Panduan Praktikum
KONSERVASI TANAH DAN AIR

Penulis : Sri Sarminah
Karyati
Triyono Sudarmadji

Editor : Aldi MH

© 2019. Mulawarman University Press

Cetakan Pertama : November 2019

Hak Cipta Dilindungi Undang-Undang

Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku ini dalam bentuk apapun tanpa izin tertulis dari penerbit

Isi diluar tanggung jawab percetakan.

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT karena atas limpahan rahmat dan hidayah-Nya penulis dapat menyelesaikan Buku Panduan Praktikum Konservasi Tanah dan Air. Buku ini diharapkan dapat berguna bagi mahasiswa/i sebagai panduan praktikum dalam mata kuliah “Konservasi Tanah dan Air” secara khusus dan secara umum bagi mahasiswa/i yang berminat pada bidang Kehutanan dan Lingkungan.

Buku panduan praktikum terdiri dari 8 (delapan) acara, yaitu:

Acara I. Pengukuran Infiltrasi
Acara II. Pengukuran Permeabilitas
Acara III. Debit Limpasan Air Sungai (DLAS)
Acara IV. Pengukuran Limpasan Permukaan dan Erosi
Acara V. Identifikasi Jenis-Jenis Erosi Di Lapangan
Acara VI. Lubang Resapan Biopori (LRB)
Acara VII. Pengamatan Bentang Alam
Acara VIII. Pendugaan Erodibilitas Tanah (K)

Buku panduan praktikum ini dihimpun dan dirangkum dari berbagai referensi ilmiah dengan harapan dapat memberikan manfaat yang sebesar-besarnya bagi yang memerlukan, terutama bagi mahasiswa/i yang mengambil mata kuliah Konservasi Tanah dan Air. Penghargaan dan ucapan terimakasih kami sampaikan kepada Bapak Ir. Zainuddin Mohrahga, M.Agr, Bapak Muhammad Syafrudin,
S.Hut., M.Sc, dan Bapak Rachmad Mulyadi, S.Hut yang telah membantu dan berkontribusi sehingga buku ini menjadi semakin lengkap.

Samarinda, 7 Agustus 2019

Sri Sarminah
Karyati
Triyono Sudarmadji
DAFTAR ISI

KATA PENGANTAR .. iii
DAFTAR ISI ... v
DAFTAR TABEL ... ix
DAFTAR GAMBAR ... xi

I. PENGUKURAN INFILTRASI ... 1
 Lokasi Praktikum ... 1
 Tujuan Praktikum .. 1
 Alat dan Bahan .. 1
 Tinjauan Pustaka ... 2
 Pengertian Infiltrasi .. 2
 Faktor-faktor yang Mempengaruhi Infiltrasi .. 3
 Alat Pengukur Infiltrasi .. 3
 Metode Praktikum .. 4
 Analisis Data dan Pembahasan ... 6

II. PENGUKURAN PERMEABILITAS .. 12
 Lokasi Praktikum .. 12
 Tujuan Praktikum .. 12
 Alat dan Bahan .. 12
 Tinjauan Pustaka ... 13
 Metode Praktikum .. 15
 Analisis Data dan Pembahasan ... 16

III. DEBIT LIMPASAN AIR SUNGAI (DLAS) 20
 Lokasi Praktikum .. 20
Tujuan Praktikum ...20
Alat dan Bahan ..20
Tinjauan Pustaka ..21
1. Pengertian DLAS ...21
2. Element DLAS dan Hidrograf ..21
3. Pengukuran DLAS ...22
Metode Praktikum ...23
Analisis Data dan Pembahasan ...24

IV. PENGUKURAN LIMPASAN PERMUAKAN DAN EROSI .30
Lokasi Praktikum ...30
Tujuan Praktikum ...30
Alat dan Bahan ..30
Tinjauan Pustaka ..31
1. Pengertian Erosi dan Faktor-faktor yang Mempengaruhi ..31
2. Erosi yang Masih Dapat Ditoleransi (Nilai T) ...37
Metode Praktikum ...39
Pengolahan dan Analisis Data ...41
Perhitungan dan Pelaporan ...44

