PROCEEDING ITTP-COVID 19 CONFERENCE 2022

Program Book The 2nd ITTP-COVID19

"Post COVID19 Pandemic: Healthier, Smarter,

and Resilient ASEAN Community"

6 - 8 August 2022

Paper Presentation (Day 2)

			R00M 2C07
			Track: Health Science
			Topic: Multiple Topics
	Meta-ID	Presenter	Title
	010	Blego Sedionoto	Currency and Risk Factors of Mono-Hookworm, Strongyloides Stercoralis, and Co-Infection in Rural Communities East Kalimantan Province, Indonesia
7 August 2022 Session 3	149	Glenzi Fizulmi	Level of Environmental Health Risk due to Exposure to Pesticide Residues of Fungicidal Substances in the Habit of Consuming Drinking Water Sources in Agricultural Residential Areas in Jonggol Village, Bogor Regency in 2022
J-4 F M Jokarda Titlio	040	Prila Khairunnisa	Factors Affecting Women doing Early Cervical Cancer Screening a Scoping Review
	132	Nur Mufida Wulan Sari	Nutrigenomic and Early Adiposity Rebound

			ROOM 2C08
			Track: Multitracks
			Topic: Multiple Topics
7 August 2022 Session 3 3-4 PM Jakarta Time	Meta-ID	Presenter	Title
	071	Riska Pradita	Interoperability of Personal Health Records to Improve Access to the Patient Information
	081	Syarah Mazaya Fitriana	Key Success Factors of Electronic Health Records Migration in Hospital
	087	Hesti Febyandini Lestari	Consequence Analysis of Toluene Tank Leakage in Paint Industry at PT. Inkote Indonesia using Aloha Software 2022
	184	Amirah Zulaikha Binti Zafrul Azlan	Investigating the Relationships of Mindfulness, Gratitude and Risk-based Decision Making among Undergraduate Students

			Topic: Nutrition
	Meta-ID	Presenter	Title
	168	Luthfi Nabilah Qonitah	The Effect of Obesity on Type 2 Diabetes in Indonesia (Data Analysis of IFLS 1 and IFLS 5)
7 August 2022 Session 3	169	Cornelia Samantha Winaya	Effects of Overweight in Children (0-59 Months Old) to Hypertension when Adult (21-26 Years Old) in Indonesia (Data Analysis IFLS 1 and 5)
4 PM Jakarta Time	174	Rayhana	Factors For the Occurrence of Anemia in Children Age 0-23 Months in Indonesia in 2018 (Scondary Data Analysis of Indonesia based Health Research 2018)
	175	Nadia Rana Nabila	Factors Related to Iron Tablets Consumption among Female Students at the Health Sciences Cluster of University of Indonesia in 2022
$\underline{\zeta}$	~	>	

Currency and risk factors of mono-hookworm, Strongyloides stercoralis, and coinfection in rural communities East Kalimantan Province, Indonesia

Blego Sedionoto^{1*}, Sueptrakool Wasessombat², Chuchard Punsawad³, Witthaya Anamnart⁴, Jitbanjong Tangpong²

¹Faculty of Public Health Mulawarman University, Samarinda. 75123, Indonesia

²School of Allied Health Sciences, Walailak University, Thasala. 80160, Thailand

³School of Medicine Walailak University, Thasala. 80160, Thailand

⁴School of Public Health, Walailak University, Thasala, 80160, Thailand

*Corresponding author's Email: blego_kesling@yahoo.com

A b s t r a c	1
---------------	---

Background: Hookworm, *S. stercoralis, and* co-infection are still challenged in public health problem especially in developing countries where have risk factors that are potential for transmitting of hookworm, *S. stercoralis* and co-infection. In East Kalimantan Province, Indonesia has high-risk factors of the prevalence of hookworm, *S. stercoralis,* and co-infection, including access sanitation facilities, personal hygiene and environmental risk factors.

Methods: In this study was showed the infection rates, correlation analysis between risk factors and prevalence of hookworm, *S. stercoralis*, and co-infection were used statistical analysis. A cross-sectional study was performed among 213 participants from the rural community of Muarakaman District and Marangkayu Districts, East Kalimantan Province, Indonesia. In this study would show the infection rates, correlation analysis between environmental risk factors, and prevalence of hookworm infection with statistical analysis. In this study used two diagnostic methods: Kato Katz and Koga agar plate culture/KAP culture for diagnosing of hookworm and *Strongyloides* infections. Pearson chi-square analysis was used for study correlation between environmental risk factors with hookworm infection and *S stercoralis* infection and co-infection. Results: In this study showed of 213 tested samples from the community have 154 (27.7%) cases found positive with hookworm mono-infection and 17 (8.0%) cases found positive with strongyloides infection and co-infection 14 (6.6%). the result Pearson chi-square analysis that age (p value= 0.008), occupation, (p value= 0.008), water resources for daily activity (p=0.000, drinking water (p value= 0.000) and toilet (p value= 0.028). personal hygiene have significant correlation with hookworm mono-infection consist frequency of using shoes on outdoor (p= 0.006), usual ate row/un-cook vegetable (p= 0.001), washing foot before house-entering (p=0.030), usual use toilet at home (p= 0.035) and usually use sandals in the toilet (0.035). Environmental factors have correlated significant with hookworm mono-infection (p<0.05) such as district (p= 0.000), organic carbon content in soil (p= 0.000), temperature (p= 0.000), humidity (p= 0.000), number day of rainfall (p= 0.000), rainfall volume (p= 0.000), vegetation (p= 0.001), village areas (p= 0.001), dry or wet soil surrounding house (p= 0.010) and live together with human infected with hookworm (p= 0.016). Sanitation facilities and personal hygiene have not significant with S. stercoralis. district, the organic carbon content in the soil, humidity, temperature, elevation, number day of rainfall, rainfall volume, elevation, and live together with human infected with S. stercoralis. facilitate sanitation of participants and hookworm and S. stercoralis co-infection have not associated (p-value > 0.05). usual ate raw vegetable has significantly correlated with hookworm and S. stercoralis coinfection (p= 0.020). environmental risk factors with hookworm and S. stercoralis co-infection showed organic carbon content in soil and live together with humans infected with hookworm and S. stercoralis co-infection have significantly correlated with hookworm and S. stercoralis co-infection with p-value = 0.025 and p-value= 000 respectively.

Conclusions: The prevalence of hookworm, *S. stercoralis*, and co-infection in two districts in rural areas in east Kalimantan, Indonesia where deference of risk factor of the infections. Hookworm, *S stercoralis*, and Co-infection have deference of risk factors especially in carbon content, volume n number day of rainfall, elevation, and village areas, that conditions against survival of parasitic larvae in an environment where potential increase for penetration the larvae to human via soil contact and pet contact. Personal hygiene and sanitation facilities supported the conditions. Essential risk factors of the infections should use for controlling and preventing a program of reduction prevalence hookworm and *S stercoralis* infection.

Keywords: Prevalence, Essential Risk Factors, Hookworm, S. Stercoralis, Co-Infection, Indonesia

Background

The prevalence of hookworm and *S. stercoralis* infections is of serious public health concern globally. Hookworm infection and *S. stercoralis* infection are prevalent in a poor rural communities in tropical and subtropical areas in many developing country [13]. They are transmitted through in protected contact with soil that is endemic in tropical and temperate regions. The prevalence of hookworm infection and strongyloidiasis was estimated in 2010 that 438.9 million people were infected with hookworm and 100 million with *Strongyloides*. Almost 70% of these infections occur in Asia [25, 24, 6]..

Hookworm and *S. stercoralis* infections are transmitted through in protected contact with soil are endemic in tropical and temperate regions. Human acquires the hookworm infection and strongyloidiasis through direct skin contact with infective third-stage larvae where the soil was contaminated by human feces penetrate the intact human skin and eventually reach small intestine [26].

Generally, hookworm and *S. stercoralis* infections are found among poor people with poor environmental sanitation and where the climate is warm and humid [27, 12]. Factors affecting difference in the distribution of hookworm infection and strongyloidiasis may include good hygiene practices among the population, availability of sewerage system and the length of the rainy season. Environmental factors have contributed for transmission of diseases as well as growth and development of the worms [2, 1].

Environmental factors especially the long rainy season may affect the decrease in prevalence of *S. stercoralis* infection but not for hookworm infection. The prevalence of *S. stercoralis* infection in south Thailand is lower than other parts of the country, in contrast, prevalence of hookworm infection is still high in the south. It is possible because the failure in the control of hookworm infection due to 10 months-long rainy season in southern Thailand contrasted with 4 months-long rainy season in other parts [28]. The study in Cambodia reported the high prevalence of hookworm infection and *S. stercoralis* infection, wherein Cambodia has not heavy rain season [16]. While in East Kalimantan, Indonesia has two seasons consist rain season and dry season without hot season, in the rainy season has heavy rain, the season may affect the prevalence of *S. stercoralis* and hookworm infection.

Similarly to epidemiology study in southern Laos that high prevalence of hookworm and *S. stercoralis* together, the prevalences were 56.1% and 41% respectively [11]. Quoted by Forrer et al 2018 about soil organic carbon is an environmental variable that has a contribution for mono hookworm infection, mono *S. stercoralis* infection and co-infection [1]. East Kalimantan province in Indonesia has many characteristics of soil such as carbon content in soil and clay content in soil, However the risk factors of hookworm, S. stercoralis, and co-infection have potential deferent with others countries in South East Asia.

In rural East Kalimantan province Indonesia has environmental risk factors of the prevalence of hookworm infection and *S. stercoralis* where has low sanitation and personal hygiene. We perform a cross-sectional study in a rural community in Muarakaman and Marangkayu district to the analysis of geography, texture of soil, humidity, hookworm and Strongyloides in pet, vegetation, elevation, volume of rainfall, amount days of rainfall yearly, temperature and quality of soil as clay content, organic carbon of soil and pH of soil then was correlated with the prevalence of hookworm and *S. stercoralis* infections.

Methods

Study Setting and Population

We selected two districts in Kutai Kertanegara regency, East Kalimantan to conduct this study: Muara Kaman district and Marangkayu district where these areas have differences such as quality of soil, day number and yearly volume of rainfall, temperature, humidity, elevation, village area, and vegetation, These areas were selected based on potential risk of hookworm infection and strongyloidiasis, consist rural area, poor sanitation and hygiene, agriculture activity and surrounding forest and have not yet data study of hookworm and S. stercoralis infection from both areas. The sample size was determined using the single population formula by Stanly Lameshow technique. It was calculated using a prevalence rate (p) of 55.4% as detail previous study [23], with 95% confidence interval (z=1.96) and a 10% margin error (d= 0.1). The calculated sample size was 95 participants per district. We assumed that the final sample size would end up being reduced by around 15% due to subjects being unable to pass stool on the study date. Thus we aimed for a sample size of 110 per district. A simple random sampling method was used to select the population from each district. Inclusion criteria were participants who were ≥ 2 years old and lived in both areas. We randomly selected 110 participants per area and then gave them instruction and distributed plastic containers for stool collection. In total 220 participants were enrolled. We collected data from 28 villages such as 12 villages from Muarakaman district and 16 villages from the Marangkayu district. Data collected from 10-15 household with 1-3 participants in each village. This research is a community-based, was conducted during July 2018 to September 2019. Total of number participants is 213 participants who were joined and sent stool samples.[31].

