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Abstract: Protein is one of the essential macronutrients required by all living things. The breakdown of
protein produces monomers known as amino acids. The concept of conjugating natural compounds
with amino acids for therapeutic applications emerged from the fact that amino acids are important
building blocks of life and are abundantly available; thus, a greater shift can result in structural
modification, since amino acids contain a variety of sidechains. This review discusses the data available
on amino acid–natural compound conjugates that were reported with respect to their backgrounds, the
synthetic approach and their bioactivity. Several amino acid–natural compound conjugates have shown
enhanced pharmacokinetic characteristics, including absorption and distribution properties, reduced
toxicity and increased physiological effects. This approach could offer a potentially effective system of
drug discovery that can enable the development of pharmacologically active and pharmacokinetically
acceptable molecules.
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1. Introduction

With the passage of time, the need for more effective therapeutics is increasing, with
more diseases being discovered and more health-related problems being understood
through advanced research and studies [1]. Often, natural resources from plants, ani-
mals and microorganisms are described as suitable candidates [2], and many established
medicines originating from natural products were inspired by the chemical synthesis of
biologically active materials from natural products. The molecular framework of natural
compound synthesis is recognised as an abundant resource for medicinal chemistry and
drug development [3–5].

Not all natural products are unsuitable for use as medications [6–8]. Some of them may
be considered as potentially useful compounds if they are proven to have certain favourable
pharmacological and pharmacokinetic characteristics [9,10]. Many natural compounds,
however, require structural modifications through chemical synthesis approaches to meet
the required criteria of effective and safe therapeutics [11–13].

Conjugation with amino acids is one of the means of remodelling the structure of
natural compounds [14]. Amino acids are chosen based on the premise that they are the
most quintessential monomers of living systems [15,16]. Amino acids are also the primary
construction blocks for proteins, as well as the substance that sustains biological activities,
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in addition to playing integral roles in living organisms [17,18]. Moreover, as amino acids
have various sidechains, structural alteration is attainable, with a broader shift [19].

The manipulation of amino acid is relatively simple, with a myriad of possible targeted
pharmacological activities. To date, several amino acid–natural compound conjugates have
been reported that involve curcumin, astaxanthin and quercetin, among others [20–22]. The
conjugations aimed to enhance the pharmacological activities, lessen the toxicity, improve
the target specificity and increase absorption via peptide transporters [23–25].

This review examines the available literature on amino acid–natural compound conjuga-
tions. The method of conjugation is discussed and analysed to gain insightful information on
the production of amino acid–natural compound conjugates for future medical applications.

2. Natural Compounds Conjugated with Amino Acids

Various natural compounds have undergone structural modifications and been evalu-
ated as potential therapeutics. This review explores all the relevant studies on this subject,
with a specific interest in semisynthetic modifications of the natural compounds. The
purpose, synthetic strategies and biological outcomes are also discussed.

2.1. Alkaloids

Alkaloids have a wide range of structural variations. The presence of a basic ni-
trogen atom is the common denominator. The nitrogen can be a primary, secondary or
tertiary amine [26]. Analgesic (codeine), central nervous system depressant (morphine),
anti-hypotensive (ephedrine), anticholinergic (atropine), antiemetic (scopolamine) and
antimalarial (quinine) products are among the examples of natural-based pharmacological
agents in this class [27].

However, alkaloids have unfavourable physical and chemical characteristics, such
as a low solubility, low stability at physiological pH, low oral absorption and low overall
bioavailability, in addition to having a quick clearance from the body. These problems
reduce the efficacies of alkaloids [28,29]. To solve these issues, a number of alkaloid deriva-
tives conjugated with amino acids have been developed, such as piperine, camptothecin
and quinine.

2.1.1. Piperine

Piperine (Figure 1) is an alkaloid found in various Piperaceae family, including Piper
nigrum, Piper longum, Piper chaba, Piper guineense and Piper sarmentosum [30,31]. Piperine is
responsible for the peculiar biting feeling associated with black pepper. Black pepper is
traditionally used in therapeutics and preservatives and for its scent, in addition to being
widely used in human diets [32,33].
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Figure 1. Piperine.

The synthesis of amino acid–piperine conjugates has been described as having the
potential to produce antileishmanial [34] and anticancer agents [35]. As piperine is natu-
rally abundant, this compound is a favourable choice for manipulation via this approach.
Furthermore, the chemical reactions and processes involved are simple and straightforward,
making the scaled-up manufacturing of piperine derivatives highly possible [35].

The inhibitory activity and the mode of action of piperine against Leishmania dono-
vani [36] can be enhanced if the piperine is in the form of oil-in-water emulsion [37] or
mannose-coated liposomes [38]. In addition, amino acid esters have also demonstrated
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inhibitory actions against Leishmania amazonensis and Leishmania mexicana following their
accumulation in the phagolysosomes of these parasites [39].

The synthesis of amino acid–piperine conjugate was divided into three series (Scheme 1).
First of all, piperine was converted to piperic acid via the hydrolysis of its amide bond.
The carboxyl group in piperic acid provides a place for the formation of a covalent bond
with the amino acids through the formation of a new amide bond. Piperic acid was then
conjugated to a protected amino acid using menthane-sulfonyl chloride, CH3SO2Cl, in
CH2Cl2 at 0 ◦C to produce piperoyl–amino acid methyl ester conjugates. The desired
piperoyl–amino acid methyl ester conjugates (3–7) were reported to be in the range of
40–75% yields. Later, deprotection was conducted using Al2O3 in microwave-assisted
solid phase until the ester group was converted into free carboxyl groups (8–12) with
70–80% yields. The other analogues are the saturated derivatives of the conjugate of the
first series. The approach used for the synthesis of these analogues was carried out in two
ways, namely, (i) the direct hydrogenation of the first series’ conjugate, and (ii) the initial
hydrogenation of piperic acid to give tetrahydropiperic acid, followed by the conjugation
of the saturated piperic acid with amino acid methyl esters [34] (Scheme 2).
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All of the conjugates showed potential against both the amastigote and the promastig-
ote forms of the parasite (Table 1). The IC50 values of piperine against the amastigotes and
promastigotes were 0.7 and 2.5 mM, respectively. When compared with piperine or amino
acid esters, the piperoyl–amino acid ester conjugates (3–7) exhibited a significant increase
in their activity.
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Table 1. Antileishmanial activity and cytotoxicity of piperoyl–amino acid conjugates. (1) Piperine;
(2) piperic acid; (3) piperoyl-L-phenylalanine methyl ester; (4) piperoyl-L-tyrosine methyl ester;
(5) piperoyl-L-valine methyl ester; (6) piperoyl-L-methionine methyl ester; (7) piperoyl-L-
tryptophan methyl ester; (8) piperoyl-L-phenylalanine; (9) piperoyl-L-tyrosine; (10) piperoyl-L-valine;
(11) piperoyl-L-methionine; (12) piperoyl-L-tryptophan; (13) tetrahydropiperoyl-L-phenylalanine
methyl ester; (14) tetrahydropiperoyl-L-tyrosine methyl ester; (15) tetrahydropiperoyl-L-valine
methyl ester; (16) tetrahydropiperoyl-L-methionine methyl ester; (17) tetrahydropiperoyl-L-
tryptophan methyl ester.

Compound
IC50 (mM)

Amastigotes Promastigotes

1 0.75 2.56
2 0.39 1.76
3 0.19 0.83
4 0.21 0.79
5 0.07 0.88
6 0.17 0.82
7 0.12 0.86
8 0.26 0.93
9 0.25 0.76
10 0.31 1.03
11 0.24 1.31
12 0.24 1.03
13 0.21 0.67
14 0.20 0.54
15 0.24 0.72
16 0.22 0.61
17 0.18 0.47

The combination of piperic acid and valine methyl ester (Figure 2) was shown to be the
most efficient against amastigotes, with an IC50 value of 0.07 mM (compound 5) [34]. The
effectiveness of valine may be related to the strong need of valine to produce NADH in the
procyclic phase of Leishmania donovani [40]. On the other hand, the antileishmanial activity
against amastigotes was reduced when the carboxyl group of amino acid functionality
was deprotected in compounds 8–12 (Table 1) compared to compounds 3–7 (with the
protected amino acid group). The antileishmanial activity of the conjugates 13–17 against
the amastigotes decreased when the piperine subunit’s conjugated double bonds were
reduced. However, the antileishmanial activity of the conjugates against promastigotes
was boosted. The most active compound against the promastigotes was tetrahydropiperoyl
tryptophan methyl ester (compound 17), with an IC50 value of 0.47 mM.
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2.1.2. Camptothecin

Camptothecin (Figure 3), a quinolone type of alkaloid, is a potent antitumor agent
isolated from Camptotheca acuminate [41,42]. However, it has a low solubility and some ad-
verse effects [43,44]. One of the strategies used to overcome this problem is the conjugation
of camptothecin with poly-α-L-glutamic acid [45].

Molecules 2022, 27, x FOR PEER REVIEW 5 of 35 
 

 

 
Figure 2. (a) Piperoyl-L-valine methyl ester; (b) tetrahydropiperoyl-L-phenylalanine methyl ester; 
(c) tetrahydropiperoyl-L-tyrosine methyl ester; (d) tetrahydropiperoyl-L-valine methyl ester; (e) tet-
rahydropiperoyl-L-methionine methyl ester; (f) tetrahydropiperoyl-L-tryptophan methyl ester. 