V. IDENTIFIKASI JENIS-JENIS EROSI DI LAPANGAN50
Lokasi Praktikum ...50
Tujuan Praktikum ...50
Tinjauan Pustaka ..50
1. Erosi percikan (splash erosion) ..50
2. Erosi lembar (Sheet Erosion) ..51
3. Erosi alur (riil erosion) ..52
4. Erosi parit (gully erosion) ..53
5. Erosi tebing sungai (*river bank erosion*) ... 54
6. Longsor .. 54
Metode Praktikum ... 55

VI. LUBANG RESAPAN BIOPORI (LRB) ... 56

- Lokasi Praktikum .. 56
- Tujuan Praktikum ... 56
- Alat dan Bahan .. 56
- Tinjauan Pustaka ... 57
- Lubang Resapan Bioporii (LRB) .. 57
- Tahapan Kegiatan ... 58
 1. Persiapan .. 58
 2. Penentuan Lokasi .. 60
 3. Pembuatan LRB ... 61
- Perhitungan dan Pelaporan ... 62

VII. PENGAMATAN BENTANG ALAM .. 63

- Lokasi Praktikum .. 63
- Tujuan Praktikum ... 63
- Tinjauan Pustaka ... 63
- Beragam Bentang Alam Perairan dan Daratan ... 64
 - A. Kenampakan Bentang Alam Perairan .. 64
 - B. Kenampakan Bentang Alam Daratan ... 67

VIII. PENDUGAAN ERODIBILITAS TANAH (K) 70

- Lokasi Praktikum .. 70
- Tujuan Praktikum ... 70
- Alat dan Bahan .. 70
- Tinjauan Pustaka ... 71
1. Pengertian Erodibilitas Tanah...71
2. Faktor-faktor yang Mempengaruhi Erodibilitas Tanah.......75
3. Permeabilitas Tanah...86
4. Pengukuran Erodibilitas...87
 Metode Praktikum ..88
DAFTAR PUSTAKA..93
DAFTAR TABEL

Tabel 1. Besarnya erosi tanah yang masih dapat ditoleransi ... 39

Table 2. Kelas kemiringan lereng ... 39

Tabel 3. Indeks Bahaya Erosi (IBE) .. 42

Tabel 4. Kelas Bahaya Erosi ... 43

Table 5. Kategori Tingkat Bahaya Erosi (TBE) .. 43

Table 6. Curah hujan, limpasan permukaan, dan massa tanah tererosi pada petak uji coba kombinasi sengon dan kacang tanah... 45

Tabel 7. Hasil analisis Limpasan Permukaan (LP), Massa Tanah Tererosi (MTT), Indeks Bahaya Erosi (IBE), Kelas Bahaya Erosi (KBE), dan Tingkat Bahaya Erosi (TBE) .. 47

Tabel 8. Contoh perhitungan besaran Massa Tanah Tererosi (ton/ha/th), Limpasan Permukaan (m3/ha/th) dan Indeks Bahaya Erosi (IBE) ... 47

Tabel 9. Klasifikasi kelas erodibilitas ... 74

Table 10. Nilai ukuran butir-butir tanah (M) untuk suatu kelas tekstur.. 78

Tabel 11. Kriteria Bahan Organik .. 80

Tabel 12. Penilaian Kelas Struktur Tanah (Ukuran Diameter) .. 83

Tabel 13. Penilaian Kelas Permeabilitas Tanah- Tanah86

Tabel 14. Klasifikasi erodibilitas tanah.................................88
Tabel 15. Klasifikasi struktur tanah untuk menggunakan nomograph ...92

Tabel 16. Klasifikasi permeabilitas tanah menggunakan nomorapah ..92
DAFTAR GAMBAR

Gambar 1. Laju infiltrasi sebagai fungsi waktu untuk tanah-tanah semula basah dan kering (Sumber : Seta, 1991 dan Suripin, 2002). ..3

Gambar 2. Pengukuran infiltrasi di Lapangan dengan menggunakan Double Ring Infiltrometer dan Single Ring Infiltrometer. ...11

