CD4+CD25+ Treg measurement would be analyzed using BD CellQuest program. Ethical clearance of this research was approved by ICUC of Veterinary Faculty on January 12, 2016, with number 526-KE.

RESULTS AND DISCUSSIONS

RESULTS. Profiling of Ethyl Acetate Fraction of Kalanchoe pinnata (Lmk) Pers Leaves. The ethyl acetate fraction of Kalanchoe pinnata (Lmk) Pers leaves contained a less amount of compounds than the crude extract. It was separated well using LLE methods. The profile was obtained using UPLC-QTOF-MS/MS system. The chromatogram of this fraction is shown in Figure 1. Based on the previous reports(4,5,11), the compounds which responsible for the anti-inflammation and antioxidant activity are quercetin glycosyl conjugates. At the MS/MS system, the glycosides are fragmented become quercetin and its glycosides. The peak at the retention time of 2.74 had monomolecular weight 302 Da, identified as quercetin. The mass spectrum is in Figure 2.

The quercetin found in the EF-KP was not a pure quercetin, but it was a glycoside form. For the
profiling purpose by using thin layer chromatography, we decided to use rutin as the standard (Figure 3). The spot which similar to rutin spot was analyzed by using a densitometer. The result is shown in Figure 4. The chromatogram shows the presence of rutin in EF-KP sample. It can be concluded that rutin and quercetin are compounds found in the EF-K

Impacts on Anti-Sm Antibody Level. Pristane is a hydrocarbon that could induce anti-nRNP, anti-Sm, anti-Su, anti-dsDNA, glomerulonephritis, and arthritis autoantibodies in mice\(^{(12)}\). The presence of these autoantibodies was triggered by a breakdown of immune tolerance. Genetic, hormonal and immunology factor together with environmental factor would enhance the disease onset and severity. Antibody modulation in Pristane-treated mice regulated by Neutrophil Gelatinase-Associated Lipocalin (NGAL). After the injection of Pristane, NGAL expression present in serum and spleen. Mice that lack in NGAL expression easily induced to be autoimmune mice\(^{(13)}\).

The mice used in this experiment were the same strain, sex, and age. The expectation was the similar expression of NGAL between mice. The anti-Sm autoantibody level measured using indirect ELISA. The result is in Table 1. This result shows that the ethyl acetate fraction of *Kalanchoe pinnata* (Lmk) Pers leaves could slightly inhibit the production of Anti-Sm. The inhibition is not as high as positive control activity, neither statistically significant. However, the inhibition of this autoantibody production predicted to stabilize lupus patient condition.

The measurement of Anti-Sm antibody level was done previously on lupus model research\(^{(8,14)}\). No other published article says about the level of Anti-Sm after treatment using a drug candidate. However, the autoantibody level in human decreases after 6-month treatment.

In this research, the cyclophosphamide was used as a standard drug. Its off-label activity as immunosuppressant can decrease lupus manifestation. In this observation, the decreasing effect on Anti-Sm by means of cyclophosphamide administration was not drastic. This result was enough because there was not found other materials that had an extreme decreasing on the Anti-Sm level.
that the quercetin glycosides in the crude extract of *Kalanchoe pinnata* (Lmk) Pers is a significant compound. Unfortunately, the result of the previous experiment did not show a good value. Therefore, we used another standard, rutin. The result is in Figure 3-4. The chromatogram indicates the presence of rutin.

Impacts on Anti-Sm antibody. Lupus-specific antibody productions increase as the increasing on lupus triggering factor. It would increase the severity of targeted organs (9,18). On the Pristane-treated mice, antibody occurred on the 2nd month is anti-nuclear antibody (ANA). Then, the manifestation continued to the production of lupus-specific antibodies until the 6th month (8). A new antibody occurred after the 6th month is not reported in any publications.

In this research, the anti-Sm antibody is decreased, but the decrease is not significant (Table 1). The reduction of antibody level is a challenging effort as long as the presence of the triggering factors and the feedback-loop mechanisms. The fact that antibody level did not decrease after treatment is not only a problem in herbal medicine but also is a limitation on the conventional therapy. The non-specific immunosuppressant could not decrease antibody level drastically.