2.1.2. Camptothecin 
Camptothecin (Figure 3), a quinolone type of alkaloid, is a potent antitumor agent 

isolated from Camptotheca acuminate [41,42]. However, it has a low solubility and some 
adverse effects [43,44]. One of the strategies used to overcome this problem is the conju-
gation of camptothecin with poly-α-L-glutamic acid [45]. 

 
Figure 3. Camptothecin. 

The conjugation of 50 kDa poly-R-(L-glutamic acid) (PG) and L-camptothecin was 
achieved by means of the esterification of the hydroxyl group at the C-20 position with 
amino acid as a linker (Scheme 3). Amino acid was added to a solution of camptothecin, 
DMAP and DIPC in DMF at room temperature to form amino acid–camptothecin. Then, 
50% TFA was used to deprotect the amino acid linker. Thereafter, an amino-acid-linked 
camptothecin solution in anhydrous DMF was added to the poly-R-(L-glutamic acid) so-
lution. The DMAP and DIPC in DMF were gradually added to the combination and 
chilled in an ice bath. The mixture was stirred for two days at room temperature [45]. 

Figure 3. Camptothecin.

The conjugation of 50 kDa poly-R-(L-glutamic acid) (PG) and L-camptothecin was
achieved by means of the esterification of the hydroxyl group at the C-20 position with
amino acid as a linker (Scheme 3). Amino acid was added to a solution of camptothecin,
DMAP and DIPC in DMF at room temperature to form amino acid–camptothecin. Then,
50% TFA was used to deprotect the amino acid linker. Thereafter, an amino-acid-linked
camptothecin solution in anhydrous DMF was added to the poly-R-(L-glutamic acid)
solution. The DMAP and DIPC in DMF were gradually added to the combination and
chilled in an ice bath. The mixture was stirred for two days at room temperature [45].
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DMAP, DMF. R is the following amino acids: conjugate no. (2): L-glycine; (3) L-alanine; (4) β-alanine;
(5) 4-NH-butyryl; (6) 2-O-acetyl; (7) 4-O-butyryl; (8) γ-glutamic acid.

The in vivo activity of the conjugates was evaluated against B-16 melanomas (Table 2).
When compared to a similar camptothecin dose level, poly-R-(L-glutamic acid)-glycine-
camptothecin (Figure 4) was found to have the best antitumor efficacy. This conjugate
was able to suppress the growth of B-16 tumour cells following 48 h of treatment at a
lower dose in comparison to the poly-R-(L-glutamic acid)-camptothecin and the other
poly-R-(L-glutamic acid)-linker-camptothecin conjugates.
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Table 2. Effects of poly-R-(L-glutamic acid) conjugates of camptothecin on the in vivo growth
of subcutaneous B-16 melanomas. TGD: tumour growth delays. (1) Poly-R-(L-glutamic acid)-
camptothecin; (2) poly-R-(L-glutamic acid)-glycine-camptothecin; (3) poly-R-(L-glutamic acid)-
alanine-camptothecin; (4) poly-R-(L-glutamic acid)-(β-alanine)-camptothecin; (5) poly-R-(L-glutamic
acid)-(4-NH-butyryl)-camptothecin; (6) poly-R-(L-glutamic acid)-(2-O-acetyl)-camptothecin; (7) poly-
R-(L-glutamic acid)-(4-O-butyryl)-camptothecin; (8) poly-R-(L-glutamic acid)-(γ-glu)-camptothecin.

Compound Dose (mg) B-16 TGD (Days)

1 48 4
2 35 2
3 62 2
4 67 1
5 60 1
6 75 4
7 35 3
8 41 1
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2.1.3. Quinine

Quinine (Figure 5) was isolated from Cinchona bark for the first time in France
in 1820, and it was recognised as a major component of the bark [46,47]. Given that
most antimalarial medications reveal parasite resistance within a few years after their
introduction to the market, quinine has a relatively stronger track record [48,49]. A low
parasite resistance towards quinine has made the structure favourable for overcoming
infections by this parasite [50].
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Figure 5. Quinine.

Amino acid conjugates of quinine were synthesised to produce new compounds using
a different synthetic strategy from the development of the previous quinine derivatives,
such as chloroquine. The conjugates’ synthesis also aimed to overcome the resistance
problems, increase the drug delivery efficiency and improve the performance of quinine as
an antimalarial agent [51,52].

The synthetic strategy used was to form an ester bond between the quinine and amino
acid or peptide. The amino acid or peptide was selected based on the difference in the
amino acid polarity. Quinine was O-acylated with N-protected acylbenzotriazoles in the
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presence of anhydrous potassium carbonate in anhydrous DMF for 10 to 30 min at 50 ◦C
to produce amino acid and peptide conjugates of quinine (Scheme 4). The reaction time
was shortened by utilising microwave irradiation, which is important for minimising the
formation of epimers during the conjugation process [51].
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following amino acids: conjugate no. (2) R1: L-glycine; (3) R1: L-alanine; (4) R1: L-phenylalanine;
(5) R1: L-isoleucine; (6) R1: L-histidine; (7) R1: L-serine; (8) R1: L-glutamic acid; (9) R1: L-lysine;
(10) R1: L-aspartic acid; (11) R1: L-cysteine; (12) R1: L-alanine, R2: L-phenylalanine; (13) R1: L-valine,
R2: L-leucine; (14) R1: L-isoleucine, R2: L-glycine.

In vitro tests were performed on the quinine–amino acid/peptide conjugates, as well
as on quinine itself, against the blood stage of the P. falciparum strain 3D7 (Table 3). Quinine
was highly effective, having an IC50 value of 18 nM. The highest IC50 conjugates were
acylbenzotriazoles-aspartic acid-quinine (compound 10) at 17 nM and acylbenzotriazoles-
L-isoleucine-glycine-quinine (compound 14) at 23 nM (Figure 6), which have a comparable
antimalarial activity to that of quinine. These findings suggest that the conjugation of short
peptides with the hydroxyl group of quinine does not affect its antimalarial properties [51].

Table 3. In vitro antimalarial activities of compounds against the chloroquine-sensitive 3D7 strain
of Plasmodium falciparum. (1) Quinine; (2) boc-glycine-quinine; (3) boc-L-alanine-quinine; (4) boc-L-
phenylalanine-quinine; (5) boc-L-isoleucine-quinine; (6) boc-L-histidine-quinine; (7) boc-L-serine-
quinine; (8) boc-L-glutamic acid-quinine; (9) Z-L-lysine-quinine; (10) Z-L-aspartic acid-quinine;
(11) Z-L-cysteine-quinine; (12) Z-L-alanine-L-phenylalanine-quinine; (13) Z-L-valine-L-leucine-
quinine; (14) Z-L-isoleucine-glycine-quinine.

Compound IC50 (nM)

1 18
2 27
3 36
4 38
5 550
6 42
7 95
8 76
9 71
10 17
11 40
12 120
13 74
14 23
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Flavonoids are found in vegetables and fruits and have health-promoting properties, 

without causing substantial adverse effects [53,54]. Flavonoids have been discovered to 
have a wide range of biological properties, including antioxidant, antibacterial, antima-
larial, antiviral and anticancer properties [55–57]. A typical phenylchromen-4-one scaffold 
is generally found in flavonoids. [58]. 

Despite the fact that flavonoids have positive health effects, the therapeutic results 
still depend on the quality of these substances’ pharmacokinetic profiles following admin-
istration. Even though they are in the form of glycosides, flavonoids are poorly bioavail-
able, with a low water solubility, and are rapidly altered by environmental elements, in-
cluding temperature, pH and light. The methods by which flavonoids are absorbed via 
the gastrointestinal tract are intricate, and they are not well-absorbed in the intestine in 
their native state [59]. 
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quinine.

2.2. Flavonoids

Flavonoids are found in vegetables and fruits and have health-promoting properties,
without causing substantial adverse effects [53,54]. Flavonoids have been discovered to
have a wide range of biological properties, including antioxidant, antibacterial, antimalarial,
antiviral and anticancer properties [55–57]. A typical phenylchromen-4-one scaffold is
generally found in flavonoids. [58].

Despite the fact that flavonoids have positive health effects, the therapeutic results
still depend on the quality of these substances’ pharmacokinetic profiles following adminis-
tration. Even though they are in the form of glycosides, flavonoids are poorly bioavailable,
with a low water solubility, and are rapidly altered by environmental elements, includ-
ing temperature, pH and light. The methods by which flavonoids are absorbed via the
gastrointestinal tract are intricate, and they are not well-absorbed in the intestine in their
native state [59].

Therefore, the modification of their structures is a potentially useful option that can
be used to improve their pharmacokinetic profile and also construct derivatives that are
more biologically potent than their predecessor compounds. Herein, the actuality of the
modifications of quercetin, curcumin and icaritin is described. The novel compounds’
preparation involves the formation of linkages between these flavonoids and specific
amino acids.