Gambar 3. Alat pengukur permeabilitas.16

Gambar 4. Beberapa alat yang digunakan pada pengukuran permeabilitas (a) Permeameter, (b) Ring Sampel Tanah, (c) Gelas Ukur, (d) Penggaris, (e) Tabung Erlenmeyer. ..18

Gambar 5. Pengambilan sampel tanah untuk pengukuran permeabilitas ...18

Gambar 6. Pengukuran permeabilitas di Laboratorium19

Gambar 7. Contoh sketsa penampang melintang sungai28

Gambar 8. Current meter. ...28

Gambar 9. Pengukuran lebar dan luas penampang basah sungai...29

Gambar 10. Pengukuran kecepatan arus sungai dengan menggunakan bahan apung bola tenis dan botol yang diisi air ...29

Gambar 11. Pengukuran kecepatan arus sungai dengan menggunakan Current meter ..29

Gambar 12. Bak ukur erosi dan limpasan permukaan44

Gambar 13. Erosi percikan ..51
Gambar 14. Erosi lemar...52
Gambar 15. Erosi alur...53
Gambar 16. Erosi parit...54
Gambar 17. Erosi tebing sungai..54
Gambar 18. Longsor...55
Gambar 19. Penampang lubang resapan biopori.......................59
Gambar 20. Bentang alam...64
Gambar 21. Bentang alam...69
Gambar 22. Nomograph erodibilitas (K).................................73
I. PENGUKURAN INFILTRASI

Hari / Tanggal :
Lokasi Praktikum :

Di sekitar kampus Universitas Mulawarman (Unmul) atau di Hutan Pendidikan Fakultas Kehutanan Unmul (HPFU) yang mewakili empat (4) kondisi penutupan lahan, yaitu hutan campuran, semak belukar, alang-alang dan lahan terbuka.

Tujuan Praktikum :

Mengukur dan mengamati laju infiltrasi pada empat (4) kondisi penutupan lahan yang berbeda.

Alat dan Bahan :

1. *Double ring infiltrometer*, digunakan untuk pengukuran infiltrasi.
2. *Stop-watch* (arloji), digunakan untuk mengukur waktu infiltrasi
3. Penggaris 30 cm, digunakan untuk menandai pembacaan laju infiltrasi.
4. Hammer/palu, digunakan untuk memendam/memukul *double ring infiltrometer*.
5. Ember dan gayung plastik, digunakan untuk menampung dan menuangkan air.
6. Alat tulis menulis dan alat hitung (kalkulator), digunakan untuk mencatat dan menghitung hasil pengamatan.
Tinjauan Pustaka :

1. Pengertian Infiltrasi

Air yang diterima pada permukaan bumi pada akhirnya jika permukaannya tidak kedap air, dapat bergerak ke dalam tanah dengan gaya gerak gravitasi dan gaya kapiler dalam suatu aliran yang disebut infiltrasi (Seyhan, 1990). Infiltrasi merupakan gerakan menurun air melalui permukaan tanah mineral; kecepatannya biasanya dinyatakan dalam satuan yang sama seperti intensitas presipitasi (mm/jam). Menurut Asdak (1995), infiltrasi adalah perjalanan air masuk ke dalam tanah. Kapasitas infiltrasi terjadi ketika intensitas hujan melebihi kemampuan tanah dalam menyerap kelembaban tanah. Sebaliknya apabila intensitas hujan lebih kecil daripada kapasitas infiltrasi, maka laju infiltrasi sama dengan laju curah hujan. Laju infiltrasi umumnya dinyatakan dalam satuan yang sama dengan satuan intensitas curah hujan yaitu milimeter per jam (mm/jam).