Parasitological data and case definition

We collected two stool samples of the participant, for collecting stool samples, the first day was requested to head of household and member of household for requesting stool sample, the second day in the morning would start to collect stool samples, were brought to biomedical laboratory, Faculty of Public Health Mulawarman University for diagnosis samples. Another day was done observation environmental condition of houses surrounding the village.

Agar plate culture and Kato Katz technique were used in this study, agar plate culture was done as described by Koga et al., 1991. Briefly, a few grams of stool was placed at the center of nutrient agar and kept at room temperature for five days. Tracks from larva crawling and larvae or adult worms were observed. If positive, 10 ml of 10% formalin was added to the agar surface for 5-10 minutes and transferred to a centrifuged tube. Centrifugation at 2,500 rpm for 5 minutes and supernatant was discarded. The sediment will be examined for hookworm and *S. stercoralis* larvae or adult worm [32].

For Kato-Katz thick smear, 50 mg of stool was placed on slide and covered with a cellophane paper soaked in glycerin solution for 24 hours. The stool was spread out using a rubber stick. After 30 minutes were examined and counted for eggs

Risk Factors Data

Demographic data and personal hygiene of participants were collected by questionnaire, and sanitation facilities each household of participants were collected by observation, while environmental data was collected consist such as vegetation, elevation of soil, kind of pets, kind of soil around houses, length of the rainy season, humidity and temperature per year. The quality of soil as organic carbon content, clay content, and pH were diagnosed by soil laboratory Mulawarman University. Vegetation and kind of soil around houses were collected by observation form, kind of pet will be collected by questioner and, observation, and length of the rainy season, humidity and temperature per year will collected from the Central Bureau of Statistics (https://www.bps.go.id) and the Central Bureau of meteorology, climatology, and Geophysical of Indonesia (https://www.bmkg.go.id).

Data Analysis

The prevalence of hookworm infection and *S. stercoralis* infection was stratified according to demographic data, sanitation facilities and personal hygiene, environmental data, and reported by the descriptive statistic. Statistical analysis was performed by Chi-square using SPSS verse 22. The correlation analysis chi-square to evaluate association of *S. stercoralis* infection with demographic data, sanitation facilities, personal hygiene, and environmental risk factors and the level of significance was considered as *P*<0.05 and the analysis of risk estimate by odds ratio Chi-Square with confidence interval 95%.

Results

Demographic characteristics

A total of 213 individuals participated in this study. The age ranged between 2 and 70 years from 28 villages, with detail 12 villages from Muarakaman District and 16 villages from Marangkayu District, East Kalimantan Province Indonesia. Among 28 villages collected each village 10-15 households with 2 to 3 participants in each household, in enrolled we would collect 220 participants. In total 220 persons were enrolled. However, 213 analyzed for hookworm and S. stercoralis. Distribution of participants who were collected 95 (44.6%) from Muarakaman district

and 118 persons from the Marangkayu district. Males 130 (61.0) were dominant in the sample study while females 83 (39.0%). The age distribution of sample was 114(53.5%) from 2 to 12 age-old and 99 (46.5%) from 13 age-old and above (46.5%). The main occupation of the sample consist of farmer 70 (32.9%), at home 65 (25.8%), at school 81(38.0%) and others 7(3.3%). Sanitation facilities of participants such as covering the floor indoor, covering yard surrounding house, water waste treatment, water sources for daily activity and drinking sources, and toilets. All of the sanitation facilities were took the data by observation of each household. Personal hygiene of participants was explored by questionnaire such as; usual wear shoes in out-door activity, usual wash foot and hand after soil contact, wash fruit or vegetable before eat, usually eat the un-cook vegetable, usual wash hand after pet contact, usual use toilet at home. This study also explored environmental data that correlate with potential risk of hookworm and *S. stercoralis* infections. The environmental data such as; district, village area, vegetation surrounding houses, elevation from the above sea surface, the carbon content in the soil, clay content in the soil, texture of the soil, dry or wet soil surrounding the house of household, humidity, temperature, long rainy season (number day of rainfall yearly), volume of rainfall yearly, and having cat or dog.

Variable	Category	n (%)
Conden	Male	130 (61.0)
Gender	Female	83 (39.0)
	2-12	114 (53.5)
Age (years)	13 and above	99 (46.5)
	Farmer	70 (32.9)
Main Occupation	At home	65 (25.8)
	At school	81 (38.0)
	Others	7 (3.3)

Table 1 Characteristics of the 213 Participants in a community-based study

Occupation	Non-Agriculturist	75 (64.8)
Occupation	Agriculturist	138 (35.2)
Kinds of Floor covering indoor of the	Sanitary floor (cement, wood, etc)	212 (99.5)
house	Soil floor	1 (0.5)
Vard covoring	Not soil	35 (16.4)
	Soil	178 (83.6)
Water wate treatment	Healthy water waste treatment	108(50.7)
	Without water waste treatment	105 (49.3)
Water sources for daily activity	Sanitary water resources	92 (43.2)
water sources for daily activity	Un-sanitary water resources	121 (56.8)
Drinking water	Sanitary of drinking water	117(54.9)
	Un-sanitary of drinking water	96 (45.1)
Toilet	Sanitary toilet in the home	181 (85.0)
	Open defecation (plantation, garden, or river	32 (15.0)
Frequency using shoes on out-door	Routine	74 (34.7)
	Un-routine	139 (65.3)
Usual wash foot after soil contact	washing foot after soil contact	26 (12.2)
	Not washing foot after soil contact	187 (87.8)
Washing fruit/vegetable before eaten	Routine	33(15.5)
	Un-routine	180 (84.5)
Usual ate row/un-cook	No	172 (80.8)
fish/meat/vegetable	Yes	41 (19.2)
Pet contact	No	161 (75.6)
	Yes	52 (24.4)

Marking band often and southerst	Washing hand	4 (1.9)
wasning hand after pet contact	At home	209 (98.1)
Washing hand after soil contact	Washing hand	25 (11.7)
	Not washing	188(88.3)
Washing foot before house enter	No	13 (6.1)
	Yes	200 (93.9)
Usual use toilet at home	Yes	116 (54.5)
	No	97 (45.5)
Usual use sandals in toilet	Routine	116 (54.5)
	Un-routine	97 (45.5)
District	Muara Kaman	95 (44.6)
	Marangkayu	118 (55.4)
Organic carbon content in soil (%)	1.37-2.47	91 (42.7)
	>2.47-4.04	122(57.3)
pH the soil	4.26-5.85	102 (47.9)
	>5.85-6.92	111 (52.1)
Clay content in soil (%)	4-18.5	96 (45.1)
	>18.5-42.50	117 (54.9)
Temperature (⁰ C)	28-28.6	118 (55.4)
	>28.6 -29.5	95 (44.6)
Humidity (%)	65	118 (55.4)
	66	95 (44.6)
Number day of rainfall (day)	164	95 (44.6)
	174	118 (55.4)

Deinfell velume (mm ³)	3549	95 (44.6)
	4000	118 (55.4)
Elevation from above of sea (m)	15-41.6	97 (45.5)
	>41.6-50	116 (54.5)
Tautura of acil	Sandy soil with organic material	139 (65.3)
	Non-sandy soil with organic material	74(37.3)
Vegetation	Surrounding palm plantation and/or rubber plantation	167 (78.4)
	Surrounding rice field	46 (21.6)
Village areas	Buffer river/sea	166(77.9)
	Hill area	47(22.1)
Dry or wet soil surrounding the house	Dry soil	169(79.3)
	Wet soil	44 (20.7)
Having cat	Not having cat	80 (37.6)
C C	Having cat	133 (62.4)
Having a dog	Not having dog	4(1.9)
	Having dog	209 (98.1)
Hookworm in cat	Negative	80 (37.6)
	Positive	133 (62.4)
Hookworm in dog	Negative	4 (1.9)
	Positive	209 (98.1)
S. stercoralis in cat	Negative	134 (62.9)
	Positive	79 (37.1)
S. stercoralis in dog	Negative	52 (24.4)

	Positive	161 (75.6)
Live together with human infected with S.	Νο	194 (91.1)
stercoralis	Yes	19 (8.9)
Live together with human infected with	Νο	152 (71.4)
hookworm	Positive cted with S. No Yes cted with No Yes cted with No Yes cted with Yes	61 (28.6)
Live together with human infected with	Νο	196 (92.0)
hookworm and S. stercoralis co-infection	Yes	17 (8.0)

Fig. 1 Geographic characteristics of Muarakaman (MN) district and Marangkayu (MU) district; a and c show the geographic characteristics of the MN district, b and d show the geographic characteristics of the MU district

Parasitological Findings

Prevalence hookworm infection, *Strongyloides stercoralis* and co-infection were diagnosed by Kato Katz technique and APC method showed of 213 tested samples from the community have 154 (27.7%) cases found positive with mono-hookworm infection and 17 (8.0%) cases found positive with *Strongyloides* infection and co-infection 14 (6.6%). Detail data of prevalence of hookworm, *Strongyloides stercoralis*, and co-infection were explained below:

Table 4 Prevalence of Hookworm, Strongyloides stercoralis and Co-infection among Communities in EastKalimantan Province

Infections	Muara Kaman District		Marangkayu District		Total	
	Positive	Negative	Positive	Negative	Positive	Negative
Mono-Hookworm	50 (52.6%)	45 (47.4%)	9 (7.6%)	109 (92.4%)	59 (27.7%)	154 (72.3%)
S. stercoralis	3 (3.2%)	92 (96.8%)	14 (11.9%)	104 (88.1%)	17 (8.0%)	196 (92%)
Co-infection	3 (3.2%)	92 (96.8%)	11 (9.3%)	107 (90.7%)	14 (6.6%)	199 (93.4%)

The prevalence of mono-hookworm infection in Muara Kaman district is higher than in Marangkayu district was 50 (52.6%) and 9 (7.6%) respectively, while the prevalence *Strongyloides stercoralis*, Marangkayu district 14 (11.9%) is higher than Muara Kaman district 3 (3.2%). The prevalence of co-infection was showed in Marangkayu district 11 (9.3%) where is higher than Muara Kaman district 3 (3.2%).

Mono-Hookworm infection in East Kalimantan province

The prevalence of hookworm infection in East Kalimantan province with positive and negative cases, 59 (27.7%), and 154 (72.3%) respectively, while the prevalence of mono-hookworm infection Muarakaman district 50 (52.6%) is higher than Marangkayu district 9 (7.6%).