2.2.1. Quercetin

Quercetin (Figure 7) is one of the compounds from natural ingredients that shows
several effective biological activities [60,61]. Quercetin belongs to the flavanol group
and is widely found in daily drinks, such as grapes, onions, tea and so on [62,63]. The
bioavailability of quercetin is quite low in the blood plasma. In addition, the pure form of
quercetin is easily excreted [64,65].
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One way to overcome this problem is to synthesise quercetin–amino acid conjugates
in the hope that the prodrug, quercetin, will have an improved water solubility and
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reduced rate of hydrolysis [66]. The conjugation of amino acids with quercetin not only
serves to improve its physicochemical properties but also to overcome the resistance to
the use of anticancer drugs, or what is commonly called cancer multidrug resistance
(MDR). The inhibition of the drug efflux by Pgp and Pgp ATPase assays showed that
amino acid–quercetin conjugates interact with the drug-binding site of Pgp to stimulate its
ATPase activity [67].

Quercetin–amino acid conjugates are produced through the synthesis of quercetin
with nonpolar amino acids (alanine, valine, phenylalanine and methionine), which are
positively charged (lysine) and negatively charged (aspartic acid, glutamine) by binding
the amino acid to the B-ring of quercetin via a carbamate linker. Due to the acidity, high
oxidability and reactivity of the catechol moiety, the protected amino acids’ interaction
with excess quercetin primarily caused the esterification of the B-ring hydroxyls [68]. The
series of quercetin–amino acid conjugates were produced as follows: synthetic amino acid
carbamate derivatives of quercetin were produced through the conversion of amino acids
to the corresponding activated urethanes, followed by alcoholysis with quercetin. At room
temperature, amino acids, bis(4-nitrophenyl) carbonate and N, N-diisopropylethylamine
were added to the solution. The mixture was agitated for a further 12 h at room temperature
after quercetin was added. To produce the required quercetin prodrugs, the tert-butyl-
amino acid quercetin carbamates were deprotected with TFA at 0 ◦C (Scheme 5) [66].
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Scheme 5. Syntheses of the quercetin analogues. (a): (4-NO2-PhO)2CO, DIPEA, DMF, 0 ◦C to rt;
(b): TFA, CH2Cl2, 0 ◦C, rt. R in order: (2) L-alanine; (3) L-valine; (4) L-lysine; (5) L-phenylalanine;
(6) L-aspartic acid; (7) L-methionine; (8) L-glutamic acid; (9) L-alanine-L-aspartic acid; (10) L-alanine-
L-glutamic acid.

The water solubilities of the quercetin prodrugs increased dramatically (6.8–53.0 times)
in comparison to quercetin (Table 4). Amino acids such as aspartic acid, glutamic acid
and alanine-glutamic acid enhanced the water solubilities of their corresponding quercetin
conjugates by 45.2-, 53.0- and 52.6-fold, respectively.

Table 4. Solubility of quercetin and quercetin–amino acid conjugates in PBS buffer. (1) Quercetin;
(2) quercetin-alanine; (3) quercetin-valine; (4) quercetin-lysine; (5) quercetin-phenylalanine;
(6) quercetin-aspartic acid; (7) quercetin-methionine; (8) quercetin-glutamic acid; (9) quercetin-alanine-
aspartic acid; (10) quercetin-alanine-glutamic acid.

Compound Water Solubility (µM) Fold Increase

1 50 1.0
2 1290 25.8
3 767 15.3
4 338 6.8
5 1766 35.3
6 2262 45.2
7 675 13.5
8 2649 53.0
9 2093 41.9
10 2628 52.6

In PBS buffer (t1/2 > 17 h), the quercetin prodrugs were stable, albeit that they were
vulnerable to enzymatic hydrolysis in cell lysate containing different activated hydrolysing
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enzymes. The quercetin–glutamic acid conjugate (Figure 8b) demonstrated a remarkable
resistance to hydrolases, resulting in a much longer half-life (180 min). In comparison to
quercetin, the quercetin–aspartic acid and quercetin–glutamic acid conjugates showed an
increased intestinal permeability in MDCK cells, which suggests that the quercetin–amino
acid conjugates may be recognised and transported by the human peptide transporter
hPepT1 [66].
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2.2.2. Icaritin

Icaritin (Figure 9), an active prenyl flavone derived from Epimedium plants, has a wide
range of pharmacological and biological properties, including those that can aid in cancer
and osteoporosis treatments [69,70].
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Figure 9. Icaritin.

As icaritin has a low toxicity and a high safety profile, it is a good natural chemical
entity for further modification, aiming to produce molecules with an improved activ-
ity. The icaritin flavone scaffold was first alkylated with ethyl iodoacetate to integrate
cationic moieties, which led to the production of flavone amphiphiles and robust bacte-
rial membrane disruption. The key acid was then linked to the appropriate basic amino
acids using 2-(3H-[1–3]triazolo [4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexaflu-
orophosphate (HATU) or N,N’-diisopropylcarbodiimide (DIC) in combination with HOBt
to form icaritin–amino acid conjugates (Scheme 6) [71,72].

Molecules 2022, 27, x FOR PEER REVIEW 11 of 35 
 

 

Figure 9. Icaritin. 

As icaritin has a low toxicity and a high safety profile, it is a good natural chemical 
entity for further modification, aiming to produce molecules with an improved activity. 
The icaritin flavone scaffold was first alkylated with ethyl iodoacetate to integrate cationic 
moieties, which led to the production of flavone amphiphiles and robust bacterial mem-
brane disruption. The key acid was then linked to the appropriate basic amino acids using 
2-(3H-[1–3]triazolo [4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophos-
phate (HATU) or N,N’-diisopropylcarbodiimide (DIC) in combination with HOBt to form 
icaritin–amino acid conjugates (Scheme 6) [71,72]. 

 
Scheme 6. Synthesis of amino-acid-conjugated flavone compounds. (a) Ethyl iodoacetate, K2CO3, 
acetone, reflux, 12 h; (b) LiOH, THF, H2O, RT, 1.5 h; (c) corresponding basic amino acid, DIC, HOBt, 
anhydrous DMF, RT, overnight; (d) corresponding basic amino acid, HATU, DIPEA, anhydrous 
DMF, RT, overnight. R in order: (2) L-histidine; (3) L-arginine; (4) L-lysine. 

Cationic moieties should have an impact on the cLogP values of icaritin–amino acid 
conjugates. The hydrophobicity decreases as the total charge increases. Icaritin–arginine’s 
cLogP value is 1.65. These findings show that this conjugate’s charge–hydrophobicity bal-
ance is a key determinant of its antibacterial activity. If the total charge is too high or too 
low, the chemical will disrupt the charge–hydrophobicity balance, in addition to decreas-
ing the affinity for the bacterial membranes and overall antimicrobial activity. Higher 
overall charges improve the antibacterial activity. 

Of all the substances examined, the icaritin–arginine (Figure 10) conjugate was the 
most effective. Icaritin–arginine was the only studied flavone derivative that was water-
soluble. The strong electrostatic contact between icaritin–arginine and the negatively 
charged bacterial membrane was thought to be responsible for the greatest enhancement 
in its antibacterial activity. The guanidinium group on arginine has a more evenly distrib-
uted positive charge than the tertiary amine and -NH2 groups, which significantly im-
proves icaritin–arginine’s electrostatic contact with the bacterial membrane. 

 
Figure 10. Icaritin–arginine conjugate. 

Scheme 6. Synthesis of amino-acid-conjugated flavone compounds. (a) Ethyl iodoacetate, K2CO3,
acetone, reflux, 12 h; (b) LiOH, THF, H2O, RT, 1.5 h; (c) corresponding basic amino acid, DIC, HOBt,
anhydrous DMF, RT, overnight; (d) corresponding basic amino acid, HATU, DIPEA, anhydrous DMF,
RT, overnight. R in order: (2) L-histidine; (3) L-arginine; (4) L-lysine.

Cationic moieties should have an impact on the cLogP values of icaritin–amino acid
conjugates. The hydrophobicity decreases as the total charge increases. Icaritin–arginine’s
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cLogP value is 1.65. These findings show that this conjugate’s charge–hydrophobicity
balance is a key determinant of its antibacterial activity. If the total charge is too high or too
low, the chemical will disrupt the charge–hydrophobicity balance, in addition to decreasing
the affinity for the bacterial membranes and overall antimicrobial activity. Higher overall
charges improve the antibacterial activity.

Of all the substances examined, the icaritin–arginine (Figure 10) conjugate was the
most effective. Icaritin–arginine was the only studied flavone derivative that was water-
soluble. The strong electrostatic contact between icaritin–arginine and the negatively
charged bacterial membrane was thought to be responsible for the greatest enhancement in
its antibacterial activity. The guanidinium group on arginine has a more evenly distributed
positive charge than the tertiary amine and -NH2 groups, which significantly improves
icaritin–arginine’s electrostatic contact with the bacterial membrane.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 35 
 

 

Figure 9. Icaritin. 

