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ABSTRACT

The present study examines the potential activity prediction based on free binding
energy (AG) and interaction confirmation of phytocompo s from Artocarpus
champeden (Lour.) Stokes with macromolecule protein receptor of dipeptidyl peptidase
IV (DPP-IV) using in silico molecular docking studies and physicochemical and
pharmacokinetic properties (ADME-T ox) prediction approaches. The active subsites of
the DPP-IV receptor macromolecule protein Protein Data Bank (ID: 1 x 70) were docked
using Autodock v4.2.6 (100 docking runs). A grid box of 52 x 28 = 26 A points spaced
by 0.37 Awas centered on the active site of x = 40.926 A; y = 50.522 A; z=35.031A.
For ADME-Tox prediction, Swiss ADME online-based application programs were used.
The results show that 12 pythocompounds from A. champeden have the potential
as DPP-IV inhibitors based on AG value and interaction conformation. There are five
pythocompounds with lower AG values and inhibition constants than the native ligand
and seven pythocompounds with AG values and inhibition constants close to the native
ligand. The 12 compounds form an interaction conformation at the active subsites of
the DPP-IV receptor. Atthe same time, the results of the ADME-T ox prediction analysis
showed that the 12 compounds had different physicochemical and pharmacokinetic
properties.

Key words: ADME-tox, Artocarpus champeden (Lour.) stokes, dipeptidyl peptidase IV,
free binding energy, in silico molecular docking

INTRODUCTION

Artocarpus champeden (Lour.) Stokes belongs to the Moraceae
family, locally known as “Chempedak,” an annual fruit
plant with a tall, strong woody tree. This fruit plant is a
native that grows wild in tropical forests, mainly in India,
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Vietnam, Myanmar, Thailand, Malaysia, and Indonesia."
This plantis widespread in Sumatran, Kalimantan, Sulawesi,
Maluku, and West Papua in Indonesia. Traditionally, this
plant treats diarrhea, fever, malaria, and diabetes mellitus.
However, no scientific evidence has been reported of A.
champeden as a potential antidiabetic agent to the best of our
knowledge. Therefore, our team is interested in researching
the potential of this plant.

Meanwhile, several studies have isolated and identified
phytocompounds found in A. champeden.”! However,
data regarding the potential pharmacological activity of
phytocompounds from A. champeden is still minimal, mainly
as antidiabetic, whereas it has traditionally been used for
generations. This series of work fills research gaps by examining
the potential activity and interactions of phytocompound from
A. champeden using the in silico molecular docking study and
ADME-Tox prediction approach.

In silico molecular docking is a modeling method based on
computer simulation to search for possible bindings of the
test ligand and receptor-interacting under topographical
conditions and the match between both molecules with the
conformation that has the best interaction. ADME-Tox
prediction is performed using an online-based application
such as SWISSADME, which aims to study physicochemical
and pharmacokinetic properties.'""!! Some studies that
have been reported successfully related to the use of these
application programs include ADMET analysis of three
relevant natural components of the medicinal plant,™
ADMET prediction of mangosteen derivates,™ ADME-Tox
prediction of phytocompounds from Merremia peltata,'!
and drug-likeness prediction of bioactive compounds from
Punica granatum L.

The current study predicts the interaction conformation
and the potential activity of phytocompogds from A.
champeden with macromolecules protein of dipeptidyl
peptidase IV (DPP-IV) as a receptor target, hoping to fill
research gaps on an in silico assay scale, thereby accelerating
the development of further studies.

MATERIALS AND METHODS

Hardware and software

The analysis of molecular docking was carried out by a
computer HP Pavilion, Autodock-v4.2.6, AutodockTools,
ChemOffice-Pro-v15.00 PerkinElmer,gRhyton Molecular
Viewer (PMV-1.5.6), OpenBabel GUI, Accelrys Discovery
Studio Visualizer 4.0. Software, and SWISSADME (http://
www.swissadme.ch/) online tools program.

g silico molecular docking study
Native ligand and receptor preparation

The protein structure of macromolecule DPP-IV complexes
with native ligand sitagliptin Protein Data Bank (PDB ID:

| 208 I

1 x 70, with 2.1A resolution) was downloaded from the
Research Collaboratory for Structural Bioinformatics PDB
via the website: httpgwww.rcsb.org/. Macromolecule
DPP-IV receptors and native ligand were separated using
PMV-1.5.6. Gasteiger charges were added to each ligand
atom. Water molecules were eliflinated from each protein
receptor and protonated. Then, a native ligand and protein
receptor was prepared and converted in the PDBQT
format (.pdbqgt) using AutodockTools and OpenBabel
programs.!®!