Fig 1. Prevalence of Hookworm Infection in Muara Kaman District and Marangkayu District, East Kalimantan Province

Risk factors of Mono-hookworm infection in East Kalimantan Province

Characteristic, facilitate sanitation of participants and hookworm infection

Variable	Category	Hookworm infe	ction		
		Negative n(%)	Positive n(%)	_	
				P-value	
Que lue	male	89 (68.5)	41 (31.5)	0.115	
Gender	female	65 (78.3)	18 (21.7)	0.11/	
• ()	2-12	91 (79.8)	23 (20.2)	0.000	
Age (years)	13 and above	63 (63.6)	tion Positive n(%) 41 (31.5) 18 (21.7) 23 (20.2) 36 (36.4) 24 (34.3) 10 (18.2) 22 (27.2) 3 (42.9) 30 (21.7) 29 (38.7) 59 (27.8) 0 (0.0) (100) 11 (31.4) 48 (27.0) 26 (44.4) 33(42.9) 14 (15.2) 45 (37.2) 9 (28.2) 50 (62.5) 45 (24.9) 15 (43.7)	0.008	
	Farmer	46 (65.7)	24 (34.3)		
Main Onemation	At home	45 (81.8)	10 (18.2)	0.107	
Main Occupation	At school	59 (72.8)	22 (27.2)	0.180	
	Others	4 (57.1)	3 (42.9)		
	Non-farmer	108 (78.3)	30 (21.7)	0.000	
Occupation	Farmer	46 (61.3)	Positive n(%) 41 (31.5) 18 (21.7) 23 (20.2) 36 (36.4) 24 (34.3) 10 (18.2) 22 (27.2) 3 (42.9) 30 (21.7) 29 (38.7) 59 (27.8) 0 (0.0) (100) 11 (31.4) 48 (27.0) 26 (44.4) 33(42.9) 14 (15.2) 45 (37.2) 9 (28.2) 50 (62.5) 45 (24.9) 15 (43.7)	0.008	
Kinds of Floor covering	Sanitary floor (cement, wood, etc)	153 (72.2)	59 (27.8)	0 535	
indoor of the house	Soil floor	1 (100)	0 (0.0) (100)	0.535	
	Not soil	24 (68.6)	11 (31.4)	0.500	
Yard covering	Soil	130 (73.0	48 (27.0)	0.590	
	Sanitary water waste treatment	82 (55.6)	26 (44.4)	0.000	
Water waste treatment	Without water waste treatment	72 (57.1)	ion Positive n(%) 41 (31.5) 18 (21.7) 23 (20.2) 36 (36.4) 24 (34.3) 10 (18.2) 22 (27.2) 3 (42.9) 30 (21.7) 29 (38.7) 59 (27.8) 0 (0.0) (100) 11 (31.4) 48 (27.0) 26 (44.4) 33(42.9) 14 (15.2) 45 (37.2) 9 (28.2) 50 (62.5) 45 (24.9) 15 (43.7)	0.230	
Water resources for daily	Sanitary water resources	78 (84.8)	14 (15.2)	0.000	
activity	Un-sanitary water resources	76 (62.8)	45 (37.2)	0.000	
	Sanitary of drinking Water	108 (92.3)	9 (28.2)	0.000	
Drinking water	Un-sanitary drinking water	46 (47.9)	tion Positive n(%) 41 (31.5) 18 (21.7) 23 (20.2) 36 (36.4) 24 (34.3) 10 (18.2) 22 (27.2) 3 (42.9) 30 (21.7) 29 (38.7) 59 (27.8) 0 (0.0) (100) 11 (31.4) 48 (27.0) 26 (44.4) 33(42.9) 14 (15.2) 45 (37.2) 9 (28.2) 50 (62.5) 45 (24.9) 15 (43.7)	0.000	
	Sanitary toilet in home	136 (75.1)	45 (24.9)		
Toilet	Open defecation (plantation, garden or river	18 (56.3)	15 (43.7)	0.028	

Table 5. Characteristic, facilitate Sanitation of participants and mono-hookworm infection

Table 6 showed the result of Pearson chi-square analysis that age (p value= 0.008), occupation, (p-value= 0.008), water resources for daily activity (p=0.000, drinking water (p-value= 0.000) and toilet (p value= 0.028) have a significant correlation with mono hookworm infection (p-value < 0.05), while gender, floor indoor, yard covering in outside surrounding house, water waste treatment, water sources, drinking water, and toilet have not significant correlation with mono hookworm infection.

Table 6. Personal hygiene and Mono-hookworm infection

Variable	Category	Mono-hookworm		
		Negative n (%)	Positive n (%)	-
				P-value
Frequency using shoes on	Routine	45 (60.8)	29 (39.2)	0.006
out-door	Un-routine	109 (78.4)	30 (21.6)	
Usual wash foot after soil	washing foot after soil contact	23 (88.5)	3 (11.5)	0.049
contact	Not washing foot after soil contact	131 (70.1)	56 (29,9)	
Washing fruit/vegetable	Routine	26 (78.8)	7 (21.2)	0.365
before eaten	Un-routine	128 (71.1)	52 (28.9)	
Usual ate row/un-cook	no	116 (67.4)	56 (32.6)	0.001
vegetable	yes	38 (92.7)	3 (7.3)	
	no	111 (68.9)	50 (31.1)	0.054
Pet contact	yes	43 (82.7)	9 (17.3)	
Washing hand after pet	Washing hand	4 (100)	0 (0.0)	0.211
contact	Not washing	150 (71.8)	59 (28.2)	
Washing hand after soil	Washing hand	22 (88.0)	3 (12.0)	0.062
contact	Not washing	132 (70.2)	56 (29.8)	
Washing foot before	No	6 (46.2)	7 (53.8)	0.030
house enter	Yes	148 (74.0)	52 (26.0)	
	Yes	77 (66.4)	39 (33.6)	0.035
Usual use tollet at nome	No	77 (79.4)	20 (20.6)	
Hendungs soundslots 4: "1:4	Routine	77 (66.4)	39 (33.6)	0.035
Usual use sandais in tollet	Un-routine	77 (7 9.4)	20 (20.6)	

Several variables of personal hygiene have a significant correlation with mono-hookworm infection consist frequency using shoes on out-door (p= 0.006), usually ate row/un-cook vegetable (p= 0.001), washing foot before house-entering (p=0.030), usual use toilet at home (p- 0.035) and usual use sandals in the toilet (0.035). While usual wash foot after soil contact, washing fruit/vegetable before eaten, pet contact, washing hand after soil contact, and washing foot before house enter have not significant correlation with hookworm infection.

Environmental Risk Factors of Mono hookworm infection in East Kalimantan

Environmental risk factors of Hookworm infection in East Kalimantan Province, Indonesia

Table 7. Environmental Factors and Hookworm infection

Variable

Category

Hookworm infection

 Negative n (%)
 Positive n (%)
 P-value

District	Muarakaman	45 (47.4)	50 (52.6)	0 000	
District	Marangkayu	109 (52.6)	9 (7.6)	0.000	
Organic carbon content in soil	1.37-2.47	79 (86.8)	12 (13.2)	0.000	
(%)	>2.47-4.04	75 (61.5)	47 (38.5)	0.000	
	4.26-5.85	76 (74.5)	26 (25.5)	0.400	
pri son	>5.85-6.92	78 (71.3)	33 (29.7)	0.490	
	4-18.5	66 (68.7)	30 (31.3)	0 204	
Clay content in soil (%)	>18.5-42.50	88 (75.2)	29 (24.8)	0.294	
$\mathbf{T}_{\text{opposite trans}} \begin{pmatrix} 0_{\mathbf{C}} \end{pmatrix}$	28-28.6	109 (92.4)	9 (7.6)	0 000	
Temperature (C)	>28.6 -29.5	45 (47.4)	50 (52.6)	0.000	
II: J: (0/)	65	109 (92.4)	9 (7.6)	0.000	
Humidity (%)	66	45 (47.4)	50 (52.6)	0.000	
	164	45 (47.4)	50 (52.6)	0 000	
Number day of rainfall (day)	174	109 (92.4)	9 (7.6)	0.000	
	3549	45 (47.4)	50 (52.6)	0.000	
Rainfall volume (mm ⁻)	4000	109 (92.4)	9 (7.6)	0.000	
Elevation from above of sea	15-41.6	47 (48.5)	50 (51.5)	0.000	
(m)	>41.6-50	107 (92.2)	9 (7.8)	0.000	
	Sandy soil with organic	103 (74.1)	36 (25.9)		
Texture of soil	material			0.401	
	Non-sandy soil with organic 51 (68.9)		23 (31.1)	0.421	
	material				
	Surrounding palm plantation	112 (67.1)	55(32.9)		
Vegetation	and/or rubber plantation			0.001	
	Surrounding rice field	42 (91.3)	4 (8.7)		
× 7411	Buffer river/sea	111 (66.9)	55 (33.1)	0.001	
Village areas	Hill area	43 (91.5)	4 (8.5)	0.001	
Dry or wet soil surrounding	Dry soil	129 (76.3)	40 (23.7)	0.010	
the house	Wet soil	25 (56.8)	19 (43.2)	0.010	
	Not having cat	53 (66.3)	27 (33.7)	0.10	
Having cat	Having cat	101 (57.1)	32 (24.1)	0.126	
	Not having dog	4 (100)	0 (0.0)		
Having a dog	Having dog	150 (71.8)	59(28.2)	0.211	
Hookworm in cat	Negative	53 (66.3)	27 (33.7)	0.10	
	Positive	101 (57.1)	32 (24.1)	0.126	
Hookworm in dog	Negative	4 (100)	0 (0.0)	0.011	
	Positive	150 (71.8)	59(28.2)	0.211	
Live together with human	No	117 (77.0)	35 (23.0)	0.017	
infected with hookworm	Yes	37 (60.7)	24 (39.3)	0.016	

The results statistical analysis between environmental risk factors with hookworm infection showed several of environmental factors have correlated significant with hookworm infection (p<0.05) such as district (p=0.000), organic carbon content in soil (p=0.000), temperature (p=0.000), humidity (p=0.000), number day of rainfall (p=0.000), rainfall volume (p=0.000), vegetation (p=0.001), village areas (p=0.001), dry or wet soil surrounding house (p=0.010) and live together with human infected with hookworm (p=0.016). While the pH of the soil, clay content in the soil, the texture of the soil, and hookworm infection in cat, hookworm infection in the dog have not significantly correlated with prevalence of hookworm infection in East Kalimantan province.

Essential risk factors of mono-hookworm infection in East Kalimantan province.