Seta (1991) menyatakan bahwa infiltrasi adalah peristiwa masuknya air ke dalam tanah melalui permukaan tanah secara vertikal. Infiltrasi ke dalam tanah pada mulanya tidak jenuh, umumnya terjadi karena pengaruh tarikan hisapan matrik dan gravitasi. Dengan masuknya air lebih dalam dan sejalan dengan lebih dalamnya profil tanah yang basah, maka tarikan hisapan matrik akan semakin berkurang, karena jarak air di permukaan tanah dengan tanah yang belum basah semakin jauh (Seta,

2. **Faktor-faktor yang Mempengaruhi Infiltrasi**

 Proses infiltrasi dipengaruhi oleh beberapa faktor antara lain tekstur dan struktur tanah, persediaan air awal (kelembaban awal), kegiatan biologi dan unsur organik, jenis kedalaman serasah dan tumbuhan bawah atau tumbuhan penutup tanah lainnya. Tanah remah akan memberikan kapasitas infiltrasi lebih besar dari pada tanah liat. Tanah dengan pori-pori jenuh air mempunyai kapasitas lebih kecil dibandingkan tanah dalam dan kering.

3. **Alat Pengukur Infiltrasi**

 Alat yang digunakan untuk mengukur infiltrasi disebut infiltrometer. Infiltrometer ada yang berbentuk gelang terpusat
(concentric ring type) atau disebut juga double ring infiltrometer, sedang bentuk lainnya adalah infiltrometer jenis tabung atau single ring infiltrometer. Untuk double ring infiltrometer terdiri dari dua silinder besi (silinder dalam berdiameter 18 cm dan luar 36 cm). Tinggi silinder (pipa) 15 cm, sedang penahan kedua silinder tersebut adalah plat setinggi 8 cm. Selain menggunakan infiltrometer tipe gelang, jenis tabung dan lysimeter, maka untuk menentukan kapasitas infiltrasi dapat dipakai alat simulator hujan, analisa hidrograph daerah aliran atau dengan perhitungan indeks infiltrasi.

Pengukuran laju infiltrasi dihitung dengan menggunakan rumus:

\[f = \frac{F}{T} \]

Keterangan:

\(f \) = Laju infiltrasi (mm/jam)
\(F \) = Jumlah infiltrasi air ke dalam tanah (mm)
\(T \) = Waktu (jam)

Metode Praktikum:

1. Menentukan lokasi yang akan dilakukan pengukuran infiltrasi.
2. Menyiapkan peralatan pengukur infiltrasi beserta ember yang berisi air.
3. Membersihkan seresah di permukaan tanah dan memendamkan double ring infiltrometer dengan menekan atau memukul dengan hammer/palu kayu minimal 5 cm dengan cara sebelum ditancapkan di atas alat tersebut
diletakkan papan kayu sebagai alas yang dipukul dengan hammer/palu.

4. Mengusahakan peletakannya pada daerah yang tidak terganggu akar dan becek serta usahakan di daerah yang agak rata.

5. Menyiapkan gelas ukur untuk air satu liter, sebab untuk pipa dengan ukuran diameter 18 cm, bila diisi air satu liter maka tinggi air tersebut menjadi 4 cm. Oleh karena itu, siapkan tongkat halus atau mistar yang jelas untuk pembacaan setiap penurunan air setiap satu cm.

6. Terlebih dahulu masukkan air ke dalam pipa sebelah luar kira-kira setinggi 4 cm, selanjutnya masukkan air yang satu liter tadi ke dalam pipa yang di tengah. Dengan waktu yang bersamaan stop watch di start dan dicatat waktu kumulatif setiap penurunan satu cm.

7. Bila air yang 4 cm tadi telah habis ulangi lagi dengan memasukkan air satu liter. Dalam hal ini minimal tiga kali pengukuran, dan sebaiknya sampai konstan.