Preparation of phytocompounds as a test ligand

In this study, the structure of phytocompounds from
A. champeden was collected from some literature,”~! as
shown in Figure 1. Each phytocompounds were prepared
as a test ligand using ChemDraw” Pro v15 to build a
two-dimension structure of each tocompounds. Chem
three-dimensional (3D)® Pro v15 was converted to a 3D
structure, minimized using the MMFF94 force field, and
saved to PDB (.pdb).!

Analysis of r silico molecular docking

According toits protocols, the analysis of in silico molecular
docking of 41 phytocompounds from A. ch den was
conducted using Autodock 4.2.6.F! Using the Lamarckian
Genetic Algorithm (LGA) based on the lowest free energy
of binding (AG), the native ligand was simulated in various
conformations for best binding to the protein DPP-IV
receptor binding site. The parameters of LGA were: elitism
of 1, crossover rate of 0.8, the mutation rate of 0.02, the
population size of 150, energy evaluation of 2500,000, and
100 runs. Moreover, the"grid box comprised of 52 = 28 = 26A
points spaced by 0.375A was centered on the active site of
x = 40.926A; y = 50.522A; z = 35.031A (XYZ-coordinates)
according to a previous study."” The grid condition was
used for molecular docking analysis of 41 phytocompounds
from. champeden. The results of molecular docking
data were visualized using Accelrys Discovery Studio
Visualizer-4.0.1'%!

Determination of ADME-tox prediction

According to the literature, ADME-Tox prediction of the
best docking results was determined using SWISSADME
online tools."" Briefly, each phytocompounds (PDB format)
structure was converted in SMILES format using OpenBabel
GUIL SWISSADME online tools program was used to
determine ADME-Tox of 12 phytocompounds.'l

RESULTS

g silico molecular docking study

Validation of molecular docking method

In the present study, the docking results 9 the native
ligand (sitagliptin) demonstra a root mean square
deviation (RMSD) value of 0.55 A (<2 A) with a binding
free energy (AG) value of -8.59 keal/mol (inhibition constant
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C 5"-Hydroxycudraflavone

Figure 1: 2D structure of phytocompounds from Artocarpus champeden. 2D: Two-dimension

of 508.58 nM) and clusters of 82% for 100 times running. docking results and the original native ligand does not
Figure 2 shows that the overlay position between the significantly different positions according to the RMSD

Phar
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value <2 A, indicating that the grid size and grid center of
the docking process was different valid.

The docking results of 41 phytocompounds from A.
champeden in Table 1show that five compounds had alower
AG value and inhibition constant than the native ligand.
Seven compounds have AG value and inhibition constant
close to the native ligand.

Studies on molecular interaction

gure 3 demonstrates visualization of native ligand
mteraction with active site residue of DPP-IV macromolecule
receptors.

In Figure 4, it was shown that 12 phytocompounds have
conformational interactions with subsites of the DPP-IV
receptor.

ADME-tox prediction

The ADME-Tox properties prediction of selected 12
phytocompounds from A. champeden according to the
molecular docking study is presented in Table 2. The
physicochemical properties prediction provides an
overview of bioavailability levels of phytocompounds, as
shown in Figure 5.

Figure 2: Visualization of original (yellow) and re-docked (green)
native ligand overlay position

DISCUSSION

The result of re-docking of native ligand indicates the
level of validity of grid box and box size used with an
RSMD value of 0.55 A (<2 A), which refers to the previous
study,!"™" indicating that the grid size and grid center of
the docking process was different valid. The do@fing result
demonstrated native ligand and test ligand Interaction
with the active site of DPP-IV receptor macromolecules.
The DPP-1V receptor has some active site areas at subsites
area of amino acid residues known as S, S/, S/, S,, and
S, extensive.” > The test ligand activity can generally be
predicted based on interactions at subsites (S, S, and S,
ext.) of the DPP-1V receptor.?-!