As icaritin has a low toxicity and a high safety profile, it is a good natural chemical 
entity for further modification, aiming to produce molecules with an improved activity. 
The icaritin flavone scaffold was first alkylated with ethyl iodoacetate to integrate cationic 
moieties, which led to the production of flavone amphiphiles and robust bacterial mem-
brane disruption. The key acid was then linked to the appropriate basic amino acids using 
2-(3H-[1–3]triazolo [4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophos-
phate (HATU) or N,N’-diisopropylcarbodiimide (DIC) in combination with HOBt to form 
icaritin–amino acid conjugates (Scheme 6) [71,72]. 

 
Scheme 6. Synthesis of amino-acid-conjugated flavone compounds. (a) Ethyl iodoacetate, K2CO3, 
acetone, reflux, 12 h; (b) LiOH, THF, H2O, RT, 1.5 h; (c) corresponding basic amino acid, DIC, HOBt, 
anhydrous DMF, RT, overnight; (d) corresponding basic amino acid, HATU, DIPEA, anhydrous 
DMF, RT, overnight. R in order: (2) L-histidine; (3) L-arginine; (4) L-lysine. 

Cationic moieties should have an impact on the cLogP values of icaritin–amino acid 
conjugates. The hydrophobicity decreases as the total charge increases. Icaritin–arginine’s 
cLogP value is 1.65. These findings show that this conjugate’s charge–hydrophobicity bal-
ance is a key determinant of its antibacterial activity. If the total charge is too high or too 
low, the chemical will disrupt the charge–hydrophobicity balance, in addition to decreas-
ing the affinity for the bacterial membranes and overall antimicrobial activity. Higher 
overall charges improve the antibacterial activity. 

Of all the substances examined, the icaritin–arginine (Figure 10) conjugate was the 
most effective. Icaritin–arginine was the only studied flavone derivative that was water-
soluble. The strong electrostatic contact between icaritin–arginine and the negatively 
charged bacterial membrane was thought to be responsible for the greatest enhancement 
in its antibacterial activity. The guanidinium group on arginine has a more evenly distrib-
uted positive charge than the tertiary amine and -NH2 groups, which significantly im-
proves icaritin–arginine’s electrostatic contact with the bacterial membrane. 

 
Figure 10. Icaritin–arginine conjugate. Figure 10. Icaritin–arginine conjugate.

Further testing of the icaritin–arginine conjugate was performed on Gram-positive
bacterial strains (Table 5). The MICs ranged from 1.5 to 3.13 g/mL, which are comparable
with vancomycin’s MICs of 0.78 to 1.56 g/mL. Additionally, icaritin–arginine demonstrated
a remarkable efficacy against drug-resistant bacteria, indicating that icaritin–arginine does
not exhibit cross-resistance with other antibiotic classes and highlighting the effectiveness
of icaritin–arginine as a membrane-targeting antibiotic [72].

Table 5. In vitro antibacterial activity of amino-acid-modified flavone compounds. (1) Icaritin;
(2) icaritin-L-histidine; (3) icaritin-L-arginine; (4) icaritin-L-lysine.

Compound
Bacterial Strains, µg/mL (µM)

S. aureus B. cereus

1 50 50
2 >50 >50
3 1.56 3.13
4 25 25

By damaging the bacterial membrane’s integrity and hindering the development of
bacterial resistance, the conjugate killed the bacteria quickly, with an impressive membrane
selectivity. In addition, icaritin–arginine showed a strong in vivo adequacy in a mouse ker-
atitis of MRSA and S. aureus contaminations, subsequently showing that icaritin–arginine
has the potential as an antimicrobial agent to overcome resistance problems [72].

2.3. Curcumin

Curcumin (Figure 11) and two related chemicals, i.e., demethoxycurcumin and bis-
demethoxycurcumin (curcuminoids), are the primary secondary metabolites of Curcuma
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longa and other Curcuma species [73,74]. Curcumin, as a natural product, has several
biological actions, such as anti-inflammatory, antibacterial and anticancer activities [75,76].
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Figure 11. Curcumin.

Clinical investigations using curcumin did not show great benefit due to its limited
absorption, fast metabolism, intrinsic instability and hydrophobic nature [77,78]. Curcumin
was conjugated with amino acid to enhance its intracellular accumulation, sustain its
antioxidant activity and produce novel conjugates that could be more effective against
biological targets [3,79,80].

Several different methods were applied in order to produce curcumin conjugates,
such as the formation of an N-phthaloyl group as a protective group (Scheme 7) [78],
the binding of one of the free hydroxy groups to an insoluble polymer resin (CPG-LCAA)
(Scheme 8) [78] and the use of protected amino acids, i.e., either Boc [79,80], Cbz or Fmoc [3].
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noyl) chloride, DMAP, overnight, rt; (b): ammonia:pyridine (9:1 v/v), 5 min; (c): i. HI, 37%, 2 mL.

Different curcumin conjugates were produced, including 4,40-(di-O-glutamoyl) cur-
cumin, 4,40-(di-O-valinoyl) curcumin, 4,40-(di-O-glycinoyl) curcumin, monoglycinoyl
curcumin and monovalinoyl curcumin. Diester curcumin was synthesised using a synthetic
approach, as shown in Scheme 7. The NH2 group of amino acids (glycine, valine, and
glutamic acid) were protected as N-phthaloyl derivatives during diester synthesis. To
obtain the corresponding acid chlorides, the carboxyl group was activated by treating it
with thionyl chloride. Curcumin was suspended in dry pyridine and treated with the
N-phthaloyl chlorides of the respective amino acids in a 1:2.5 molar ratio for six hours.
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Ammonia was used to remove the phthaloyl group, and column chromatography was
utilised to purify the conjugates [78].

The curcumin monoesters were synthesised by anchoring one of the free phenolic
groups to an insoluble polymeric solid support resin long-chain alkylamine controlled
pore glass (LCAA-CPG) via a two-carbon linker in the solid phase (Scheme 8). One of
curcumin’s phenolic groups was linked to LCAA-CPG via chloroacetic acid as a linker,
while the carboxy functional group of chloroacetic acid was activated with p-nitrophenol in
the presence of pyridine and triethylamine (basic environment) to obtain the corresponding
activated ester. The amide bond was formed by reacting the activated ester of chloroacetic
acid with the amino function of LCAA-CPG using DCC/DMAP. A symmetrical sodium
salt of curcumin was added to the reaction with chloroacetic-acid-derivatised LCAA-CPG,
forming a bond with one phenolic group while the other remained free for further synthesis.
On a solid support, the N-phthaloyl chlorides of glycine and valine were reacted with the
sodium salt of curcumin to produce the corresponding curcumin monoesters. Ammonia
was used to remove the phthaloyl group. By cleaving the ethereal bond, HI was used to
deblock the monoester from the solid support, allowing for the selective esterification of
curcumin with glycine and valine (Scheme 8).

The curcumin bioconjugates, including diesters and monoesters, were tested for their
antibacterial activity against multi-resistant bacteria that cause secondary infections in
humans, such as E. cloacae, S. saprophyticus, Micrococci, K. aeruginosa and E. coli. The inhi-
bition zone findings of the assay showed promising results. A disk containing 20 mmol
of Amoxyclav® was used, and the conjugates were loaded onto separate disks in equal
amounts. Amoxyclav® showed a 20 mm zone of inhibition, whereas monovalinoyl cur-
cumin (Figure 12) had an inhibition zone of 26 mm (Table 6). Monovalinoyl curcumin
showed the most promising findings, with MICs of 2.5 mmol/mL against Micrococcus
and E. cloacae, while Amoxyclav®, which is the most widely used antibiotic, had an MIC
of 10 mmol/mL.
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Table 6. Antibacterial activity of curcumin bioconjugates (values represent the zone of inhibition
in mm) against multi-resistant bacterial strains. (-) Resistant. (1) curcumin; (2) 4,40-(di-O-glutamoyl)-
curcumin; (3) 4,40-(di-O-valinoyl) curcumin; (4) 4,40-(di-O-glycinoyl) curcumin; (5) monoglycinoyl
curcumin; (6) monovalinoyl curcumin.

Bacteria

Compound

1 2 3 4 5 6

Inhibition Zone (mm)

Micrococci - 18 16 15 - 26
K. aeruginosa - 9 - - 18 18

S. saprophyticus - - 14 14 - -
E. cloacae - - 20 12 - 25

E. coli 10 - 20 - 12 13

These findings imply that curcumin diesters have a greater antibacterial activity than
curcumin itself, which could be related to their higher solubility, improved cellular uptake
(bioavailability) and slower metabolic processes due to the masking of the free phenolic
groups. Monoesters, on the other hand, have a higher activity than their corresponding
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diesters because they have both advantages, namely, a ligand to aid in cellular uptake and
a free phenolic group for binding at the active site [78].

The t-Boc moiety was designed to protect the carboxyl group in amino acids during
their reaction with curcumin (Scheme 9). Curcumin was reacted with t-Boc-protected amino
acids in dry dioxane in the presence of dehydrating agents, such as N, N’-dicyclohexylcarbo
diimide (DCC), 4-dimethylamino-pyridine (DMAP) and triethylamine (TEA). Because
higher reaction temperatures resulted in very low product yields, the reaction was carried
out in a nitrogen atmosphere at ambient temperatures, such as 25–30 ◦C, combined with
stirring until the reaction was completed (8–12 h).
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25–30 ◦C; (b) TFA (10% solution, DCM), 10 min.