Essential risk factors of hookworm infection showed below:

Table 8. Essential Risk Factors of mono-hookworm infection in East Kalimantan province

Facesticl side for store	Catagory	Hookworr		
Essential risk factors	Category	Negative n(%)	Positive n(%)	- OK(95%CI)
District	Muarakaman	45 (38.9)	50 (61.1)	4.64 (2.52-8.54)
District	Marangkayu	109 (52.6)	9 (7.6)	0.35 (0.26-0.45)
Organic carbon content in	1.37-2.47	79 (86.8)	12 (13.2)	0.61 (0.50-0.75)
soil (%)	>2.47-4.04	75 (61.5)	47 (38.5)	2.52 (1.49-4.29)
Tomporature (⁰ C)	28-28.6	109 (92.4)	9 (7.6)	0.35 (0.26-0.45)
Temperature (C)	>28.6 -29.5	45 (47.4)	50 (52.6)	4.64 (2.52-8.54)
Unmidity (0/)	65	109 (92.4)	9 (7.6)	0.35 (0.26-0.45)
Humany (%)	66	45 (47.4)	50 (52.6)	4.64 (2.52-8.54)
Number day of rainfall	164	45 (47.4)	50 (52.6)	4.64 (2.52-8.54)
(day)	174	109 (92.4)	9 (7.6)	0.35 (0.26-0.45)
Dainfall volume (mm ³)	3549	45 (47.4)	50 (52.6)	4.64 (2.52-8.54)
Kaiman volume (inin)	4000	109 (92.4)	9 (7.6)	0.35 (0.26-0.45)
	Surrounding palm	112 (67.1)	55(32.9)	4.02 (1.51-10.73)
Vagatation	plantation and/or rubber			
Vegetation	plantation			
	Surrounding rice field	42 (91.3)	4 (8.7)	0.78 (0.69-0.88)
Villago aroos	Buffer river/sea	111 (66.9)	55 (33.1)	4.12 (1.55-10.97)
v mage al cas	Hill area	43 (91.5)	4 (8.5)	0.77 (0.69-0.87)
Dry or wet soil	Dry soil	129 (76.3)	40 (23.7)	0.50 (0.30-0.84)
surrounding the house	Wet soil	25 (56.8)	19 (43.2)	1.24 (1.02-1.49)

Live together with human	No	117 (77.0)	35 (23.0)	0.59 (0.39-0.90)
infected by hookworm	Yes	37 (60.7)	24 (39.3)	1.28 (1.02-1.61)
A == (2-12	91 (79.8)	23 (20.2)	0.67 (0.51-0.89)
Age (years)	13 and above	63 (63.6)	36 (36.4)	1.52 (1.07-2.14)
Occupation	Non farmer	108 (78.3)	30 (21.7)	0.61 (0.43-0.87)
	Farmer	46 (61.3)	29 (38.7)	1.38 (1.05-1.81)
Water resources for daily	Sanitary water resources	78 (84.8)	14 (15.2)	0.65 (0.52-080)
activity	Un-sanitary water resources	76 (62.8)	45 (37.2)	2.13 (1.32-3.46)
	Sanitary drinking of	108 (92.3)	9 (28.2)	0.35 (0.27-0.46)
Drinking water	water			
	Un-sanitary of drinking water	46 (47.9)	50 (62.5)	4.60 (2.50-8.46)
	Sanitary toilet in home	136 (75.1)	45 (24.9)	0.49 (0.26-0.93)
Toilet	Open defecation (plantation, garden or river	18 (56.3)	15 (43.7)	1.16 (0.99-1.35)
Frequency using shoes on	Routine	45 (60.8)	29 (39.2)	1.39 (1.06-1.83)
out-door	Un-routine	109 (78.4)	30 (21.6)	0.59 (0.42-0.85)
	washing foot after soil	23 (88.5)	3 (11.5)	0.90 (0.82-0.98)
Usual wash foot after soil	contact			
contact	Not washing foot after	131 (70.1)	56 (29,9)	2.94 (0.92-9.42)
	soil contact			
Usual ate raw/un-cook	no	116 (67.4)	56 (32.6)	4.85 (1.56-15.12)
vegetable				
	yes	38 (92.7)	3 (7.3)	0.79 (0.71 -0.88)
Washing foot before house	No	6 (46.2)	7 (53.8)	1.09 (0.99-1.20)
enter	Yes	148 (74.0)	52 (26.0)	0.33 (0.11-0.94)
Usual was to lat at home	Yes	77 (66.4)	39 (33.6)	1.47 (1.00-2.18)
Usual use tonet at nome	No	77 (79.4)	20 (20.6)	0.76 (0.69-0.96)
Usual use sandals in toilet	Routine	77 (66.4)	39 (33.6)	1.47 (1.00-2.18)
	Un-routine	77 (79.4)	20 (20.6)	0.76 (0.69-0.96)

Muara Kaman district was more 4.46 likely to be infected mono hookworm than Marangkayu district (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000). Organic carbon content in soil >2.47-4.04% was more 2.52 likely to be infected mono hookworm than organic carbon content in soil 1.37-2.47 (OR: 2.52 (95%CI: 1.49-4.29, p-value= 0.000). The temperature in category >28.6-29.5^oC was more 4.46 likely to be infected mono hookworm than 28-28.6 (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000), humidity 66% was more 4.46 likely to be infected mono hookworm than 28-28.6 (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000)), number day of rainfall (164 days) was more 4.46 likely to be infected mono hookworm than 165 days long rainfall (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000)), and rainfall volume (3549 mm³) was more 4.64 likely to be infected mono hookworm than rainfall volume in category 4000 mm³ (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000). Vegetation in category surrounding palm and or rubber

plantation was more 4.02 likely to be infected mono hookworm than surrounding rice field (OR: 4.02 (95%CI: 1.51-10.73, p-value= 0.001). Villages area where is in buffer river or sea area were more 4.12 to be infected mono hookworm than hill areas (OR: 4.12 (95%CI: 1.55-10.97, p-value= 0.001). Wet soil surrounding houses were more 1.24 likely to be infected mono hookworm than dry soil (OR: 1.24 (95%CI: 1.02-1.49, p-value= 0.010). Live together with humans infected by hookworm was 1.28 more likely to be infected mono hookworm than has not to live together (OR: 1.28 (95%CI: 1.02-1.61, p-value= 0.016).

Ages old in category 13 years old and above were more 1.52 likely than 2-12 years old (OR: 1.52 (95%CI: 1.07-2.14, p-value= 0.008). Farmers were more 1.38 likely to be infected mono hookworm than others occupation (OR: 1.38 (95%CI: 1.05-1.81, p-value= 0.008). Un-sanitary water resources were more 2.13 likely to be infected mono hookworm than sanitary water resources (OR: 2.13 (95%CI: 1.32-3.46, p-value= 0.000). Participants in un-sanitary drinking water were more 4.60 likely to be infected mono hookworm than a participant in category sanitary drinking water (OR: 4.60 (95%CI: 2.50-8.46, p-value=0.000). Participants in the category open defecation were more 1.16 to be infected mono hookworm than in the category sanitary toilet at home (OR: 1.16 (95%CI: 0.99-1.35, p-value= 0.028). Routine use shoes when in outdoor activity became protecting factor for hookworm infection (OR: 1.39 (95%CI: 1.06-1.83, p-value= 0.006). Participants in the category not washing foot after soil contact were more 2.94 likely than routine washing foot after soil contact (OR: 2.94 (95%CI: 0.92-9.42, p-value= 0.049). No usual ate raw/un-cook vegetable in rural communities East Kalimantan were protecting factor for hookworm infection (OR: 4.85 (95%CI: 1.56-15.12, p-value= 0.001). Participants whom no routine wash foot before house enter were protecting factor for hookworm infection (OR: 4.05 (95%CI: 1.56-15.12, p-value= 0.001). Participants whom no routine wash foot

Participants who use the toilet at home and use sandals in the toilet became protecting factors for hookworm infection (OR: 1.47 (95%CI: 1.00-2.18, p-value= 0.035).

S. stercoralis infection in East Kalimantan

The prevalence of *S. stercoralis* infection in East Kalimantan with positive and negative cases, 17 (8.0%), and 196 (92%) respectively, while the prevalence of *S. stercoralis* infection Marangkayu district 14 (11.9%) is higher than Muarakaman district 3 (3.2%).

Fig 2. Prevalence S. stercoralis infection in Muarakaman district and Marangkayu district, East Kalimantan province

Risk factors of *S. stercoralis* infection in East Kalimantan province

Characteristic, Sanitation facilities of participants and S. stercoralis

Table 9. Characteristic, Sanitation Facilities of Participants and S. stercoralis infection

Variable

Category

S. stercoralis

		Negative n (%)	Positive n (%)	P-value	
Conder	male	122 (93.8)	3 (3.2)	0.249	
Gender	female	74 (89.2)	14 (11.9)	0.218	
• ()	2-12	103 (90.4)	11 (9.6)	0.470	
Age (years)	13 and above	93 (93.9)	6 (6.1)	0.173	
	Farmer	67 (95.7)	3 (4.3)		
Main Onemation	At home	47 (85.5)	8 (14.5)	0.160	
Main Occupation	At school	75 (92.6)	6 (7.4)	0.160	
	Others	7 (100)	0 (0.0)		
0	Non-farmer	124 (89.9)	14 (10.1)	0.444	
Occupation	Farmer	72 (92)	3 (4.0)	0.114	
Kinds of Floor covering	Sanitary floor (cement, wood, etc)	195 (92)	17 (8.0)	0.764	
indoor of the house	Soil floor	1 (100)	0 (0.0)		
	Not soil	32 (91.4)	3 (8.6)		
Yard covering	Soil	164 (92.1)	14 (7.9)	0.888	
	Healthy water waste treatment	100 (92.6)	8 (7.4)	0.754	
water waste treatment	Without water waste treatment	96 (91.4)	9 (8.6)	0.754	
Water resources for daily	Sanitary water resources	84 (91.3)	8 (8.7)	0 727	
activity	Un-sanitary water resources	112 (92.6)	9 (7.4)	0.737	
Drinking water	Sanitary of drinking water	104 (88.9)	13 (11.1)	0.63	
שיייוא אמיכו	Un-sanitary of drinking water	92 (95.8)	4 (4.2)	0.05	
	Sanitary toilet in the home	167 (92.3)	14 (7.7)		
Toilet	Open defecation (plantation, garden, or river)	29 (90.6)	3 (9.4)	0.752	

The table above showed the result of Pearson chi-square analysis of characteristics sanitation facilities have not associated with *S stercoralis* infection.

Variable	Category	S. stercoralis		
		Negative n (%)	Positive n (%)	P-value
Frequency using shoes on	Routine	70 (94.6)	4 (5.4)	0 211
out-door	Un-routine	126 (90.6)	13 (9.4)	0.511
Usual wash foot after soil	washing foot after soil contact	22 (84.6)	4 (15.4)	
contact	Not washing foot after soil contact	174 (93.0)	13 (7.0)	0.137
Washing fruit/vegetable	Routine	31 (93.9)	2 (6.1)	0 658
before eaten	Un-routine	165 (91.7)	15 (8.3)	0.050
Usual ate row/un-cook	No	161 (93.6)	11 (6.4)	0.080
fish/meat/vegetable	Yes	35 (85.4)	6 (14.6)	0.080
Det contact	Νο	198 (91.9)	13 (8.1)	0 020
Percontact	Yes	48 (92.3)	4 (7.3)	0.930
Washing hand after pet	Washing hand	4 (100)	0 (0.0)	0 551
contact	Not washing	192 (91.9)	17 (8.1)	0.551
Washing hand after soil	Washing hand	21 (84.0)	4 (16.0)	0 115
contact	Not washing	175 (93.1)	13 (6.9)	0.115
Washing foot before	No	13 (100)	0 (0.0)	0 272
house enter	Yes	183 (91.5)	17 (8.5)	0.273

Table 10. Personal hygiene and S. stercoralis infection

	Yes	106 (91.4)	10 (8.6)	
Usual use toilet at home	No	90 (92.8)	7 (7.2)	0.706
Lisual use sandals in toilet	Routine	106 (92.4)	10 (8.6)	0 706
osual use sandais in conce	Un-routine	90 (92.8)	7 (7.2)	0.700

The results above showed that personal hygiene had not significant correlated/associated with *S. stercoralis* infection

Environmental Risk Factors of S. stercoralis Infection in East Kalimantan

Environmental risk factors and S. stercoralis infection in East Kalimantan Province, Indonesia