In this study, it was found that five phytocompounds
had lower AG wvalues than the native ligand,
including 24-methylencycloartanon, cycloartenon,
cycloartenol, f-sitosterol, and cycloeucalenol, and seven
phytocompounds that had an AG value close to the
native ligand include cudraflavon C, artoindonesianin
A, 5'-hydroxycudraflavon A, artoindonesianin
B, artoindonesianin R, artoindonesianin A3, and
cyclocommunim. In addition, the 12 phytocompounds
showed conformational interactions that were specific
to the active subsite of the DPP-VI receptor. Each amino
acid residue of the active subsites of the DPP-IV receptor
can form seven different interaction conformations with
the test ligand.*!

The ADME-Tox properties play a crucial role in the drug
industry. They are generally used indrug development, mainly
using the computer-aided drug design approach to reduce
unwanted effects. 24-Methylencycloartanon has an MW
value that is in the unacceptable range, while the others are in
the acceptable range. Artoindonesianin A, artoindonesianin
A3, artoindonesianin B, artoindonesianin R, cudraflavon
C, cyclocommunin, and 5-hydroxycudraflavon A obey the
Lipinski rule, except six other compounds (RO5 value =0).**

:' wan der Waals
K
|:| Carbon Hydrogen Bond
[ Hakgen (Fucere)

. a

Figure 3: Visualization of (a) two-dimension and (b) three-dimension of molecular interaction between native ligand against macromolecule
of DPP-1V receptor (PDB ID: 1X70). PDB: Protein Data Bank, DPP-IV: Dipeptidyl peptidase IV
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Table 1: Docking results characteristic and ligand-receptor interaction

Ligand AG value Inhibition Interaction
(kcal/mol) constant (nM)

Sitagliptin (native) —859 508.58 His™ Val’''y Asn”19; Tyr®®e, Tyrse2, Trp®e, Val®e, Tyr™', Ser®®; Tyr*+: Arg®®;
Phe®’; Ser®™; Phe®™; Val**'; Glu®*; Glu*®*, Arg'**

24-methylcycloartanon —10.77 12.16 His™ Val’''y Asn”19; Arg™e, Tyrte, Tyr®s2: Trp®*; Val®*®; Tyr®', Ser®®; Tyr/;
Arg':l‘_-&r- Phe':i‘_u’r- SEFZL‘@; \‘,l'a|2'0)r- G|u2i\br- Glu[ﬂh; Arg'IZ‘_-

Artobiloxanton -6.92 8520 Tyrt™; Tyr®®; Tyr®e2: Tyr*%; Ser®*?; Pro®*®; Gly*%; Tyr*; Arg™*; Phe®’; Ser’™;
Phe®®; Wal®®’, Glu®®s; Glu**

Artocarpanon —6.13 32070 His™ Val™''; Asn”19; Arg™®, Tyre, Tyr*s2: Val®*8, Tyr®3', Ser®, Tyr*; Phe®’;
SEFZL‘@’- \‘,l'a|2'0)r- G|u2i\br- Glu[ﬂh; HiS'IZbr- Arg'IZ‘_-

Artocarpin —6.95 7990 His™ Val™''; Asn”19; Arg™®, Tyre, Tyr*s2: Val®*8, Tyr®3', Ser®, Tyr*; Phe®’;
SEFZL‘@’- \‘,l'a|2'0)r- G|u2i\br- Glu[ﬂh; HiS'IZbr- Arg'IZ‘_-

Artocarpon A —-7.76 2040 His™ Wal™''; Asn™% Arg®™ Tyr®®; Tyr™?, Tyr™'; Ser®™®; Ser™; Pro™"; Gly**;
Tyrhda’r- Phe'ﬁ); SEFZL‘@; G|u2i\br- G|UZL“_~; Arg'IZ‘_-