The product in the organic layer was isolated after the reaction mixture was filtered in
order to remove dicyclohexylurea (DCU) as a by-product. TFA was used to deprotect the
t-Boc amino acid–curcumin conjugates in dry dichloromethane under ultrasonic conditions
for 10 min. The method was gentler than the standard protocol for t-Boc deprotection,
which used TFA with a reaction time of 1–2 h. The resulting compounds were obtained in a
pure form, with an overall yield of 45–76%.

Curcumin conjugates contain alkyl-substituted amino acids (Scheme 9). In particular,
the cysteine conjugate (Figure 13) showed a significantly higher antioxidant activity than
curcumin. The DPPH radical-scavenging assay clearly showed that the curcumin–amino
acid conjugate had lower IC50 values than curcumin. The curcumin–cysteine conjugate
had 70% lower IC50 values than curcumin. The antioxidant activity, as measured by beta-
carotene bleaching assays, revealed that the cysteine derivative had lower IC50 values than
the parent molecule. Based on these results, the cysteine conjugate demonstrated a high
activity, which also confirms the role of the sulphur moiety in free radical scavenging. As
both methods yielded similar results, this shows that the curcumin–cysteine conjugate,
indeed, is more potent than unconjugated curcumin [79].
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Figure 13. Biscysteinoyl curcumin.

Tetrahydrocurcumin (THC)–amino acid conjugates also showed a significantly better
antibacterial activity than tetrahydrocurcumin against all the microorganisms tested. The
synthesis of the amino acid–tetrahydrocurcumin derivatives was performed via two routes
(Scheme 10). The first involved the conversion of curcumin to tetrahydrocurcumin using
the reductor Pd/BaSO4. The mixture was churned under 30 psi H2 pressure until the
completion of the reaction (0.5–1.5 h). Meanwhile, in the other pathway, curcumin was
conjugated firstly with Boc-protected amino acid followed by the gradual addition of
4-dimethylaminopyridine (DMAP) and N, N’-dicyclohexylcarbodiimide (DCC) in dioxane.
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The mixture was stirred for 7–12 h under nitrogen. The curcumin–amino acid t-Boc
conjugates were deprotected by TFA in CH2Cl2 under ice-cold conditions for 3–5.5 h. The
conjugates were then transformed into tetrahydrocurcumin–amino acid conjugates through
the addition of Pd/BaSO4 under 30 psi H2 pressure for 0.5–1.5 h [80].
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Scheme 10. Synthesis of tetrahydrocurcumin–amino acid conjugates. (a) DCC, DMAP, dioxane, rt,
7–12 h, inert; (b) Pd/BaSO4; (c) 10% TFA in DCM, 0 ◦C, 3–5.5 h; (d) H2, Pd/BaSO4, 30 psi, 0.5–1.5 h.
R in order: (2) L-alanine; (3) L-isoleucine; (4) L-proline; (5) L-valine; (6) L-phenylalanine; (7) L-glycine;
(8) L-leucine.

The activity of THC and its amino acid conjugates towards two Gram-positive
(B. cereus and S. aureus) and two Gram-negative bacteria (E. coli and Y. enterocolitica) was
investigated (Table 7).

Table 7. MICs of THC–amino acid conjugates against Gram-positive and Gram-negative bacteria.
(1) THC, (2) THC-L-alanine, (3) THC-L-isoleucine, (4) THC-L-proline, (5) THC-L-valine, (6) THC-L-
phenylalanine, (7) THC-L-glycine, and (8) THC-L-leucine.

Compound
MIC (µM)

B. cereus S. aureus E. coli Y. enterocolitica

1 1066 1329 1723 2114
2 340 437 583 777
3 334 459 543 585
4 309 353 485 618
5 263 482 526 657
6 337 487 600 750
7 257 360 514 617
8 334 376 501 585

All of the substances had noticeably greater actions than THC. Due to their low MIC
values of 257 and 263 µM, respectively, against B. cereus, tetrahydrocurcumin–glycine and
tetrahydrocurcumin–valine were reported to be the most powerful conjugates among the
seven conjugates produced (Figure 14).

Prior research indicated that THC–amino acid conjugates have a significantly stronger
antibacterial activity than THC against all of the examined microorganisms [80]. The
amino acid component of the derivatives apparently made the conjugates more hydrophilic
and aided in the cellular uptake of the covalently bound THC by microorganisms. Thus,
their greater concentration in the bacterial cells could be the reason for their greater antibac-
terial activity.
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2.4. Terpenoids

The terpenoid structure consists of many isoprene units. They can be divided into
monoterpene, sesquiterpene, diterpene, triterpene, tetraterpene and polyterpene based
on the number of isoprene units [81]. The terpenes utilised in therapeutic applications
have some pharmacological activities, such as antimalarial, anticancer and anti-infective
properties. Natural terpenoids offer some intriguing qualities, but they must still be refined
in order to have the potency, selectivity and pharmacokinetic characteristics of a clinically
relevant medication [82,83]. The creation of semisynthetic derivatives can provide a feasible
approach to optimising the base scaffold to enhance their activities.

2.4.1. Astaxanthin

Astaxanthin (Figure 15) is a red fat-soluble xanthophyll carotenoid pigment that does
not possess pro-vitamin A activity in humans. However, some investigations showed that
it has an enhanced biological action compared to other carotenoids [84,85]. Astaxanthin is
present in several living creatures, including salmon, trout, crayfish and prawns, many of
which are found in the maritime ecosystem [86,87]. Fungi such as Phaffia rhodozyma and
Xanthophyllomyces dendrorhous are also among the sources of astaxanthin [88,89].
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The modification of the chemical structure of the esterified moieties can improve the
water solubility and/or dispersibility of synthetic carotenoid analogues [90]. A highly
water-dispersible astaxanthin derivative was produced by means of the esterification
of the carboxyl group of amino acid lysine, and then the product was converted to the
tetrahydrochloride salt [91].

The conjugation of dilysine with astaxanthin via ester linkage is accomplished in
two steps. The first step is carried out through the reaction of Boc-protected lysine with
astaxanthin using carbodiimide as a catalyst (DMAP and DIC). Deprotection is carried out
in the next step using anhydrous hydrochloric acid in dioxane (Scheme 11) [91].
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Scheme 11. Synthesis of the dilysinate diester of astaxanthin. (a) Boc-protected lysine, DMAP, DIC,
CH2CL2; (b) anhydrous HCl in dioxane.

The tetrahydrochloride salt of dilysinate astaxanthin was synthesised in two steps,
yielding a molecule with improved value as an aqueous phase and/or in vivo therapeutic
antioxidant and radical scavenger. No heat, detergents, co-solvents or other additions
were used to achieve aqueous dispersibility (>181.6 mg/mL). This constitutes the most
significant improvement in the aqueous dispersibility. Direct superoxide scavenging was
shown to be effective, with the near-complete suppression of the superoxide signal obtained
at a concentration of 100 µM. This molecule may be useful in biological and chemical
applications that require aqueous phase radical scavenging [91].

2.4.2. Oleanolic Acid

Oleanolic acid (Figure 16) is a pentacyclic triterpenoid that can be found in a variety of
foods and medicinal plants [92,93]. Oleanolic acid is widely known for its hepatoprotective
properties in the treatment of acute chemical-induced liver injury, chronic liver fibrosis and
cirrhosis [94–96]. Oleanolic acid showed biological activity against H1N1 virus infection in
MDCK cells by disrupting the link between the viral protein and its receptors, preventing
the virus’ attachment to the host cells [97].
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To improve the hydrophilicity, alkalinity and biological activity of oleanolic acid, a
variety of novel oleanolic acid–amino acid conjugates were synthesised using the ester
condensation technique to incorporate different amino acids into the 3-hydroxyl of oleanolic
acid [96]. These conjugates were produced to investigate their activity against HCCs and
breast cancer cell lines [98].

Scheme 12 depicts the synthesis of oleanolic acid conjugates. Cbz-protected amino
acid and oleanolic acid were used as the materials to create the conjugates. In DCM,
EDCI/DMAP was used to facilitate the process of ester condensation. The protective group
was then deprotected using Pd(OH)2/C at the same time [96].
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Scheme 12. Synthesis of oleanolic conjugates. (a) Benzyl bromide, K2CO3, DMF, reflux 2 h, 85 ◦C;
(b) Cbz-(L-)-amide acids, EDCI, DMAP, dry DCM, r.t. 12 h; (c) Pd(OH)2/C, H2, MeOH, r.t. 12 h.

After introducing various amino acids to the 3-hydroxyl of oleanolic acid, the ClogP of
the derivatives was lowered to a considerable extent, with the glycine, alanine and lysine
conjugates showing the most significant effects. The oleanolic acid–lysine conjugates
(Figure 17) showed a dramatic increase in apoptosis via the mitochondrial apoptotic
pathway and successfully lowered the enzymatic activity of ALT and AST in the serum.
They also demonstrated hepatoprotective effects on the CCl4-induced acute liver damage
mouse model.
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Furthermore, the oleanolic acid–lysine conjugate also showed better biological prop-
erties than oleanolic acid (20 mg/kg, intragastric injection) in the in vivo model. These
findings suggest that basic amino acids (lysine) could effectively increase oleanolic acid’s
hydrophilicity and alkalinity, in addition to altering the extracellular weak acidic microen-
vironment that, in turn, improves its overall bioavailability.