Analisis Data dan Pembahasan:

1. Menghitung laju infiltasi (f) pada masing-masing kondisi penutupan lahan.
2. Membuat grafik hubungan antara waktu infiltasi (menit) sebagai sumbu absis dan laju infiltrasi f (cm/menit) sebagai sumbu ordinat.
3. Membahas grafik hasil pengeplotan data yang dikaitkan dengan kondisi fisik tanah serta vegetasi penutup lahan.
4. Membuat ulasan dan kesimpulan terhadap data tersebut dalam bentuk laporan.
LEMBAR KERJA MAHASISWA (LKM) 1
ACARA I. PERHITUNGAN LAJU INFILTRASI

1. Hutan campuran

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Ulangan ke-</th>
<th>Jarak Penurunan, L (cm)</th>
<th>Waktu Infiltrasi, T (menit)</th>
<th>Laju Infiltrasi, (f = \frac{L}{T}) (cm/menit)</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanggal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata
LEMBAR KERJA MAHASISWA (LKM) 1

ACARA I. PERHITUNGAN LAJU INFILTRASI

2. Semak belukar

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Ulangan ke-</th>
<th>Jarak Penurunan, L (cm)</th>
<th>Waktu Infiltrasi, T (menit)</th>
<th>Laju Infiltrasi, (f = \frac{L}{T}) (cm/menit)</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokasi :</td>
<td>Tangg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata
LEMBAR KERJA MAHASISWA (LKM) 1
ACARA I. PERHITUNGAN LAJU INFILTRASI

3. Alang-alang

<table>
<thead>
<tr>
<th>Nama :</th>
<th>NIM :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Ulangan ke-</th>
<th>Jarak Penurunan, L (cm)</th>
<th>Waktu Infiltrasi, T (menit)</th>
<th>Laju Infiltrasi, f = L/T (cm/menit)</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokasi :</td>
<td>Tanggal :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata
LEMBAR KERJA MAHASISWA (LKM) 1
ACARA I. PERHITUNGAN LAJU INFILTRASI

4. Lahan terbuka

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Ulangan ke-</th>
<th>Jarak Penurunan, L (cm)</th>
<th>Waktu Infiltrasi, T (menit)</th>
<th>Laju Infiltrasi, (f = \frac{L}{T}) (cm/menit)</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata
Gambar 2. Pengukuran infiltrasi di Lapangan dengan menggunakan Double Ring Infiltrometer dan Single Ring Infiltrometer.
II. PENGUKURAN PERMEABILITAS

Hari / Tanggal :

Lokasi Praktikum :

Di sekitar kampus Universitas Mulawarman atau di Hutan Pendidikan Fakultas Kehutanan Unmul (HPFU) yang mewakili empat (4) kondisi penutupan lahan, yaitu hutan campuran, semak belukar, alang-alang, dan lahan terbuka.

Tujuan Praktikum :

Menentukan nilai permeabilitas tanah pada empat (4) kondisi penutupan lahan yang berbeda.

Alat dan Bahan :

1. Ring sampel tanah, digunakan untuk mengambil contoh tanah.
2. Parang, digunakan untuk membantu mengambil contoh tanah.
3. Cutter atau pisau, digunakan untuk merapikan sampel tanah.
4. Kain kasa dan karet gelang, digunakan untuk menutup ring sampel tanah yang direndam.
5. Ember, digunakan untuk merendam ring sampel tanah.
6. Permeameter, digunakan untuk pengukuran permeabilitas tanah.
7. *Stop watch* atau arloji, digunakan untuk mengukur waktu aliran air pada pengukuran permeabilitas tanah.
8. Gelas ukur, digunakan untuk mengukur volume air pada pengukuran permeabilitas tanah.
9. Alat tulis menulis (pensil/pulpen) dan alat hitung (kalkulator), digunakan untuk mencatat dan menghitung hasil pengamatan.

Tinjauan Pustaka:

Permeabilitas tanah adalah suatu sifat yang menyatakan laju pergerakan zat cair melalui suatu media pori-pori yang juga disebut konduktivitas hidroulika. Dalam hal ini cairan adalah air tanah dan media berpori adalah tanah. Permeabilitas tanah ada 2 macam, yaitu permeabilitas tanah jenuh air dan permeabilitas tanah tidak jenuh air. Permeabilitas jenuh air adalah laju pergerakan air ke dalam tanah pada keadaan seluruh pori-pori tanah tersebut terisi air, sedangkan bila tidak seluruhnya terisi air oleh udara maka disebut permeabilitas tak jenuh (Sarief, 1985). Secara kuantitatif yang dimaksud dengan permeabilitas tanah adalah kecepatan aliran air pada gradien hidroulika tertentu (Seta, 1987).