Artocarpon B —6.82 9990 Asn19 Arge; Tyrss®, Tyr®e2, Tyr*': Arg™E; Phe™’; Ser?™; Val*®'; Glu®®®,
Glu[ﬂh; Arg'IZ‘_-

Artoindonesianin A —8.50 592 Asn19 Arg®e; Tyrse, Tyr®e2, Tyr™3': Ser™®, Tyr®%, Ser?; Cys®'; Pro®®; Gly*
Tyrhda’r- Arg':l‘_-&r- Phe':l‘_u’r- Arg':l‘_-br- SEFZL‘@; \‘,l'a|2'0)r- G|u2i\br- Glu[ﬂh; Arg'IZ‘_-

Artoindonesianin A2 —-6.20 28340 Arg®; Tyr®™*®; Asp®; Tyr™? Tyr®'; Ser™®; Tyr*; Phe™’; Ser’™; Val*™’; Glu®™®,
Glu[ﬂh; HiS'IZbr- Argu‘_‘

Artoindonesianin A3 —8.06 1240 His™ Val™'', Arg®®; Tyr®e; Tyr®2, Trp®9; Val®*%; Tyr®3', Ser®®, Tyr*'; Arg?*,
Phe':l‘_u’r- SEFZL‘@; Valzi‘)r- G|u2i\br- G|UZL“_~; Arg'IZ‘_-

Artoindonesianin B —8.14 1080 His™ Val™'', Arg®, Tyr®®e, Tyr®e2, Val®e, Tyr™3': Ser™® Tyr*¥: Arg™: Phe®’;
SEFZL‘@’. PhEZL\!; Valzi‘)r. G|u2i\br. G|UZL“_~; Arg'IZ‘_-

Artoindonesianin E —6.26 25580 Arg®, Tyr®s, Tyr®e2 Ser® Pro®*; Gly**, Tyr*¥; Arg®*;, Phe®’; Ser®®; Val*’;
Glu?®s; Glu?s

Artoindonesianin M —-7.39 3850 Arg®®; Tyr® e, Tyr®e2, Ser®® Tyr*¥: Arg®™; Phe™’; Ser’™; Phe™; Val™; Glu®®*,
Glu[ﬂh; Arg'IZ‘_-

Artoindonesianin Q —-7.19 5370 His™ Val™'', Arg®, Tyr®, Asp®: Tyr®e2; Trp®s, Val®*®; Tyr®', Ser®®; Tyr/;
Arg':l‘_-&r. Phe':i‘_-)r. Serzu@r Val2i‘)r. G|u2i\br. Glu[ﬂh; HiS'IZbr. Arg'IZ‘_-

Artoindonesianin R —8.10 1160 His™ Val™'', Asn”19; Arg™®, Tyre; Tyr®s2, Tyr®3', Ser®3®; Ser®*?; Pro®%; Gly**,
Tyrhda’r- Phe'ﬁ); SEFZL‘@; \‘,l'a|2'0)r- G|u2i\br- Glu[ﬂh; HiS'IZbr- Arg'IZ‘_-

Artoindonesianin S —6.60 14410 His™® Arg™®; Tyr*®%; Tyr®®2; Trp®9; Val®*®, Tyr™': Ser™; Tyr*’; Phe'™’; Ser®™;
\‘,l'a|2'0)r- G|u2i\br- Glu[ﬂh; HiS'IZbr- Arg'IZ‘_-

Artoindonesianin T —6.22 27750 His™; Arg®®, Tyr®e®, Tyr®e, Trp®, Tyr®3'; Ser®8 Tyr™: Ser?™; Wal**'; Glu®®;
Glu[ﬂh; HiS'IZbr- Argu‘_‘

Artoindonesianin U —6.08 34950 His™', Val™'', Asn”19; Arg™®, Tyr®e, Tyr®s2, Tyr®3', Ser®3?; Ser®*?; Pro®%; Gly**,
Tyrhda’r- Phe'ﬁ); SEFZL‘@; G|u2i\br- G|UZL“_~; Arg'IZ‘_-