2.4.3. Betulin

There are two pentacyclic triterpene natural products, known as betulin and betulinic
acid, that were reported as secondary metabolites in several plant species [99]. Betulin,
betulinic acid and their by-products have a wide range of pharmacological effects, includ-
ing anticancer, anti-inflammatory and antiparasitic properties [100]. The more bioactive
structure is that of betulinic acid, while betulin is also widely available and fairly simple to
separate from birch tree bark. Unfortunately, because both betulinic acid and its metabolic
precursor, i.e., betulin, are extremely poorly soluble in aqueous buffers, their bioavailability
and biodistribution are unsuitable for use in medicine [101].

A study revealed that betulin may be more water-soluble when it is conjugated with
specific natural amino acids. In addition, the conjugate also exhibited proapoptotic activity
in cancer cells. Boc-protected L-amino acid was used to create amino acid esters of betulin
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conjugates in anhydrous THF and CDI (Scheme 13). The mixture was preincubated at
room temperature for 30 min. Thereafter, betulin was added and agitated for 24 h in an
environment of inert gas. To obtain pure, Boc-protected, monosubstituted betulin esters,
THF was evaporated under low pressure once the reaction was complete. The Boc group
was then removed in the following step using HCL in methanol [102].
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Scheme 13. The synthesis of monosubstituted betulin esters containing L-amino acids. (a) Boc-amino
acids, CDI, THF, 24 h; (b) HCl in methanol. R in order: L-lysine; L-ornithine.

A431 is a human epidermal cancer cell line that was targeted by the amino acid–betulin
conjugates, with regular keratinocytes (HaCaT) as the control. A comparison between
the novel betulin esters and their unaltered antecedents revealed an improved anticancer
activity (Table 8).

Table 8. IC50 evaluated after 72 h incubation in A431 cancer cell lines and human keratinocytes as
the control. (1) Betulin; (2) betulinic acid; (3) betulin-lysine; (4) betulin-ornithine.

Compound
IC50 (µM)

HaCat Cells, 72 h A431 Cells, 72 h

1 150.2 45.2
2 160.2 35.6
3 145.2 2.3
4 146.3 4.5

In a comparison with betulin and betulinic acid, compounds derived with lysine
and ornithine residues (Figure 18) showed improved cytotoxicity in A431 cancer cell lines
(IC50 2.3 µM and 4.5 µM after 72 h, respectively). The opposite reaction was observed in
the HaCaT control cells. The most advantageous aspect of the novel compounds is that
they are harmless to typical human keratinocytes, and it is important to emphasise their
specific toxicity towards epidermoid carcinoma cells.
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2.4.4. Glycyrrhetinic Acid

The natural substance glycyrrhetinic acid (Figure 19), which is prevalent in liquorice
root, has a triterpenoid aglycone component called glycyrrhetinic acid [103]. Research has



Molecules 2022, 27, 7631 20 of 34

shown that this compound has a wide range of outstanding biological activities, including
anti-inflammatory, antiviral, hepatoprotective and anticancer characteristics [104,105].
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Figure 19. Glycyrrhetinic acid.

Compared with other triterpenes, such as triptolide and betulinic acid, the anticancer
activity of glycyrrhetinic acid can be classified as moderately active. Modifications of
its structure may lead to the discovery of new derivates that might be more effective as
antitumor agents [106,107].

Glycyrrhetinic acid–amino acid derivatives have reportedly been synthesised to in-
crease the cytotoxicity of the acid. The modification was conducted through an alteration
at C-30 by esterification with benzyl ester (Scheme 14). Two distinct series of deriva-
tives were successfully created. Glycyrrhetinic acid with esters in the C-3 position and
glycyrrhetinic acid with amide linkages in the C-3 position are the two aforementioned
categories of derivatives. The two pathways used to manufacture the derivatives are ester
linkage-based and amide linkage-based. The first pathway involves the esterification of
glycyrrhetinic acid at the C-3 position in the presence of benzyl bromide and K2CO3 at 85 ◦C
in N, N-dimethylformamide to produce an intermediate, i.e., glycyrrhetinic acid-benzyl
ester. The intermediate was then subjected to further reactions with N-protected-L-amino
acid in dry dichloromethane (DCM) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDCI) and 4-dimethylaminopyridine (DMAP). Afterwards,
trifluoroacetic acid (TFA) deprotection was carried out in dry DCM at 0 ◦C.
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Scheme 14. Synthesis of the glycyrrhetinic acid derivatives with esters at the C-3 position: (a) Bn-Br,
dry DMF, dry K2CO3, 85 ◦C, reflux, 3 h; (b) Boc-amino acids, DCM, DMAP, EDCI, rt, 12 h; (c) TFA
in dry DCM. R in order: (3) L-glycine; (4) L-alanine; (5) L-phenylalanine; (6) L-proline; (7) L-sarine;
(8) L-leucine; (9) L-isoleucine; (10) L-methionine.

In the second pathway, the derivatives were prepared through amide bond formation
at the C-3 position (Scheme 15). In the first step, the carboxylic acid was protected before
being oxidised in acetone with CrO3/H2SO4. By reducing the resulting intermediate
with sodium cyanoborohydride and ammonium acetate in methanol, the glycyrrhetinic
acid-benzyl ester epimer containing amide connections in the C-3 position was created,
which was then coupled with N-protected L-amino acid in dry DCM under the catalysis
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of EDCI, 1-hydroxybenzotriazole (HOBt) and N,N-diisopropylethylamine (DIPEA). TFA
deprotection was carried out in dry DCM at 0 ◦C [108]. All the substances were tested
for their cytotoxic potential against human A549 cancer cell lines (lung cancer) and MCF7
breast cancer cells.
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Scheme 15. Synthesis of the glycyrrhetinic acid with amide linkages at the C-3 position. Reagents and
conditions: (a) Bn-Br, dry DMF, dry K2CO3, 80 ◦C, reflux, 3 h; (b) CrO3/H2SO4, CH3COCH3, 0 ◦C,
1 h; (c) NaCNBH3, CH3COONH4, CH3OH, rt, 12 h; (d) Boc-amino acids, DCM, HOBt, EDCI, DIPEA,
rt, 12 h; (e) TFA in dry DCM, 0 ◦C, 4 h. R in order: (3) L-glycine; (4) L-alanine; (5) L-phenylalanine;
(6) L-proline; (7) L-sarine; (8) L-leucine; (9) L-isoleucine; (10) L-methionine.

The glycyrrhetinic acid–amino acid conjugates were found to be more effective than
glycyrrhetinic acid against A549 tumour cell lines. All glycyrrhetinic acid-amino acid
derivatives linked by esters showed better activity than the parent compound (Table 9).

Table 9. The in vitro cytotoxicity of glycyrrhetinic acid conjugates with esters in the C-3 position
against cancer cell lines. (1) Glycyrrhetinic acid; (2) cisplatin; (3) glycyrrhetinic acid-L-glycine;
(4) glycyrrhetinic acid-L-alanine; (5) glycyrrhetinic acid-L-phenylalanine; (6) glycyrrhetinic acid-L-
proline; (7) glycyrrhetinic acid-L-sarine; (8) glycyrrhetinic acid-L-leucine; (9) glycyrrhetinic acid-L-
isoleucine; (10) glycyrrhetinic acid-L-methionine.

Compound
IC50 (µM)

A549 MCF7

1 >40 >40
2 9.0 6.8
3 2.8 3.8
4 3.1 4.3
5 16.9 14.4
6 4.7 5.2
7 4.9 3.8
8 22.9 11.9
9 4.9 10.0
10 7.5 8.0

The cytotoxicity detection also showed that the majority of the glycyrrhetinic acid–
amino acid derivatives, particularly the amide linkage derivatives, had greater anticancer
activities than cisplatin (as the standard). Glycyrrhetinic acid–alanine with an amide linkage
(Table 10) was almost 18 times more effective than glycyrrhetinic acid (IC50 > 40 µM) in the
inhibition of tumour growth in the A549 cell lines (IC50 2.1 µM), as compared to cisplatin
(IC50 9 µM) [108].
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Table 10. The in vitro cytotoxicity of glycyrrhetinic acid conjugates with amide linkages in the C-3
position against cancer cell lines. (1) Glycyrrhetinic acid; (2) cisplatin; (3) glycyrrhetinic acid-L-
glycine; (4) glycyrrhetinic acid-L-alanine; (5) glycyrrhetinic acid-L-phenylalanine; (6) glycyrrhetinic
acid-L-proline; (7) glycyrrhetinic acid-L-sarine; (8) glycyrrhetinic acid-L-leucine; (9) glycyrrhetinic
acid-L-isoleucine; (10) glycyrrhetinic acid-L-methionine.