Table 11. Environmental Factors and S. stercoralis Infection

Variable	Category	S. stercoralis		P valua
		Negative n (%)	Positive n (%)	
	Muara Kaman	92 (96.8)	3 (3.2)	
District	Marangkayu	104 (88.1)	14 (11.9)	0.020
Organic carbon content in soil	1.37-2.47	78 (85.7)	13 (14.3)	
(%)	>2.47-4.04	118 (96.7)	4 (3.3)	0.003
	4.26-5.85	95 (93.1)	7 (6.9)	
pH soil	>5.85-6.92	101 (91.0)	10 (9.0)	0.564
	4-18.5	89 (92.7)	7 (7.3)	
Clay content in soil (%)	>18.5-42.50	107 (91.5)	10 (8.5)	0.737
	28-28.6	104 (88.1)	14 (11.9)	
Temperature (^⁰ C)	>28.6 -29.5	92 (96.8)	3 (3.2)	0.020
	65	104 (88.1)	14 (11.9)	
Humidity (%)	66	92 (96.8)	3 (3.2)	0.020

Number day of rainfall (day)	164	92 (96.8)	3 (3.2)	0.020	
	174	104 (88.1)	14 (11.9)		
Rainfall volume (mm ³)	3549	92 (96.8)	3 (3.2)	0 020	
	4000	104 (88.1)	14 (11.9)		
Elevation from above of sea	15-41.6	94 (96.9)	3 (3.1)	0.016	
(m)	>41.6-50	102 (87.9)	14 (12.1)	0.010	
Texture of soil	Sandy soil with organic material	125 (89.9)	14 (10.1)	0.123	
	Non-sandy soil with organic material	71 (95.9)	3 (4.1)		
Vegetation	Surrounding palm plantation and/or rubber plantation	155 (92.8)	12 (7.2)	0.414	
	Surrounding rice field	41 (89.1)	5 (10.9)		
	Buffer river/sea	154 (92.8)	12 (7.2)	0 446	
	Hill area	42 (89.4)	5 (10.6)		
Dry or wet soil surrounding	Dry soil	154 (91.1)	15 (8.9)	0 345	
the house	Wet soil	42 (95.5)	2 (4.5)	0.545	
Having cat	Not having cat	75 (93.8)	5 (6.3)	0 470	
	Having cat	121 (91.0)	12 (9.0)	0.470	
Having a dog	Not having dog	4 (100)	0 (0.0)	0.552	
	Having dog	192 (91.9)	17 (8.1)	01002	
S. stercoralis in cat	Negative	124 (92.5)	10 (7.5)	0.716	
	Positive	72 (91.1)	7 (8.9)	017 20	
S. stercoralis in dog	Negative	51(98.1)	1 (1.9)	0.064	
	Positive	145 (90.1	9 (9.9)	0.004	
Live together with human	Νο	192 (99.0)	2 (1.0)	0.000	

infected with *S. stercoralis* Yes 4 (21.1) 15 (78.9)

The results of statistical analysis between environmental risk factors with *S. stercoralis* infection showed several of environmental factors have correlated significantly with *S. stercoralis* (p<0.05) such as district, the organic carbon content in the soil, humidity, temperature, elevation, number day of rainfall, rainfall volume, elevation, and live together with human infected with *S. stercoralis*. Environmental risk factors which were the highest association/correlation *S. stercoralis* infection were organic carbon content in soil (p=0.003) and live together with humans infected with *S. stercoralis* (p=0.000).

Essential risk factors of *S. stercoralis* in East Kalimantan province.

The estimated value of the risk factor of *S. stercoralis* infection explained in table 5 below:

		S star	coralis	
Essential risk factors	Category	5. 5121	coruns	OR (95%Cl)
		Negative n (%)	Positive n(%)	
	Muarakaman	92 (96.8)	3 (3.2)	0.64 (0.50-0.83)
District	Marangkayu	104 (88.1)	14 (11.9)	2.66 (0.94-7.51)
Organic carbon content in	1.37-2.47	78 (85.7)	13 (14.3)	2.56 (1.08-6.07)
soil (%)	>2.47-4.04	118 (96.7)	4 (3.3)	0.52 (0.31-0.71)
	28-28.6	104 (88.1)	14 (11.9)	0.64 (0.50-0.83)
Temperature (⁰ C)	>28.6 -29.5	92 (96.8)	3 (3.2)	2.66 (0.94-7.51)
	65	104 (88.1)	14 (11.9)	2.66 (0.94-7.51)
Humidity (%)	66	92 (96.8)	3 (3.2)	0.64 (0.50-0.83)
Number day of rainfall	164	92 (96.8)e	3 (3.2)	0.64 (0.50-0.83)
(day)	174	104 (88.1)	14 (11.9)	2.66 (0.94-7.51)

Table 12. Essential risk factors of S. stercoralis in East Kalimantan province

Rainfall volume	3549	92 (96.8)	3 (3.2)	0.64 (0.50-0.83)
(mm ³ /year) Elevation from above of sea (m) Live together with human infected with <i>S. stercoralis</i>	4000	104 (88.1)	14 (11.9)	2.66 (0.94-7.51)
	15-41.6	94 (96.9)	3 (3.1)	0.63 (0.49-0.82)
	>41.6-50	102 (87.9)	14 (12.1)	2.72 (0.96-7.67)
	No	192 (99.0)	2 (1.0)	0.02 (0.09-0.062)
	Yes	4 (21.1)	15 (78.9)	8.33 (2.27-30.61)

The result analysis of risk factors and *S. stercoralis* showed the variables that were associated. Participants in Marangkayu district were more than 2.66 to be infected *S. stercoralis* than Muarakaman district (OR: 2.66 95%CI: (0.94-7.51, p-value=0.020). Participants in category organic carbon content in soil 1.37-2.47% were more 2.56 likely to be infected S. stercoralis than organic carbon content >2.47-4.04 (OR: 2.56 (95%CI: 1.08-6.07, p-value= 0.003). Communities in temperature >28.6 -29.5^oC were more 2.66 likely than 28-28.6^oC (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020). Participants in humidity 65 were more 2.66 likely than 66 (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020). Participants in areas with 174 days of rainfall were 2.66 likely than 164 days (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020). Communities in rainfall volume 4000 mm³/year were 2.66 likely than 164 days (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020). Elevation from above of sea >41.6-50 m were more likely than in elevation 15-41.6 (OR: 2.72 (0.96-7.67, p-value= 0.016). Participants who live together with human infected with *S. stercoralis* were more 8.33 likely to be infected S. stercoralis than had not lived together (OR: 8.33 (95%CI: 2.27-30.61, p-value= 0.000).

Hookworm and S. stercoralis Co-infection in East Kalimantan Province, Indonesia

The prevalence of co-infection of hookworm and *S. stercoralis* in Marangkayu district is higher than in Muarakaman district was 11 (9.3%) and 3 (3.2%) respectively, while the overall prevalence in East Kalimantan was 14 (6.6%)

Fig 3. Prevalence hookworm and S. stercoralis coinfection in Muarakaman district and Marangkayu district, East Kalimantan Province

Risk factors of hookworm and S stercoralis co-infection in East Kalimantan province

Characteristic, facilitate Sanitation of Participants and Hookworm and *S. stercoralis* Co-infection showed below:

Table 13. Characteristic, facilitate sanitation of participants and hookworm and *S. stercoralis* co-infection

¥7	Category	Co-infection		
variable		Negative n (%)	Positive n (%)	

				P-value	
	male	123 (94.6)	7 (5.4)	0.001	
Gender	female	76 (91.6.4)	7 (8.4)	0.381	
	2-12	210 (93.0)	8 (7.0)	A 770	
Age (years)	13 and above	186 (93.9)	6 (6.1)	0.779	
	Farmer	67 (95.7)	3 (4.3)		
Main Occupation	At home	50 (90.9)	5 (9.1)	0.(2)	
	At school	75 (92.6)	6 (7.4)	0.626	
	Others	7 (100)	0 (0.0)		
Occupation	Non-farmer	127 (92.0)	11 (8.0)	0.264	
	Farmer	77 (96.0)	3 (4.0)		
Kinds of Floor covering	Sanitary floor (cement, wood, etc)	198 (94.4)	14 (6.6)	0 700	
indoor of house	Soil floor	1 (100)	0 (0.0)	0.790	
X 7 1 •	Not soil	33 (94.4)	2 (5.6)	0.922	
Yard covering	Soil	166 (93.3)	12 (6.7)	0.823	
TT 1 1 1 1 1	Healhty water waste treatment	100 (92.6)	8 (7.4)		
Water waste treatment	Without water waste treatment	99 (94.3)	6 (5.7)	0.618	
Water resources for daily	Sanitary water resources	86 (92.4)	6 (6.5)		
activity	Un-sanitary water resources	113 (93.4)	8 (6.6)	0.979	
	Sanitary of drinking water	107 (91.5)	10 (8.5)	0.100	
Drinking water	Un-sanitary of drinking water	92 (95.8	4(4.2)	0.199	
	Sanitary toilet in the home	170 (93.4)	11 (6.6)		
Toilet	Open defecation (plantation, garden, or river	29 (90.6)	3 (9.4)	0.488	

The table above showed the results Pearson chi-square analysis between characteristics, facilitate sanitation of participants, and hookworm and *S. stercoralis* co-infection have not associated (p-value > 0.05).

Personal hygiene and hookworm and S. stercoralis co-infection

Table 14. Personal hygiene and Hookworm and S. stercoralis co-infection

Variable	Category	Co-ini	fection	
		Negative n (%)	Positive n (%)	_
				P-value
Frequency using shoes	Routine	71 (95.9)	3 (4.1)	- 0.070
on out-door	Un-routine	128 (92.1)	11 (7.9)	0.279

Usual wash foot after	washing foot after soil contact	23 (88.5)	3 (11.5)	0 275
soil contact	Not washing foot after soil contact	176 (94.1)	11 (5.9)	0.275
Washing fruit/vegetable	Routine	32 (97.0)	1 (3.0)	0 272
before eaten	Un-routine	167 (92.8)	13 (7.2)	0.572
Usual ate row/un-cook	no	164 (95.3)	8 (4.7)	0.020
fish/meat/vegetable	yes	35 (85.4)	6(14.6)	0.020
-	no	151 (93.8)	10 (6.2)	0 708
Pet contact	yes	48 (92.3)	4 (7.7)	0.708
Washing hand after pet	Washing hand	4 (100)	0 (0.0)	0 502
contact	Not washing	195 (93.3)	14 (6.7)	0.392
Washing hand after soil	Washing hand	22 (88.0)	3 (12.0)	0 244
contact	Not washing	177 (94.1)	11 (5.9)	0.244
Washing foot before	No	13 (6.6)	0 (0.0)	0 224
house enter	Yes	186 (93.0)	14 (7.0)	0.324
	Yes	109 (93.1)	7 (6.0)	0 720
Usual use toilet at home	No	90 (92.8)	7 (7.2)	0.729
Usual use sandals in	Routine	109 (93.1)	7 (6.0)	0 720
toilet	Un-routine	90 (92.8)	7 (7.2)	0.729

Results analysis Pearson chi-square analysis between personal hygiene and hookworm and *S. stercoralis* coinfection showed that usually ate raw vegetable has significantly correlated with hookworm and *S. stercoralis* coinfection (p= 0.020), and others personal hygiene have not correlated.