Artoindonesianin WV —-7.73 2140 His™', Val™'', Asn”19; Arg™®, Tyr®e, Tyr®s2, Tyr®3', Ser®3?; Ser®*?; Pro®%; Gly**,
Tyrhda’r- Phe'ﬁ); SEFZL‘@; G|u2i\br- G|UZL“_~; Arg'IZ‘_-

Artonin A —7.95 1490 His™ Val™''; Asn”19; Arg™®, Tyr®e Tyr*e2, Tyr®', Ser®®; Tyr*¥; Arg™*; Phe®®’;
SEFZL‘@’- Valz""’,‘ G|UZL‘br- G'uzt“.‘; Argu‘.‘

Artonin B —7.60 2700 Tyr®ee, Tyr®e2, Tyr®3t: Tyr®®s, Ser®s2 Cys®*'; Pro®*; Gly**; Tyr*; Arg™*; Phe®’
Arg':l‘_-br- SEFZL‘@; G|U2L\br- Glu[ﬂh; Arg'IZ‘_-

Artonin E —-7.70 2250 His™; Asn’'%; Arg®; Tyr®™®; Tyr™, Ser™®; Pro™"; Gly**; Tyr**'; Arg®*; Phe®’;
SEFZL‘@’- PhEZL\!; Valzi‘)r- G|u2i\br- G|UZL“_~; Arg'IZ‘_-

B-sitosterol —9.97 4917 His™ Val’''y Asn”19; Arg™e, Tyrte, Tyr®s2: Trp®*; Val®*®; Tyr®', Ser®®; Tyr/;
Arg':l‘_-&r- Phe':i‘_u’r- SEFZL‘@; PhEZL\!; \‘,l'a|2'0)r- G|u2i\br- Glu[ﬂh; Arg'IZ‘_-

Chaplasin —-7.21 5160 His™ Val™'', Arg®®; Tyr®e; Tyr®2, Trp®9; Val®*%; Tyr®3', Ser®®, Tyr*'; Arg?*,
Phe':l‘_u’r- SEFZL‘@; Valzi‘)r- G|u2i\br- G|UZL“_~; Arg'IZ‘_-

Cudraflaven C —8.53 558.13 Val'l'; Arg®®; Tyr™®; Tyr®™™ Trp®™* Val®™®; Tyr™'; Ser™; Tyr™®; Tyr™’; Arg®,
Phe':l‘_u’r- SEFZL‘@; Valzi‘)r- G|u2i\br- G|UZL“_~; Arg'IZ‘_-

Cycloartenol —10.06 42 His™ Val™'', Asn”19; Arg™®, Tyr®e, Tyr®s2, Val®*8, Tyr®3', Ser®9; Tyr*, Arg®,
Phe':l‘_u’r- SEFZL‘@; Valzi‘)r- G|u2i\br- G|UZL“_~; Arg'IZ‘_-

Cycloartenon —10.48 21 His™ Val’''y Asn”19; Arg™e, Tyrte, Tyr®s2: Trp®*; Val®*®; Tyr®', Ser®®; Tyr/;

Argi‘_'&r. Phei‘_w’r. Ser\ZL‘@; Va|2i‘a’r. G|u2i‘br. Glu[ﬂ‘_'r. Arg'IZ‘_'

Contd..
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Table 1: Contd...

Ligand AG value Inhibition Interaction
(kcal/mol) constant (nM)

Cycloartobiloxanton —7.26 4780 Wal'll; Asn/1% Tyr®% Arg®e; Tyr®e®; Tyr®e2 Tyr®d'; Ser®; Tyr®#; Arg™¥; Phe’;
SCFE-I@; Va|2-2-)r- G|u2-}br- G|u2-2-‘_~r- Argu‘_‘

Cycloartocarpin —7.04 6870 His™%; Wal™1h, Tyr®e®, Tyrse2, Trp®s®; Wal®®, Tyrs': Ser®®; Tyr*; Arg®™¥; Phe¥;
SCFE-I@; PhCE-I-Br- Va|z-:-;r- G|u2-}br- G|u2-2-‘_~r- Arguh