Permeabilitas yang tinggi akan lebih banyak melewatkkan air ke dalam tanah, dalam hal ini berguna sekali untuk persediaan air bagi tanaman sehingga dapat memperkecil terjadinya aliran permukaan yang selanjutnya dapat mencegah terjadinya erosi. Menurut Asdak (1995) permeabilitas menunjukkan kemampuan tanah dalam
meloloskan air. Permeabilitas tanah sangat dipengaruhi oleh struktur tanah, tekstur tanah, porositas dan kandungan bahan organik dalam tanah.

Dalam penentuan nilai permeabilitas tanah digunakan hukum Darcy yang mengatakan bahwa kecepatan semu aliran (V) adalah sebanding dengan perkalian antara konstanta k (koefisien permeabilitas) dengan gradien hidrolis (k) yang dapat dirumuskan sebagai berikut (Sosrodarsono dan Takeda, 1999):

\[V = k I \] atau \[V = k \frac{dH}{dL} \]

Keterangan:

- \(V \) = kecepatan semu aliran
- \(k \) = koefisien permeabilitas
- \(I (=\frac{dH}{dL}) \) = gradien hidrolis.

Apabila volume aliran air tersebut per satuan waktu atau disebut debit air (Q) melalui suatu satuan luasan penampang melintang (A), maka rumus tersebut dapat menjadi sebagai berikut:

\[Q = V A = k A \left(\frac{dH}{dL}\right) \]

Sehingga nilai k dapat dirumuskan menjadi:

\[k = \frac{Q.dL}{A.dH} \]

Keterangan:

- \(k \) = Permeabilitas tanah (cm/jam)
- \(Q \) = Debit air per satuan waktu (cm³/jam)
- \(dL \) = Tinggi ring sampel (cm)
- \(A \) = Luas penampang ring sampel tanah (cm²)
- \(dH \) = Beda tinggi muka air atas dan bawah (cm)
Metode Praktikum:

1. Memasukkan ring sampel tanah ke dalam permukaan tanah hingga tenggelam dengan melapisi papan di permukaan ring sebelah atas dan memalunya perlahan-lahan.
2. Bila telah tenggelam, maka tepi ring digali pelan-pelan sehingga tanah di dalam ring tidak terganggu strukturnya, dengan pisau dirapikan bagian atas dan bawah ring, kemudian ditutup dengan kain kasa atau kain mori.
3. Merendam sampel tanah selama 24 jam agar tanah jenuh air.
4. Meletakkan ring sampel tanah sesuai tempatnya, kemudian cucurkan air dari kran atas dimana air di bagian bawah sudah terlebih dahulu dipersiapkan dan dalam keadaan tinggi maksimal.
5. Bila air di bawah sudah menetes biarkan beberapa saat sampai diperkirakan konstan.
6. Bila diperkirakan sudah konstan tadah dengan gelas ukur dan bersamaan dengan waktu itu stop watch di mulai mengukur waktu (berapa volumenya setiap 10 menit) secara terus menerus sampai diperoleh nilai yang konstan, lakukan sampai tiga kali dengan syarat waktu tidak berbeda besar.
7. Nilai-nilai hasil pengukuran tersebut kemudian dikonversi menjadi nilai-nilai debit air, yang diperlukan untuk menghitung nilai permeabilitas tanah.
Gambar 3. Alat pengukur permeabilitas.