Environmental risk factors of hookworm and S. stercoralis co-infection in East Kalimantan

Environmental risk factors of Hookworm and S. stercoralis co-infection in East Kalimantan Province, Indonesia

Table 15. Environmental factors and hookworm and S. stercoralis co-infection

Variable	Catagony	Co-ii	Dualu	
variable	Category	Negative n (%)	Positive n (%)	_ 1-value
District	Muara Kaman	92 (96.8)	3 (3.2)	0.071
District	Marangkayu	107 (90.7)	11 (9.3)	0.071
Organic carbon content in soil	1.37-2.47	81 (89.0)	10 (11.0)	0.025
(%)	>2.47-4.04	188 (96.7)	4 (3.3)	0.025
pH soil	4.26-5.85	97 (95.1)	5 (4.9)	0.346

	>5.85-6.92	102 (91.9)	9 (8.1)		
(1)	4-18.5	90 (93.7)	6 (6.3)	0.072	
Clay content in soil (%)	>18.5-42.50	109 (93.2)	8 (6.8)	0.863	
The second se	28-28.6	107 (89.8)	11 (9.3)	0.071	
Temperature (°C)	>28.6 -29.5	92 (96.8)	3 (3.2)	0.071	
II III (0())	65	107 (89.8)	11 (9.3)	0.051	
Humidity (%)	66	92 (96.8)	3 (3.2)	0.071	
N	164	92 (96.8)	3 (3.2)	0.071	
Number day of rainfall (day)	174	107 (89.8)	11 (9.3)	0.071	
$\mathbf{D}_{\mathbf{a}}$	3549	92 (96.8)	3 (3.2)	0.071	
Rainfall volume (mm ⁻ /year)	4000	107 (89.8)	11 (9.3)	0.071	
Elevation from above of sea	15-41.6	94 (96.9)	3 (3.1)	0.071	
(m)	>41.6-50	105 (90.5)	11 (9.5)	0.001	
	Sandy soil with organic	90 (93.7)	6 (6.3)		
Texture of soil	material Non-sandy soil with	105 (95.2)	8 (6.8)	0.079	
	organic material Surrounding palm plantation and/or rubber	156 (93.4)	11 (6.6)	0.097	
vegetation	plantation Surrounding rice field	43 (93.5)	3 (6.5)	0.987	
Villago aroos	Buffer river/sea	155 (93.4)	11 (6.6)	0.053	
v mage areas	Hill area	44 (93.6)	3 (6.4)	0.955	
Dry or wet soil surrounding	Dry soil	157 (92.9)	12 (7.1)	0.542	
the house	Wet soil	42 (95.5)	2 (4.5)		
Having a cat	Not having a cat	77 (96.2)	3 (3.8)	0 107	
Having a cat	Having a cat	122 (91.7)	11 (8.3)	0.177	
Having a dog	Not having a dog	4 (100)	0 (0.0)	0 502	
Having a dog	Having a dog	195 (93.3)	14 (6.7)	0.374	
Hookworm in cat	Negative	77 (96.2)	3 (3.8)	0 107	
	Positive	122 (91.7)	11 (8.3)	0.197	
Hookworm in dog	Negative	4 (100)	0 (0.0)	0 502	
	Positive	195 (93.3)	14 (6.7)	0.592	
Strongylaidag in act	Negative	126 (94.0)	8 (6.0)	0 6 4 4	
Strongyloides in cat	Positive	73 (92.4)	6 (7.6)	0.044	
Steen and aliday in days	Negative	102 (98.1)	1 (1.9)	0 1 2 0	
Strongyloides in dog	Positive	294 (91.9)	13 (8.1)	0.120	
Usual ate row/un-cook	no	164 (95.3)	8 (4.7)	0.020	
fish/meat/vegetable	yes	35 (85.4)	6(14.6)	0.020	
Live together with human	No	193 (99.5)	1 (0.5)	0.000	
infected with hookworm and <i>S. stercoralis</i> co-infection	Yes	6 (31.6)	13 (68.4)	0.000	

The results of statistical analysis between environmental risk factors with hookworm and *S. stercoralis* co-infection showed organic carbon content in soil and live together with humans infected with hookworm and *S. stercoralis*

co-infection have significantly correlated with hookworm and *S. stercoralis* co-infection with p-value = 0.025 and p-value= 000 respectively.

Essential risk factors of hookworm and S. stercoralis co-infection in East Kalimantan Province.

The estimated value of the risk factor of hookworm, *S. stercoralis*, and co-infection explained in table 16 below:

Eccential wish factors	Cotogony	Co-in			
Essential risk factors	Category	Negative n (%)	Positive n (%)	_ OR (95%CI)	
Organic carbon content	1.37-2.47	81 (89.0)	10 (11.0)	2.07 (0.90-4.79)	
in soil (%)	>2.47-4.04	188 (96.7)	4 (3.3)	0.57 (0.30-0.83)	
Usual eat raw/un-cook	no	164 (95.3)	8 (4.7)	0.41 (0.21-0.81)	
fish/meat/vegetable	yes	35 (85.4)	6(14.6)	1.44 (0.91-2.28)	
Live together with	No	193 (99.5)	1 (0.5)	0.03 (0.01-0.07)	
human infected with hookworm and S. stercoralis co-infection	Yes	6 (31.6)	13 (68.4)	13.58 (2.05-89.77)	

Table 16. Essential Risk Factors of Hookworm and S stercoralis Co-infection in East Kalimantan province

Communities in areas with organic carbon content in soil 1.37-2.47% were more 2.07 likely to be infected hookworm and *S. stercoralis* co-infection than in areas with organic carbon content in soil >2.47-4.04 (OR: 2.07 (95%CI: 0.90-4.79, p-value= 0.025). Participants who usually eat raw vegetables were more 1.44 likely to be infected hookworm and *S. stercoralis* co-infection than un-usual eat raw vegetables (OR: 1.44 (0.91-2.28, p-value= 0.020). Participants who live together with human infected with hookworm and *S. stercoralis* co-infection were more 13.58 likely to be infected hookworm and *S. stercoralis* co-infection (OR: 13.58 (2.05-89.77, p-value= 0.000)

Risk factors associated with hookworm, S. stercoralis , and Co-infection.

Muarakaman district was more 4.46 likely to be infected mono hookworm than Marangkayu district (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000). Organic carbon content in soil >2.47-4.04% was more 2.52 likely to be infected mono hookworm than organic carbon content in soil 1.37-2.47 (OR: 2.52 (95%CI: 1.49-4.29, p-value= 0.000). The

temperature in category >28.6-29.5^oC was more 4.46 likely to be infected mono hookworm than 28-28.6 (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000), humidity 66% was more 4.46 likely to be infected mono hookworm than humidity 65% (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000)), number day of rainfall (164 days) was more 4.46 likely to be infected mono hookworm than 165 days long rainfall (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000), and rainfall volume (3549 mm³) was more 4.46 likely to be infected mono hookworm than rainfall volume in category 4000 mm³ (OR: 4.64 (95%CI: 2.52-8.54, p-value= 0.000). Vegetation in category surrounding palm and or rubber plantation was more 4.02 likely to be infected mono hookworm than surrounding rice field (OR: 4.02 (95%CI: 1.51-10.73, p-value= 0.001). Villages area where is in buffer river or sea area were more 4.12 to be infected mono hookworm than hill areas (OR: 4.12 (95%CI: 1.55-10.97, p-value= 0.001). Wet soil surrounding houses were more 1.24 likely to be infected mono hookworm than dry soil (OR: 1.24 (95%CI: 1.02-1.49, p-value= 0.010). Live together with humans infected by hookworm was 1.28 more likely to be infected mono hookworm than has not to live together (OR: 1.28 (95%CI: 1.02-1.61, p-value= 0.016).

Ages old in category 13 years old and above were more 1.52 likely than 2-12 years old (OR: 1.52 (95%CI: 1.07-2.14, p-value= 0.008). Farmers were more 1.38 likely to be infected mono hookworm than others occupation (OR: 1.38 (95%CI: 1.05-1.81, p-value= 0.008). Un-sanitary water resources was more 2.13 likely to be infected mono hookworm than sanitary water resources (OR: 2.13 (95%CI: 1.32-3.46, p-value= 0.000). Participants in un-sanitary drinking water were more 4.60 likely to be infected mono hookworm than participants in the category sanitary drinking water (OR: 4.60 (95%CI: 2.50-8.46, p-value=0.000). Participants in the category open defecation were more 1.16 to be infected mono hookworm than in the category sanitary toilet at home (OR: 1.16 (95%CI: 0.99-1.35, p-value= 0.028). Routine use shoes when in outdoor activity became a protecting factor for hookworm infection (OR: 1.39 (95%CI: 1.06-1.83, p-value= 0.006). Participants in the category not washing foot after soil contact were more 2.94 likely than routine washing foot after soil contact (OR: 2.94 (95%CI: 0.92-9.42, p-value = 0.049). No usual ate raw/un-cook vegetable in rural communities East Kalimantan were protecting factor for hookworm infection (OR: 4.85 (95%CI: 1.56-15.12, p-value= 0.001). Participants whom no routine wash foot before house enter were protecting factor for hookworm infection (OR: 1.09 (95%CI: 0.99-1.20, p-value= 0.030). Participants who use toilet at home and use sandals in toilet became a protecting factors for hookworm infection (OR: 1.47 (95%CI: 1.00-2.18, p-value= 0.035).

The result analysis of risk factors and *S. stercoralis* showed the variables that were associated. Participants in Marangkayu district were more than 2.66 to be infected *S. stercoralis* than Muarakaman district (OR: 2.66 95%CI: (0.94-7.51, p-value=0.020)). Participants in category organic carbon content in soil 1.37-2.47% were more 2.56 likely to be infected *S. stercoralis* than organic carbon content >2.47-4.04 (OR: 2.56 (95%CI: 1.08-6.07, p-value= 0.003). Communities in temperature >28.6 -29.5^oC were more 2.66 likely than 28-28.6^oC (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020). Participants in humidity 65 were more 2.66 likely than 66 (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020). Participants in areas with 174 days of rainfall were 2.66 likely than 164 days (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020).

7.51, p-value= 0.020). Communities in rainfall volume 4000 mm³/year were 2.66 likely than 164 days (OR: 2.66 (95%CI: 0.94-7.51, p-value= 0.020). Elevation from above of sea >41.6-50 m were more likely than in elevation 15-41.6 (OR: 2.72 (0.96-7.67, p-value= 0.016). Participants who live together with humans infected with *S. stercoralis* were more 8.33 likely to be infected S. stercoralis than had not lived together (OR: 8.33 (95%CI: 2.27-30.61, p-value= 0.000).