Compound
IC50 (µM)

A549 MCF7

1 >40 >40
2 9.0 6.8
3 2.4 2.8
4 2.1 2.1
5 3.0 3.3
6 3.3 7.6
7 3.3 3.4
8 3.3 6.1
9 3.4 4.7
10 6.9 7.0

The antiproliferative effects of the amide-coupled derivatives against the tested cell
lines were evidently superior to those of the ester linkage derivatives. Glycyrrhetinic
acid–alanine (Figure 20) was proven to be the most effective derivative against A549 cells
among all of them. As previously mentioned, converting the hydroxyl of C-3 into an amino
group improved the anticancer activity of all the derivatives [108].
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2.5. Lignans

Lignans are secondary metabolites extensively found in plants [109]. Structurally,
the dimeric structures of lignan compounds are created by a β, β′ linkage between two
phenylpropane units with varying levels of sidechain oxidation and distinct substitution
patterns on the phenyl ring [110]. This class of compounds is known to be able to prevent a
number of chronic diseases that are hormone-related, including heart disease [111], breast
cancer [112] and menopausal symptoms [113].

Even though lignans have dominant pharmacological effects, they have some disad-
vantages, including excessive side effects, a lack of selectivity, low solubility and insufficient
bioavailability. Thus, particular transformations are applied to lignan compounds to elimi-
nate these limitations. Arctigenin and podophyllotoxin are two lignans that offer promising
biological actions. Nevertheless, these two compounds still have several drawbacks. Thus,
the two compounds have reportedly been conjugated with certain amino acids to improve
their biological properties.



Molecules 2022, 27, 7631 23 of 34

2.5.1. Arctigenin

Arctigenin (Figure 21), a natural lignan found in the fruits of the Arctium lappa L.
species, is a potentially active biomolecule [114,115]. This compound has antitumor, anti-
inflammatory and antiviral properties according to the reports [116,117].
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Amino acid–arctigenin conjugates have reportedly been designed and synthesised to
improve the solubility and bioavailability of arctigenin. Arctigenin–amino acid conjugates
were synthesised using an amino acid–EDCI-DMAP ratio of 1:2:2:0.5 (Scheme 16). The
reaction mixture was dissolved in acetonitrile and stirred for a period of one to two hours
at 0 ◦C. The arginine–amino acid derivatives were created by deprotecting the crude
products with HCl gas [118,119].
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The solubility of the arctigenin–amino acid conjugates in water was assessed in ac-
cordance with the standards. The derivative compounds had a higher water solubility
than arctigenin. The aqueous solubility of arctigenin was considerably enhanced following
conjugation with the amino acids.

These findings also showed that the conjugates of arctigenin–methionine, arctigenin–
phenylalanine and arctigenin–valine have a better antitumor activity both in vitro and
in vivo. All of the tumour-bearing animals in all of the groups demonstrated varied in-
hibitory rates. The inhibitory rates of the derivatives were higher than the inhibitory
rate of arctigenin. Table 11 shows the ability of cyclophosphamide, arctigenin, arctigenin–
methionine, arctigenin–phenylalanine and arctigenin–valine in suppressing the growth of
mice with transplanted H22 tumours. The findings demonstrate that there is a consider-
able difference in tumour growth inhibition between the arctigenin group and the three
experimental derivative groups in order arctigenin–methionine, arctigenin–phenylalanine
and arctigenin–valine (Figure 22). Compared to cyclophosphamide (an established medica-
tion for chemotherapy), arctigenin had a significantly lesser effect on tumour suppression.
Surprisingly, arctigenin–methionine, arctigenin–phenylalanine and arctigenin–valine re-
duced the tumour weights significantly in comparison to arctigenin. Arctigenin–valine
inhibited the tumour growth equivalently to cyclophosphamide. Arctigenin–valine had a
tumour-suppressing action that was almost two times better than that of arctigenin [118].
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Table 11. Effects of arctigenin and its amino acid derivatives on tumour growth in H22 tumour-
bearing mice. (1) Cyclophosphamide; (2) arctigenin; (3) arctigenin-L-methionine; (4) arctigenin-L-
phenylalanine; (5) arctigenin-L-valine.

Compound Dosage (mg/kg) Inhibitory Rate (%)

1 25 72.06
2 40 26.26
3 40 55.87
4 40 51.40
5 40 69.27
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2.5.2. Podophyllotoxin

An antimitotic lignan known as podophyllotoxin was discovered in the root of the
podophyllum resin plant. It drew attention because of its strong biological activities, includ-
ing antiviral, anthelminthic and antineoplastic properties [120–122]. However, its potential
use was constrained by adverse consequences, such as excessive damage to healthy cells
and a lack of selectivity towards diseased tissues [123,124]. Therefore, podophyllotoxin
derivatives were designed and synthesised in order to enhance the antitumor and selectiv-
ity of the original compound. The cytotoxic activities of the derivatives were tested against
A549 (human lung cancer), MCF-7 (human breast cancer), HepG2 (human hepatocellular
carcinoma) and L-02 (human normal hepatocyte) cell lines [125].

According to Scheme 17, podophyllotoxin–amino acid conjugates were produced by
conjugating podophyllotoxin with N-protected-L-amino acid using an activating agent of
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDCI) and a base catalyst
of 4-dimethylaminopyridine (DMAP) in dry dichloromethane (DCM). At room temperature,
the reaction was carried out for 12 h. Thereafter, trifluoroacetic acid (TFA) was used to
deprotect the conjugates in dry DCM for four hours in an ice bath.



Molecules 2022, 27, 7631 25 of 34

Molecules 2022, 27, x FOR PEER REVIEW 25 of 35 
 

 

Table 11. Effects of arctigenin and its amino acid derivatives on tumour growth in H22 tumour-
bearing mice. (1) Cyclophosphamide; (2) arctigenin; (3) arctigenin-L-methionine; (4) arctigenin-L-
phenylalanine; (5) arctigenin-L-valine. 

Compound Dosage (mg/kg) Inhibitory Rate (%) 
1 25 72.06 
2 40 26.26 
3 40 55.87 
4 40 51.40 
5 40 69.27 

2.5.2. Podophyllotoxin 
An antimitotic lignan known as podophyllotoxin was discovered in the root of the 

podophyllum resin plant. It drew attention because of its strong biological activities, in-
cluding antiviral, anthelminthic and antineoplastic properties [120–122]. However, its po-
tential use was constrained by adverse consequences, such as excessive damage to healthy 
cells and a lack of selectivity towards diseased tissues [123,124]. Therefore, podophyllo-
toxin derivatives were designed and synthesised in order to enhance the antitumor and 
selectivity of the original compound. The cytotoxic activities of the derivatives were tested 
against A549 (human lung cancer), MCF-7 (human breast cancer), HepG2 (human hepa-
tocellular carcinoma) and L-02 (human normal hepatocyte) cell lines [125]. 

According to Scheme 17, podophyllotoxin–amino acid conjugates were produced by 
conjugating podophyllotoxin with N-protected-L-amino acid using an activating agent of 
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDCI) and a base cata-
lyst of 4-dimethylaminopyridine (DMAP) in dry dichloromethane (DCM). At room tem-
perature, the reaction was carried out for 12 h. Thereafter, trifluoroacetic acid (TFA) was 
used to deprotect the conjugates in dry DCM for four hours in an ice bath. 

 
Scheme 17. Synthesis of the podophyllotoxin–amino acid conjugates. Reagents and conditions: (a) 
Boc-amino acids, EDCI, DMAP, room temperature, 12 h; (b) TFA in dry DCM, 0 °C, 4 h. R in order: 
(1) Boc-L-glycine; (2) Boc-L-sarcosine; (3) Boc-L-alanine; (4) Boc-L-phenylalanine; (5) L-glycine; (6) 
L-sarcosine; (7) L-alanine; (8) L-phenylalanine. 

The MTT assay was used to test the in vitro cytotoxicity of podophyllotoxin–amino 
acid conjugates on the tumour cell lines A549, MCF-7 and HepG2 and normal hepatocyte 
L-02. As shown in Table 12, majority of the compounds were more effective against the 
three tumour cell lines than doxorubicin, which is a common anticancer drug used in clin-
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Scheme 17. Synthesis of the podophyllotoxin–amino acid conjugates. Reagents and conditions:
(a) Boc-amino acids, EDCI, DMAP, room temperature, 12 h; (b) TFA in dry DCM, 0 ◦C, 4 h. R in
order: (1) Boc-L-glycine; (2) Boc-L-sarcosine; (3) Boc-L-alanine; (4) Boc-L-phenylalanine; (5) L-glycine;
(6) L-sarcosine; (7) L-alanine; (8) L-phenylalanine.

The MTT assay was used to test the in vitro cytotoxicity of podophyllotoxin–amino
acid conjugates on the tumour cell lines A549, MCF-7 and HepG2 and normal hepatocyte
L-02. As shown in Table 12, majority of the compounds were more effective against the three
tumour cell lines than doxorubicin, which is a common anticancer drug used in clinical
settings. Podophyllotoxin-sarcosine-Boc (Figure 23) showed the greatest selectivity, the
strongest cytotoxicity and the lowest toxicity among all of the tested compounds. According
to the results of DAPI staining, this compound displayed decreased toxicity to normal
hepatic L-02 cells and could cause A549 apoptosis through nuclei fragmentation [125].