Based on the previous publication, the antibody level on the 2nd month is still low so that it could not make any changes on the organ structure and function. This fact could be explained by the immune homeostatic mechanism that could inhibit the immune complex formation. The level and the kind of antibodies develop by time as a result of feedback-loop mechanisms as reported by Rottmann and Willis (2005) (9). At a point after the 5th month, the homeostatic system is unable to make any immune balance. The result is the formation of immune complexes at targeted organs (18). The pristane targeted organs is kidney, joint, and lung (9,14,19,20). Modulating the factors that could increase the activity of B cells will reduce the immune complexes. The B cells activities are mostly triggered by T cells. The T cells are regulated by regulatory T cells (T regs). A large number of T regs would control the T cells reactivity (10).

Impacts on T Regs. T regs are biomarkers that present in a low expression in autoimmune diseases. The T regs have an optimal regulation function on the normal state to reduce the auto-reactive T cells (15).

![Figure 5. Profile of the relative percentage of CD4+CD25+ T reg cells in the spleen of control negative group (a), EF-KP group (b), and positive control group (c).](image)

Table 1. Anti-Sm level in each experimental group.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean of Anti-Sm level (μg/mL) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>111.15 ± 12.08</td>
</tr>
<tr>
<td>EF-KP</td>
<td>107.22 ± 16.02</td>
</tr>
<tr>
<td>Positive control</td>
<td>100.74 ± 4.99</td>
</tr>
</tbody>
</table>

Table 2. Profile of the relative percentage of CD4+CD25+ T reg cell.

<table>
<thead>
<tr>
<th>Group</th>
<th>CD4+CD25+ T reg cells (%) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>3.01 ± 3.43</td>
</tr>
<tr>
<td>EF-KP</td>
<td>5.05 ± 7.07</td>
</tr>
<tr>
<td>Positive control</td>
<td>3.26 ± 4.92</td>
</tr>
</tbody>
</table>

DISCUSSIONS. The Ethyl Acetate Fraction of Kalanchoe pinnata (Lmk) Pers Profile. This research using ethyl acetate fraction of *Kalanchoe pinnata* (Lmk) Pers (EF-KP) in line with an anti-inflammation mechanism that previously used by Fereira (2014) (3). The EF-KP profile was detected by using UPLC-QTOF-MS/MS tandem instrument. This pattern is important as an identity of the multiple compounds found in EF-KP. The chromatogram peaks represent the number of compounds in the material. The peaks not only single peak but also accumulated peak depends on how many compounds found at each retention time. The area of the peak determines the level of a chemical compound semiquantitatively.

The method chosen in the next profiling was densitometry. The standard used is quercetin as previously reported by Muzitano (2011) (17) says
low T regs functions impact on the unregulated T cells activity for triggering B cells activity.

In this research, marker used was CD4+CD25+ T reg. This T reg plays a central role in the autoimmune disease as reported by Scheniecker (2010)(10). The result (Table 2 and Figure 5) shows an increase on the relative percentage of CD4+CD25+ T reg of EF-KP group.

It indicated that the active compounds in EF-KP could increase the T cells regulation function. This effect will give a benefit for lupus patient because a large number of CD4+CD25+ T reg will make the reactive T effector cells decrease, then it maintains the self-tolerance. There is some evidence that CD4+CD25+ regulatory T cells have an ability to prevent the development of auto-reactive cells (21-27).

CONCLUSIONS

The research concluded that the ethyl acetate fraction of Kalanchoe pinnata (Lmk) Pers has a capability to slightly reduce the Anti-Sm antibody level, and increase the percentage of CD4+CD25+ T reg. The activities would maintain the immune system stability. However, further research to observe the effect on other biomarkers needs to be conducted.

ACKNOWLEDGEMENT

This research was funded by DIPA PNBP 2015 Faculty of Pharmacy, Mulawarman University.

CONFLICT OF INTEREST

Declared none

REFERENCES