Communities in areas with organic carbon content in soil 1.37-2.47% were more 2.07 likely to be infected hookworm and *S. stercoralis* co-infection than in areas with organic carbon content in soil >2.47-4.04 (OR: 2.07 (95%CI: 0.90-4.79, p-value= 0.025). Participants whom usual eat raw vegetable were more 1.44 likely to be infected hookworm and *S. stercoralis* co-infection than un-usual eat raw vegetable (OR: 1.44 (0.91-2.28, p-value= 0.020). Participants who live together with humans infected with hookworm and *S. stercoralis* co-infection were more 13.58 likely to be infected hookworm and *S. stercoralis* co-infection (OR: 13.58 (2.05-89.77, p-value= 0.000))

Discussion

The prevalence of mono-hookworm infection in Muarakaman district is higher than in Marangkayu district was 50 (52.6%) and 9 (7.6%) respectively, while the prevalence *Strongyloides stercoralis*, Marangkayu district 14 (11.9%) is higher than Muarakaman district 3 (3.2%). Prevalence of co-infection was showed in Marangkayu district 11 (9.3%) where is higher than Muarakaman district 3 (3.2%). The study was similar to the south Thailand study where hookworm infection higher than *S. stercoralis* [28]. The deference of environmental factor between Muarakaman district and Marangkayu district should be affected by the higher hookworm infection and lower of *S. stercoralis* in Muarakaman district consist vegetation surrounding area of villages and geographical location where Muarakaman district be located surrounding palm plantation and river area. Similar study in the Manufahi district, Timor Leste where is a rural area with prevalence of hookworm infection was 62.8% [29].

The result Pearson chi-square analysis that age, occupation, water resources for daily activity, drinking water and toilet have a significant correlation with mono hookworm infection. We found that ages-old in category 13 years old and above were more likely to be infected mono-hookworm than 2-12 years old (36.4% vs, 20.2%). Farmers were more likely to be infected mono hookworm than other occupations (38.7% vs. 21.7%). Un-sanitary water resources were more likely to be infected mono hookworm than sanitary water resources (37.2% vs 15.2%). Participants in un-sanitary drinking water were more likely to be infected mono hookworm than participant in the category sanitary drinking water (62.5% vs. 28.2%). Participants in the category open defecation were more to be infected mono hookworm than in the category sanitary toilet at home (43.7% vs. 24.9%). Routine of use shoes, wash foot after soil contact, wash foot before house-entering, use the toilet at home and use sandal in the toilet were associated risk factor of mono hookworm infection. The risk factors were protecting risk factors. The result Pearson chi-square analysis of characteristics sanitation facilities have not associated with *S stercoralis* infection. Results analysis Pearson chi-square analysis between personal hygiene and hookworm and *S. stercoralis* co-infection showed that usually ate row/un-cook fish/meat/vegetable has significantly correlated with hookworm and *S. stercoralis* co-infection (p= 0.020), and others personal hygiene have not correlated. Participants whom usual eat raw vegetable were more likely to be infected hookworm and *S. stercoralis* co-infection than un-usual eat raw vegetable (14.6% vs, 4.7%).

The results statistical analysis between environmental risk factors with hookworm infection showed several of environmental factors have correlated significant with hookworm infection such as district (p= 0.000), organic carbon content in the soil (p=0.000), temperature (p=0.000), humidity (p=0.000), number day of the rainfall (p=0.000) 0.000), rainfall volume (p= 0.000), vegetation (p= 0.001), village areas (p= 0.001), dry or wet soil surrounding house (p= 0.010) and live together with human infected with hookworm (p= 0.016). While the pH of the soil, clay content in the soil, texture of the soil, and hookworm infection in cat, hookworm infection in the dog have not significant correlated with the prevalence of hookworm infection in East Kalimantan province. Muara Kaman district was more likely to be infected mono hookworm than Marangkayu district (52.6% vs, 7.6%). Organic carbon content in soil >2.47-4.04% was more likely to be infected mono hookworm than organic carbon content in soil 1.37-2.47 (38.5% vs 13.2%). A previous study in Cambodia was explained that a high amount of soil organic carbon content affects to the lower prevalence of S. stercoralis infection [16], equal with study in East Kalimantan which organic carbon soil more in became have effected for reducing S. stercoralis but did not for hookworm infection, In contrast, organic carbon soil more in became had not been effected for reducing hookworm infection, in this study showed where organic carbon content in soil >2.47-4.04% has higher hookworm infection than organic carbon content 1.37-2.47%. Quoted by Sebastian H, at al (2018) organic carbon content in soil has indirect effect for nematode but the effect via food organism, usually the effect of organic carbon on abundance, cell size, and activity of the bacteria (Escherichia coli). Adsorption of organic carbon on bacterial cells, serving as food for the nematodes, may have been an important factor for the availability of organic carbon for hookworm [33]. The temperature in category >28.6-29.5^oC was more likely to be infected mono hookworm than 28-28.6 (52.6% vs, 7.6%), humidity 66% was more likely to be infected mono hookworm than humidity 65% (52.6% vs, 7.6%), number day of rainfall (164 days) was more likely to be infected mono hookworm than 165 days long rainfall (52.6% vs, 7.6%), and rainfall volume 3549 mm³ was more 4.46 likely to be infected mono hookworm than rainfall volume in category 4000 mm³ (52.6% vs, 7.6%). Vegetation in the category surrounding palm and or rubber plantation was more likely to be infected mono hookworm than the surrounding rice field (32.9% vs 8.7%). Villages area where is in buffer river or sea area were more to be infected mono hookworm than hill areas (33.8% vs, 8.5%). Wet soil surrounding houses were more likely to be infected mono hookworm than dry soil (43.2% vs, 23.7%). The survival of hookworm and S. stercoralis was supported by environmental factors. When communities defecated in rubber or palm plantation could be spread in the village or rice field that condition was caused elevation plantation is higher than village and rice field elevation, runoff water from plantation or forest when rainfall maybe bring the

eggs or larvae hookworm and *S.stercoralis* from human or animal feces from hill to village and field rice, and became a high risk for zoonotic diseases [30,15]. Potential infected together via field rice and rubber and palm plantations adult communities also for children when they were playing around houses. Live together with humans infected by hookworm was more likely to be infected mono hookworm than has not to lived together (39.3% vs, 23.0%).

The results of statistical analysis between environmental risk factors with S. stercoralis infection showed several of environmental factors have correlated significantly with S. stercoralis (p<0.05) such as district, the organic carbon content in the soil, humidity, temperature, elevation, number day of rainfall, rainfall volume, elevation, and live together with human infected with S. stercoralis. Environmental risk factors which were the highest association/correlation S. stercoralis infection were organic carbon content in soil (p= 0.003) and live together with human infected with S. stercoralis (p=0.000). Marangkayu district was more likely to be infected S. stercoralis than Muara Kaman district (11.9 vs. 3.2). Participants in the category of organic carbon content in soil 1.37-2.47% were more 2.56 likely to be infected S. stercoralis than organic carbon content >2.47-4.04 (14.3% vs, 3.3%). Communities in temperature >28.6 -29.5°C were more likely than 28-28.6°C (11.9% vs, 3.2%). Participants in humidity 65 were more 2.66 likely than 66 (11.9% vs, 3.2%). Participants in areas with 174 days of rainfall were likely than 164 days (11.9% vs, 3.2%). Communities in rainfall volume 4000 mm³/year were likely than 3549 mm³/year (11.9% vs, 3.2%). Collaboration many environmental risk factors could support the survival of larvae the worms. Environmental factors of hookworm and S.stercoralis infection in East Kalimantan has similar to south Thailand including long rainy season, temperature, and several geography areas, then the prevalence of hookworm infection in East Kalimantan Province (44.1%) is higher than in south Thailand but equal for S.stercoralis infection, [28]. In contrast quote by the epidemiology study of *S.stercoralis* infection Southern Laos showed was 41% where has heavy rainfall and poor sanitation. [11]. Elevation from above of sea >41.6-50 m was more likely than in elevation 15-41.6 (12.1% vs, 3.1%). Participants who live together with humans infected with S. stercoralis were more 8.33 likely to be infected S. stercoralis than had not lived together (78.9% vs, 1.0%). This study showed participants who positive S. strercoralis infection has live together with other positive S. strercoralis infection through one household or neighbor where live close was dominant, same as environmental risk factor, personal hygiene, and sanitation facilities became caused together infection.

The results of statistical analysis between environmental risk factors with hookworm and *S. stercoralis* coinfection showed organic carbon content in soil and live together with humans infected with hookworm and *S. stercoralis* co-infection have significantly correlated with hookworm and *S. stercoralis* co-infection with p-value = 0.025 and p-value= 000 respectively. Communities in areas with organic carbon content in soil 1.37-2.47% were more likely to be infected hookworm and *S. stercoralis* co-infection than in areas with organic carbon content in soil >2.47-4.04 (11.0% vs, 3.3%). Participants whom usual eat raw vegetable were more likely to be infected hookworm and *S. stercoralis* co-infection than un-usual eat raw vegetable (OR: 1.44 (14.6% vs, 4.7%). Participants who live together with human infected with hookworm and *S. stercoralis* co-infection were more likely to be infected hookworm and *S. stercoralis* co-infection than had not lived together with humans infected (68.4% vs, 0.5%). the environmental factors make survive of infective larvae of *S. strercoralis* hookworm and co-infection, had explained by Garcia, et al (2007) that a significant increase in the prevalence with environmental conditions [1]. Changing environmental conditions, specifically deforestation and subsequent silting of the local river, have caused periodic flooding with deposition on the layer of sandy loam topsoil could increase soil moisture, and supported by the low quality of sanitation facilities and hygiene personal to add the increasing of *S. strercoralis* hookworm and co-infection transmissions, have allowed *S. strercoralis* hookworm and co-infection to reemerge as an important human pathogen in this area [1].

District, organic carbon content in soil, humidity, temperature, elevation, number day of rainfall, rainfall volume, and elevation that due to the variables have a contribution for surviving of parasitic larvae of hookworm and *S. stercoralis* then potential increase for penetration the larvae to human via soil contact and pet contact. This study had shown that the quality of soil and climatology such as humidity, temperature has a correlation with survival of hookworm and *S. stercoralis*, and heavy rainfall affected for reducing and increasing distribution hookworm and *S. stercoralis*, and heavy rainfall affected for reducing and increasing distribution hookworm and *S. stercoralis*. In general condition soil surrounding houses more than 80% covering with soil was close to the location with plantation and forest that have high position for contamination from plantation and forest. And besides personal hygiene and sanitation facilities still not save for protecting skin from larvae hookworm and *S. stercoralis* also in file rice and palm or rubber plantation. (8). In poor countries with tropical climate, In poor countries with a tropical climate, where have environmental condition favorable for the transmission of hookworm and *S. stercoralis* infection the prevalence still high [5].

Conclusions

This study demonstrated the prevalence of hookworm, *S. stercoralis,* and co-infection in two districts in rural areas in East Kalimantan, Indonesia where deference of risk factor of the infections. Hookworm, S stercoralis, and Co-infection have deference of risk factors especially in carbon content, volume n number day of rainfall, elevation, and village areas, that conditions against the survival of parasitic larvae in an environment where potential increase for penetration the larvae to human via soil contact and pet contact. Personal hygiene and sanitation facilities supported the conditions. Essential risk factors of the infections should use for preventing program of reduction prevalence hookworm and *S stercoralis* infection.

Acknowledgments

We are grateful to the participants and local authorities of Muarakaman district and Marangkayu district, East Kalimantan Province. We deeply thank the Dean of School of Public Health Mulawarman University and the Dean School of Allied Health Walailak University for permitting to use the laboratory and supporting approval of the letter for this research. This work received grants from Walailak University (contract No 17/2561), and Government East Kalimantan Province, Indonesia Grant.