Table 12. Cytotoxic activity of podophyllotoxin–amino acid conjugates in vitro (IC50, nM).
(1) Podophyllotoxin-Boc-L-glycine; (2) podophyllotoxin-Boc-L-sarcosine; (3) podophyllotoxin-
Boc-L-alanine; (4) podophyllotoxin-Boc-L-phenylalanine; (5) podophyllotoxin-L-glycine; (6)
podophyllotoxin-L-sarcosine; (7) podophyllotoxin-L-alanine; (8) podophyllotoxin-L-phenylalanine;
(9) doxorubicin.

Compound
IC50 (nM)

A549 MCF-7 HepG2 L-02

1 1.6 11.3 26.6 7.3
2 9.5 132.6 96.4 160.2
3 17.3 106.9 81.5 109.5
4 30.2 95.3 87.1 78.4
5 12.9 7.2 17.5 14.5
6 6.8 17.5 24.9 9.6
7 13.6 18.5 17.8 10.8
8 3.8 15.6 27.3 8.9
9 228.2 75.6 693.1 53.3
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2.6. Xanthones

Xanthone, also known as 9H-xanthen-9-one, with the molecular formula C13H8O2, is
an aromatic oxygenated heterocyclic molecule with a dibenzo-γ-pirone scaffold. The word
“xanthone” is derived from the Greek word “Xanthos” and refers to a yellow-coloured
compound isolated from the pericarp of the mangosteen (Garcinia mangostana Linn.), a trop-
ical fruit of the Guttiferae family (yellow) [126]. The structures of oxygenated heterocyclic
derivatives and γ-pyrone natural compounds such as the flavonoids and chromones have
strong similarities. Their antioxidant and anti-inflammatory activities have been the subject
of numerous reports in the past [127].

Given its high binding affinity to numerous unrelated kinds of protein receptors,
the xanthone nucleus may be regarded as a “privileged structure”. The presence of a
heteroaromatic tricyclic ring system that is primarily planar and rigid, a carbonyl group at
the central ring that is capable of several interactions and a biaryl ether group contributing
to the electronic system, the xanthone core can accommodate a wide range of derivatisations
in various positions. The derivatisation of xanthone is related to the ability of xanthones to
interfere with various biological targets [128].

Xanthone has the potential to be utilised as a parent compound for the creation of
novel medicinal molecules. To develop, comprehend and discover novel compounds that
are effective against specific biological targets, the fundamental framework is employed
as a template. The production of novel compounds based on the conjugation of various
types of amino acids with the xanthone base skeleton has been the subject of numerous
studies [129].

α-Mangostin

α-Mangostin (Figure 24) is the most prevalent xanthone found in mangosteen peri-
carps [130]. α-Mangostin has been shown to have antioxidant, anti-infective, anticarcino-
genic and antidiabetic activities, as well as neuroprotective, hepatoprotective and cardio-
protective qualities, with the anticarcinogenic action being the most promising [131–133].
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To further understand the function of cationic amino acid in the antimicrobial activity
of xanthone-based derivatives, Li et al. reported the design of membrane-targeting com-
pounds with cationic amino acids. This was based on their previous finding that shows the
ability of cationic amino acids to enhance membrane selectivity [71,134].

The two phenolic groups in the C3 and C6 positions of α-mangostin were function-
alised in order to create a novel series of α-mangostin analogues through their chemical
modification with basic amino acid residues. The possibility that an intramolecular hy-
drogen bond will form between the C1 hydroxyl group and the C9 carbonyl group makes
the C1 hydroxyl group less reactive. The appropriate esters were created through a first
alkylation using methyl bromoacetate. To create acid-ester mangostin, the esters were
subsequently hydrolysed with lithium hydroxide. Thereafter, the conjugates were created
by conjugating it with the amino acids of lysine, arginine or histidine using the coupling
agents of N, N′-diisopropylcarbodiimide (DIC) and N-hydroxybenzotriazole (HOBt) in
anhydrous DMF at room temperature. In a two-step method, acid ester mangostin was
reacted with (Fmoc)-lysine-OMe. HCl was applied in the presence of DIC and HOBt, and
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the Fmoc protecting group was then removed using piperidine in DMF. The result was
NH2-lysine-OMe-mangostin (Scheme 18).
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anhydrous EtOH, reflux, 24 h; (b) LiOH, THF, H2O, rt, 2 h; (c) for lysine-OMe-mangostin: H-
Lys(Fmoc)-OMe·HCl, DIC, HOBt, anhydrous DMF, rt, overnight; then piperidine, DMF, rt, 20 min;
(d) for 3–7: corresponding basic amino acid, DIC, HOBt, anhydrous DMF, rt, overnight. R in order:
(2) L-Lysine-OMe; (3) L-Histidine-OMe; (4) L-Arginine-OMe; (5) L-Arginine-OEt; (6) L-Arginine-NH2;
(7) L-Arginine-OtBu.

Arginine-OMe-mangostin (Figure 25) showed promising antibacterial properties
(Table 13). The arginine–mangostin conjugate, with an MIC value of 2 µg/mL, revealed
the strongest antibacterial activity against S. aureus and B. cereus among all the deriva-
tives, comparable to α-mangostin. The other conjugates, including lysine–mangostin and
histidine–mangostin, were less effective than α-mangostin. This is most likely because
cationic moieties are important for the creation of amphiphilic structures. Cationic moieties
are also essential for electrostatic interactions, providing quick access to the cytoplasmic
membrane. Positively charged residues, especially arginine, make it easier for peptides to
enter cells. A stiff hydrophobic core of α-mangostin with two or more aromatic rings is
also an important requirement for the activity. α-Mangostin can rupture the membrane
bilayer, but only to a limited extent, due to its hydrophobic core and cationic moieties. In
order to provide the straightforward access required for the bulky xanthone to penetrate
the cytoplasmic membrane, a lipophilic chain in the form of an isoprenyl group or in the
reduced form of an isoprenyl group is required [71].
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Table 13. In vitro antibacterial activity of amino-acid-modified α-mangostin. (1) α-Mangostin;
(2) α-mangostin-OMe-lysine; (3) α-mangostin-OMe-histidine; (4) α-mangostin-OMe-arginine;
(5) α-mangostin-OEt-arginine; (6) α-mangostin-NH2-arginine; (7) α-mangostin-OtBu-arginine.

Compound
MIC Values, µg/mL (µM)

S. aureus B. cereus

1 2 2
2 6 12
3 >50 >50
4 2 2
5 6 12
6 6 6
7 12 12
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The insertion of cationic amino acids and lipophilic chains into the hydrophobic core
of α-mangostin resulted in conjugates with superior biological properties. The rationale
behind the design could lead to the discovery of novel antimicrobials which could be useful
for tackling the rising issue of antibiotic resistance. [71].

3. Materials and Methods

The articles used in the preparation of this review were collected through a thorough
search in journal indexing databases, including Scopus, PubMed and Google Scholar. The
keywords used were “natural compound conjugated amino acid”, “conjugated amino acid
synthesis” and “natural compound amino acid synthesis”.

The inclusion criteria were as follows: (1) research articles, (2) chemical synthesis
research and (3) papers that described the utilization of natural compounds conjugated
with amino acids. In the first stage of the article collection, 1045 journal articles met the
outlined criteria. However, after further examination, only 132 journal articles were chosen
to be used for this review.

4. Conclusions: Future and Prospect

The conjugation of certain amino acids with natural compounds offers opportunities
for the creation of bioactive molecules with better/equivalent pharmacological effects
than/to those of the parent compounds. Conjugation was expected to change not only the
pharmacological effect but also the pharmacokinetic aspect of the parent compound. Given
the fact that amino acids are found in almost all parts of living things, it was expected that
the insertion of amino acids into the natural compounds would facilitate the interaction
with the desired living target.

Structurally, amino acids have two functional groups, with additional reactive groups
in the sidechain. The functional groups provide a wide range of possibilities for amino
acid conjugations with natural compounds, as discussed in this review. The conjugation
may create a new compound through an ester or amide linkage, with the sidechain being
available for another conjugation. The conjugates can also be designed by combining
natural compounds not only with amino acids but also with di-, tri- or oligo-peptides to
expand the possibility of creating new products with a better efficacy and more acceptable
physicochemical properties.

Furthermore, several amino acids, such valine and glycine, showed a good bioactivity.
It is not impossible that a conjugation with these amino acids can improve or enhance
the pharmacological properties of the natural compound. However, a more in-depth
investigation is required. A conjugate of piperine and valine revealed a high efficiency
against amastigotes that was explained by the increased need of valine for metabolism by
the L. donovani parasite.

Natural compounds conjugated with amino acids have shown excellent potential as
new active compounds. A variety of synthesis processes for the conjugation of natural
substances with amino acids may be a notable point of interest for researchers. Gener-
ally, the conjugation between natural products and amino acids can be achieved via the
formation of an ester bond or an amide linkage. This approach can be achieved because
of the amino acids’ possession of two reactive functional groups in the structure. In the
formation of an ester bond from the carboxylic group, the free amino group may be able
to act as an active group against the target protein, and vice versa. The strategies used to
create the ester or amide analogues were mostly successful in preparing analogues with
better biological properties. Although there are several conjugates that do not produce
an excellent biological performance, the analogues can still be used as a reference in the
consideration and selection of amino acids for successful modifications in the future.
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