Cyclochampedol —-5.97 42060 Asn’18 ArgBe, Tyrsee, Tyrse2, Ser®® Tyr*¥; Arg®™®; Phe'®’; Ser’™; Val*"/,
G|u2-}br- G|u2-2-‘_~r- HiS'IEbr- Argu‘_-

Cyclocommunin —8.06 1240 Wal'll; Tyrsee; Tyrte2; Trp®e; Val®®e; Tyrt'; Phe®; ValY, GIu™; Glu®™; His'#,;
Arguh

Cyclocommunol —7.06 6720 His™%; Wal™'; Asn”™'%; Tyrs®e; Tyrte2, Tyr®dl, Sertt; Serd; Pro®*Y Gl Tyr™;
Phc'.i‘_-)r- SCFE-I@; G|u2-}br- G|u2-2-‘_~r- Arguh

Cycloeucalenol —9.96 50 His™% val''; Asn”™ Arg™® Tyr™®; Tyr™®; Val®® Tyr®', Ser®™?; Tyr™'; Arg™*,
Phc'.i‘_-)r- SCFE-I@; Va|z-:-;r- G|u2-}br- G|u2-2-‘_~r- Arguh

Cycloheterofilin —7.54 2990 Asn’19 TyrSes, Tyrse2, Tyrs®s; Cys®'; Pro®%; GIy=; Tyr*; Arg®™¥; Phe'®; Args;
SCFE-I@; PhCE-I-Br- G|u2-}br- G|u2-2-‘_~r- Arguh

Glutinol —6.62 14130 Asn”19; Tyrtes, Tyrse2, Tyrtd', Ser® Tyr™; Phe'®; Ser’™; Glu®™; His'*#; Arg'#

Heterofilin —-7.15 5760 Asn’1% ArgBe; TyrseE; Tyrse2, Tyr®5; Ser®®?; Pro®9; GIy™; Tyr*; Arg®™¥; Phe'®;
SCFZI:@,' Va|2-2-)r. G|u2-}br. G|u2-2-‘_~r. Argu‘_‘

Heteroflavon A —6.33 22800 Arg®9; Tyr®e®, Ser®% Tyr™: Arg®™; Phe?®; Ser’™; Val'¥; Glu®®; Glu*®;
HiS'IEbr- Argu‘_‘

Heteroflavon C —-5.74 61750 Arg®9; Tyr®e®, Ser®% Tyr™: Arg®™; Phe?®; Ser’™; Val'¥; Glu®®; Glu*®;
HiS'IEbr- Argu‘_‘

5'- Hydroxycudraflavon A —8.33 788 His™%; Wal™ ', Arg®9, Tyrse; Tyr®sd, Trp®9; Val®®, Tyrtd'; Ser®?; Arg®™¥; Phe*;
SCFE-I@; Va|2-2-)r- G|u2-}br- G|u2-2-‘_~r- Argu‘_‘

Morusin —7.82 1850 His™%; Wal™l, Tyr®™, Arg®e%; Tyr®®, Tyrse2; Trp®9; Tyr®'; Ser®; Tyr™; Phe’;
SCFE-I@; Va|2-2-)r- G|u2-}br- G|u2-2-‘_~r- Argu‘_‘

Morusin Hydroperoxide —7.94 1510 His™%; Wal™ ', Arg®®; Tyrs®; Tyrsd, Trp®9; Val®®; Tyr®'; Ser®?; Tyr*; Phe®;
SCFE-I@; Va|2-2-)r- G|u2-}br- G|u2-2-‘_~r- HiS'IEbr- Arguh

Morartocarpin —6.74 11550 His™%; Wal™'y Asn™% Arg®®; Tyr®eE; Tyrt®2; Tyr®, Ser®t; Gly*; Tyr™; Phe'®;

SCFZC‘J’- G|u2'}br- G|u2'2"_'r- Arg'IZ‘_'

Table 2: ADME-Tox properties prediction of twelve best docking results using SWISSADME online
tools software