Analisis Data dan Pembahasan :

1. Menghitung nilai-nilai debit air (Q) pada masing-masing kondisi penutupan lahan.
2. Mengumpulkan dan menghimpun data hasil pengukuran dalam Lembar Kerja Mahasiswa (LKM), serta menghitung nilai permeabilitas pada masing-masing kondisi penutupan lahan.
4. Membahas kurva hasil pengeplotan data yang dikaitkan dengan kondisi fisik tanah serta vegetasi penutup lahan.
5. Membuat ulasan dan kesimpulan terhadap data tersebut dalam bentuk laporan.
LEMBAR KERJA MAHASISWA (LKM)

ACARA II. PERHITUNGAN PERMEABILITAS

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Ulangan ke-</th>
<th>Q, (cm³/menit)</th>
<th>dL, (cm)</th>
<th>A, (cm²)</th>
<th>Dh (cm)</th>
<th>k=(Q.dL)/(A.dH) (cm/menit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokasi</td>
<td>Tanggal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata

Lokasi	Tanggal					
1						
2						
3						

Keterangan:

- Q = Debit air per satuan waktu (cm³/jam)
- dL = Tinggi ring sampel (cm)
- A = Luas penampang ring sampel tanah (cm²)
- dH = Beda tinggi muka air atas dan bawah (cm)
- k = Permeabilitas tanah (cm/jam)
Gambar 4. Beberapa alat yang digunakan pada pengukuran permeabilitas (a) Permeameter, (b) Ring Sampel Tanah, (c) Gelas Ukur, (d) Penggaris, (e) Tabung Erlenmeyer.

Gambar 5. Pengambilan sampel tanah untuk pengukuran permeabilitas
Gambar 6. Pengukuran permeabilitas di Laboratorium
III. DEBIT LIMPASAN AIR SUNGAI (DLAS)

Hari / Tanggal :

Lokasi Praktikum :

Pada anak sungai atau sungai yang terdapat di sekitar kampus Universitas Mulawarman atau di tempat lain yang mewakili.

Tujuan Praktikum :

Mengetahui cara pengukuran kecepatan arus sungai dan menghitung debit limpasan air sungai (DLAS) yang terjadi pada suatu saluran sungai.

Alat dan Bahan :

1. Current meter, digunakan untuk mengukur kecepatan limpasan air sungai secara langsung.
2. Stop watch atau arloji, digunakan untuk mengukur waktu kecepatan limpasan air sungai.
3. Meteran (50 meter) dan penggaris (tongkat), digunakan untuk mengukur luas penampang melintang basah limpasan air sungai.
4. Bahan apung, berupa bola pingpong, bola tenis dan botol aqua, digunakan sebagai ”alat pengapung” untuk mengukur kecepatan limpasan air sungai.
5. Alat tulis menulis (pensil/pulpen) dan alat hitung (kalkulator), digunakan untuk mencatat dan menghitung hasil pengamatan.

Tinjauan Pustaka:

1. Pengertian DLAS
 Menurut Seyhan (1990) debit limpasan (discharge flow) adalah air yang mengalir melalui suatu irisan melintang dalam satuan waktu. Sedangkan Lee (1990) mendefinisikan debit sebagai suatu fluks massa dengan menggunakan volume ekivalen per satuan waktu (m3/detik) atau sebagai laju per satuan daerah tangkapan (m3/jam.ha).

2. Eleman DLAS dan Hidrograf
seperti karakteristik jaringan sungai–sungai, adanya daerah pengaliran yang tidak langsung, drainase buatan dan lain–lain.

3. **Pengukuran DLAS**

Menurut Arsyad (1989) laju aliran permukaan adalah jumlah atau volume air yang mengalir melalui suatu titik per detik atau per jam, dinyatakan dalam m³ per detik atau m³ per jam. Laju aliran permukaan dikenal juga dengan istilah debit. Besarnya debit ditentukan oleh luas penampang air dan kecapan alirannya, yang dapat dinyatakan dengan persamaan:
\[Q = A \times V \]

Keterangan:

\[Q \] = Debit air (\(m^3/\text{detik} \) atau \(m^3/\text{jam} \))

\[A \] = Luas penampang air (\(m^2 \))

\[V \] = Kecepatan air melalui penampang tersebut (\(m/\text{detik} \))

Kecepatan limpasan air sungai dapat diukur secara langsung dengan menggunakan current meter dan secara tidak langsung diantaranya dengan menggunakan Float Area Method (metode pengapung). Sedangkan luas penampang melintang basah limpasan air sungai dapat diukur dengan cara Mid Section Method dan Mean Section Method.