F				u	I					n					d					i						n						g
Wal	ailak	Ur	nive	rsity	, gr	ant	: (c	ontr	act	No	17	/25	61),	an	nd	Gov	ern	imer	nt I	East	K	alim	anta	an (Gra	nt	for	r P	hD	stı	ıdy	
A	v a	i	I	а	b	i	I	i t	у		o	f		d	а	t	а		а	n	d		m	а	i t	t (e	r	i	а	I	s
The	datas	sets	usec	d and	d/or	ana	alyze	ed d	urin	g the	e cur	rent	t stu	dy a	avai	ilabl	e fr	om t	he	corr	esp	ondi	ing a	uthc	or o	n r	easo	ona	ble	req	ues	t.
A	u		t	h		o	r		s	,			С		ο		n	t		r		i	b	ι	u	t	:	i		0		n
All a	utho	rs co	ncei	ived	of t	he i	dea	and	par	ticipa	ated	in t	he d	esig	gn o	f th	is st	udy.	BS,	, WA	, ar	nd Jī	Г con	duct	ted	the	e stu	udy.	. BS	, SV	√, SI	Ρ,
WA,	and .	JT w	ere r	respo	onsil	ble f	for i	nter	pret	atior	n of t	he r	esul	ts a	nd (draf	ting	of m	าลทเ	uscri	pt a	and	readi	ng f	or i	nte	llect	tual	l cor	nter	nt. A	١I
a u	t h	0	r s		r e	а	d	а	n	d	a	рр	r	οv	e e	d	t	: h	e	f	i	n a	I	m	а	n	u s	s c	r	i p) t	
Et	hi	i c	s	а	p p	р	r	οv	a	I	а	n	d		сc	o n	S	e	n t	t	t	ο	р	а	r	t	ic	c i	р	а	t	e
Offi	cial pe	ermi	ssior	n and	d etl	hica	l cle	aran	ce f	or th	e co	llect	tion l	hun	nan	feca	al sa	mple	es w	vere	obt	aine	ed fro	m t	he l	nea	d of	f the	e vil	llage	e an	ıd
head	d of t	the	hous	seho	ld. 1	The	stu	dy p	roto	ocol	was	арр	rove	ed b	by t	he I	Ethi	cal C	lea	ranc	e C	omr	nitte	e or	ו h	uma	an r	righ	t re	elate	ed t	ю
rese	arch i	invo	lving	g hun	nan	sub	ject	s, W	alail	ak U	nive	rsity	HE:	No.	w	JEc-	18-	034-0	01.													
с	ο	n		s	e	ı	n	t			f	о	r	•			р	u		b	I	i	i	с	а		t	i	i	о		n
N		0		t					а		р	1		р		I			i		с		á	a		b	,		I			e

С	0	m	р	е	t	i n	g	i	n	t	е	r	е	s	t	s
The	аu	thor	s	decl	are	that	they	have	n o	со	mpe	ting	ç i	inteı	est	s.

References

- 1. Forrer A, Khieu V, Schar F, Vounatsau P, Chammartin F, Marti H, Muth S, Odermatt P (2018). Strongyloides stercoralis and hookworm co-infection: spatial distribution and determinants in Preah Vihear Province, Cambodia. Parasit Vectors (2018) 11:33
- 2. Anamnart W. Pattanawongsa, A. Maleewong, P. Intapan., Morakote N, Janwan., P. Maleewong., W (2013). Detrimental Effect of Water Submersion of Stools on Development of *Strongyloides stercoralis. PLoS ONE* 8, e82339.
- 3. Siddiqui AA & Berk SL. (2001). Diagnosis of Strongyloides stercoralis infection. Clin Infect Dis 33, 1040-1047
- 4. Olsen A, van Lieshout L, Marti H, Polderman T, Polman K, Steinmann P, Stothard R, Thybo S, Verweij JJ & Magnussen P. (2009). Strongyloidiasis- -The most neglected of the neglected tropical diseases? Trans R Soc Trop Med Hyg 103, 967-972
- 5. Jongwutiwes S, Charoenkom M, Sitthichareonchai P, Akaraborvorn P, Putaportip,c, Increased sensitivity of routine laboratory detection of *Strongyloides stercoralis* and hookworm by Agar-Plate Culture. Trans R Soc Trop med Hyg, 1999; 93: 398-400
- 6. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D & Hotez PJ. (2006). Soil-Transmitted Helminth Infections: Ascariasis, trichuriasis, and hookworm. *Lancet* 367, 1521-1532
- Boonjarasspinyo S, Boonmars T, Kaewsamut B, Ekobol N, Laummaunwa P, Aukkanimart R, Wonkchalee N, Juasook A, Sriraj P (2013). A Cross-sectional study on intestinal parasitic infection in rural communities, Northeast Thailand. Korean J Parasitol Vol 51, No 6:727-734
- 8. Anamnart, W. Pattanawongsa A. Intapan P.M.and Maleewong W. (2010). Albendazole Stimulates the Excretion of *Strongyloides Stercoralis* Larvae in Stool Specimens and Enhances Sensitivity for Diagnosis of Strongyloidiasis. *Journal of Clinical Microbiology*, 48, 4216–4220
- 9. Khieu V, Schar F, Forrer A, Hattendorf, Marti, Duong S, Vounatsou P, Muth s, Odermatt P, High prevalence and special distribution of *Strongyloides stercoralis* in rural Cambodia. Plos negl trop dis 2014,; 8 e2854
- 10. Garcia, Lynne Shore, (2007), Diagnostic medical parasitology, ASM Press Washington D.C Fifth Edition Chapter 10, 266-270
- Vonghachack Y, Somphou Sayasone, Dalouny Bouakhasith, Keoka Taisayavong, Kongsap Akkavong, Peter Odermatt. (2015) Epidemiology of Strongyloides stercoralis on Mekong Islands in Southern Laos. <u>Acta Tropica 141</u>, 289–294.
- 12. Hall A, Conway DJ, Anwar KS & Rahman ML. (1994). *Strongyloides stercoralis* in an Urban Slum Community in Bangladesh: Factors independently associated with infection. Trans R *Soc Trop Med Hyg* 88, 527-530
- 13. Wardell R, Clements ACA, Lal A, Summers D, Llewellyn S, Campbell SJ, et al. (2017) An environmental assessment and risk map of *Ascaris lumbricoides* and *Necator americanus* distributions in Manufahi District, Timor-Leste. PLoS Negl Trop Dis 11(5)

- 14. Katz N, Chaves A & Pellegrino J. (1972). A Simple device for quantitative stool thick-smear technique in *Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo* 14, 397-400.
- 15. Strkolcova G, Goldova M, Bockova F Mojzisova J.(2017) The roundworm *Strongyloides stercoralis* in children, dogs and soil inside and outside a segregated settlement in Eastern Slovakia: frequent but hardly detectable parasite. Parasitol Res DOI 10.1007/s00436-016-5362-1
- 16. Khieu V, Schär F, Marti H, Bless PJ, Char MC, Muth S & Odermatt P. (2014). Prevalence and risk factors of *Strongyloides stercoralis* in Takeo province, Cambodia. *Parasit Vectors* 7, 221.15
- 17. Peter Steinmann, Peiling Yap, Jürg Utzinger, Zun-Wei Du, Jin-Yong Jiang et al (2015). Control of soil-transmitted helminthiasis in Yunnan province, People's Republic of China: Experiences and lessons from a 5-year multiintervention trial. Acta Tropica 141, 271–280
- 18. Khieu V, Schär F, Marti H, Sayasone S, Duong S, Muth S & Odermatt P. (2013). Diagnosis, treatment, and risk factors of *Strongyloides stercoralis* in schoolchildren in Cambodia. *PLoS Negl Trop Dis* 7, e2035.
- 19. Prasit Na-Ek, Oranuch Sanpool, Jurairat Jongthawin, Witthaya Anamnart, Pewpan M. Intapan Pennapa Chamavit, Wanchai Maleewong (2016). Restoration of hookworm egg development after prolonged storage in stool suspension. Parasitol Res 115, 2817–2823
- 20. Kitvatanachai S, Pipitgool V (1999) Efficacy of three methods in the detection of hookworm and *Strongyloides stercoralis* infections. J Trop Med Parasitol 22: 80–81
- 21. Koga K, Kasuya S, Khamboonruang C, Sukhavat K, Ieda M, Takatsuka N, Kita K & Ohtomo H. (1991). A modified agar plate method for detection of Strongyloides stercoralis. Am J Trop Med Hyg 45, 518-521.
- 22. Naves and Costa-Cruz. (2013). High prevalence of Strongyloides stercoralis infection among the elderly in Brasil. Rev. Ins. Med. Trop Sao Paulo 55 (5) 309-313
- 23. Forrer A, Khieu V, VounatsouP, Sithithaworn P, Ruantip S, Huy R, et al. (2019) Strongyloides stercoralis: Spatial distribution of a highly prevalent and ubiquitous soil-transmitted helminth in Cambodia. PLoS Negl Trop Dis 13(6): e0006943.https://doi.org/10.1371/journal. pntd.0006943
- 24. WHO (2011). Helminth control in school-age children: A guide for managers of the control program. 2nd ed. Geneva: World Health Organization
- 25. Pullan R L, Jennifer L S, Rashmi J, and Simon J B. (2014) Global numbers of infection and disease burden of soil transmitted-helminth infections in 2010. *Parasites & Vectors* 7:37
- 26. Forrer A, Khieu V, Schindler C, Schär F, Hanspeter Marti, Meng Chuor Char, et al. (2016). Ivermectin treatment and sanitation effectively reduce *Strongyloides stercoralis* infection risk in rural communities in Cambodia. PLOS *Neglected Tropical Diseases* 10, 1-17.
- 27. Bannon JP, Fater M & Solit R. (1995). Intestinal Ileus Secondary to *Strongyloides Stercoralis* Infection: Case Report and Review of The Literature. *Am Surg* 61, 377-380
- 28. Anamnart, Pewpan Maleewong Intapan, Attarat Pattanawongsa, Pennapa Chamavit, Supreecha Kaewsawat, Wanchai Maleewong. (2015). Effect of dilution of stool soluble component on growth and development of *Strongyloides Sci. Rep.* 5, 1-5.
- 29. Nery SV, McCarthy JS, Traub R, et al. A cluster-randomized controlled trial integrating a community-based water, sanitation and hygiene programme, with mass distribution of albendazole to reduce intestinal parasites in Timor-Leste: the WASH for WORMS research protocol. *BMJ Open* 2015;5:e009293.doi:10.1136/bmjopen-2015-009293
- 30. Schär F, Trostdorf U, Giardina F, Khieu V, Muth S, Marti H, Vounatsou P & Odermatt P. (2013). *Strongyloides* stercoralis: Global distribution and risk factors. *PLoS Negl Trop Dis* 7, e2288
- 31. Wayne W. Danial (2010); Biostatistics "A foundation for analysis in the health sciences". John Wiley & Sons, Inc Publication. New York
- 32. David I. Grove. (1989). Strongyloidiasis: A major roundworm infection of man. Taylor & Francis, Philadelphia
- 33. Sebastian Höss Matthias Bergtold Markus Haitzer Walter Traunspurger Christian E.W. Steinberg. (2008). Refractory dissolved organic matter can influence the reproduction of *Caenorhabditis elegans* (Nematoda). https://doi.org/10.1046/j.1365-2427.2001.00639.x