Sample MwW HBA HBD TPSA XLOGP3 ESOL Log Kp MR Csp3 NRB RO5
24-Methylencycloartanon  875.44 1 0 17.07 9.99 2.99e-09 —1.88 138.99 0.90 5 1
Artoindonesianin A 570.67 7 3 109.36 7.83 5.46e-09 —-4.22 167.24  0.40 5
Artoindonesianin A3 434.44 7 4 120.36 4.76 1.46e-06  —5.57 121.80 0.24 1 0
Artoindonesianin B 468.50 8 3 118.59 4.82 1.59e-06 574 129.43  0.35 8 0
Artoindonesianin R 398.41 7 3 109.36 4.54 5.64e-06  —5.51 110,69 0.23 5 0
fi-sitosterol 41471 1 1 20.23 9.34 1.26e-08 —2.20 133.23  0.93 6 1
Cudraflavon C 422.47 6 4 101.13 5.55 9.82e-07 —4.94 123.45 0.24 5 0
Cycloartenol 426.72 1 1 20.23 9.78 4.14e-09 —1.96 135.14  0.93 4 1
Cycloartenon 424.70 1 0 17.07 9.46 6.78e-09  —-2.17 134.18  0.90 4 1
Cyclocommunin 420.45 6 3 100.13 5.85 4.83e-07 —-4.71 121.00 0.24 3 0
Cycloeucalenol 426.72 1 1 20.23 9.91 3.99e-09 —1.87 135.40 0.93 5 1
5'-Hydroxycudraflavon A 434.44 7 3 109.36 4.84 1.30e-06  —5.51 121.40 0.24 1 0

MW: Malecular weight, HBA: Acceptable H-bonds, HBD: Donatable H-bonds, TPSA: Topological polar surface area (TPSA =140 Az good intestinal absorptions and TPSA
<70 A2 good brain penetration), XLOGP3: Lipophilicity descriptor, ESOL: Estimated solubility in water, Log Kp: Skin permeant, MFR: Molar refractivity, Csp3: The fraction
of carbon in the sp3 hybridization, NRB: The number of rotatable bonds, ROS: The rule of five Lipinski rules

All phytocompounds showed the H-bond (acceptor and
donor) and skin permeant value in the acceptable range.
Based on the topological polar surface area (TPSA) value,
which reveals that 24-methylencycloartanon, (-sitosterol,
cycloartenol, cycloartenon, and cycl(")eucalenol have an
excellent brain penetration (TPSA <70A?), and seven other

Joumnal of Ads d Phar

compounds have good gastrointestinal penetration (with
TPSA <140A2).2% XLOGP3 shows the lipophilicity and
polarity value prediction of phytocompounds. The higher
the value, the lower the polarity.®*! ESOL indicates
the solubility levels of phytocompounds. The lower the
values,”! the lower solubility.* Figure 5 demonstrated that
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Figure 4: Interaction visualization of twelve best docking results of phytocompounds from Artocarpus champeden against macromolecule

of DPP-1V receptor. DPP-IV: Dipeptidyl peptidase IV
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Where POLAR s polarity with TPSA value between 20 and 130 A%, LIPO is lipophilicity with XLOGP3 value at the range of -0.7
to +5.0; SIZE is molecular size with molecular weight (MW) value between 150 and 500 g/mol; INSOLU s insolubility; INSATU is
in-saturation: fraction of carbons in the sp3 hybridization not less than 0.25; and FLEX is flexibility: number of rotatable bonds
not more than 9. The colored zone on the bioavailability radar is the ot i

bloavailability

range of space for oral

Figure 5: Bioavailability radar representation of the 12 best docking findings of Artocarpus champeden phytocompounds

the phytocompounds of artonindonesianin (A3, B, and R),
f-sitosterol, cycloartenol, and 5"-hydroxycudraflavon A were
the acceptable/optimal range of ADME-Tox/physicochemical
space for oral bioavailability.

CONCLUSION

Analysis of in silico molecular docking and ADME-Tox
prediction were performed to study the potential
pharmacological activity of phytocompounds from A.
champeden as DPP-IV inhibitors. Our findings show that
almost all phytocompounds have potential interaction
with the receptor at the active subsites. Nevertheless,
12 phytocompounds have the most similar interaction with
the DPP-IV receptor and have different physicochemical
properties for bioavailability and pharmacokinetics prediction.
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