Adapun rumus perhitungan luas seksi dengan:

- Cara Mid Section Method
 \[A_i = d_i \left(\frac{w_i + w_i+1}{2} \right) \]

- Cara Mean Section Method
 \[A_i = \left(\frac{d_i + d_{i+1}}{2} \right) \]

Metode Praktikum:

1. Metode pengukuran DLAS yang akan diterapkan yaitu melalui pendekatan Velocity Area Methods, diantaranya yaitu pengukuran kecepatan limpasan air sungai secara langsung dengan menggunakan current meter dan secara tidak langsung dengan metode pengapung (Float Area Method).
2. Menentukan lokasi yang akan dilakukan pengukuran DLAS.
3. Mempersiapkan alat dan bahan pengukur DLAS.
4. Membagi lebar penampang melintang basah limpasan air sungai menjadi beberapa seksi, sehingga diperoleh luas penampang melintang basah sungai (cross section area) masing-masing seksi (Ai) dengan menggunakan cara Mid Section Method maupun Mean Section Method.
5. Mengukur kecepatan aliran air sungai pada masing-masing seksi sungai (Vi).
6. Menghitung dan menentukan DLAS masing-masing seksi, sehingga diperoleh Qi = Vi Ai.
7. DLAS total merupakan jumlah dari DLAS setiap seksi, sehingga diperoleh Q total = Σ Qi.

Analisis Data dan Pembahasan:

1. Mengumpulkan dan menghimpun data hasil pengukuran parameter-parameter luas penampang basah limpasan air sungai dan kecepatan limpasan air sungai dalam Lembar Kerja Mahasiswa (LKM).
2. Menghitung DLAS (Q)_{i=1} = Σ Q_i = Q_1 + Q_2 + ... + Q_n (m³/detik).
3. Membahas perbedaan masing-masing seksi seperti bentuk penampang melintang basah limpasan air sungai, kecepatan limpasan air sungai dan DLAS berdasarkan kondisi fisik saluran sungai.
4. Membahas perbedaan DLAS total yang diperoleh pada tiap-tiap lokasi pengukuran sepanjang saluran sungai.
5. Membuat ulasan dan kesimpulan terhadap data tersebut dalam bentuk laporan.
LEMBAR KERJA MAHASISWA (LKM) 1

ACARA III. PERHITUNGAN DEBIT LIMPASAN AIR SUNGAI (DLAS)

<table>
<thead>
<tr>
<th>Lokasi</th>
<th>Nama</th>
<th>Kelompok</th>
<th>Kelompok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Kedalaman Seksi</th>
<th>Lebar Seksi</th>
<th>Luas Seksi, Ai (m²)</th>
<th>Waktu (dtk) (Jarak ... m)</th>
<th>Kec. Air, Vi (m/dtk)</th>
<th>Debit Seksi, Qi=Ai.Vi (m³/dtk)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bahan apung : Bola pingpong

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata

Bahan apung : Bola tenis

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata
LEMBAR KERJA MAHASISWA (LKM) 2

ACARA III. PERHITUNGAN DEBIT LIMPASAN AIR SUNGAI (DLAS)

<table>
<thead>
<tr>
<th>Lokasi</th>
<th>Nama</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Kelompok</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Kedalaman Seksi</th>
<th>Lebar Seksi</th>
<th>Luas Seksi, Ai (m²)</th>
<th>Waktu (dtk) (Jarak ...) m</th>
<th>Kec. Air, Vi (m/dtk)</th>
<th>Debit Seksi, Qi=Ai.Vi (m³/dtk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata

<table>
<thead>
<tr>
<th>Bahan apung : Botol aqua (diisi air)</th>
<th>Tanggal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Alat ukur : Current meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Rata-rata
Gambar 7. Contoh Sketsa Penampang Melintang Sungai

Luas seksi I = ...

Luas seksi II = ...

Luas seksi III = ...

Luas penampang melintang basah sungai =

Gambar 10. Pengukuran kecepatan arus sungai dengan menggunakan bahan apung bola tenis dan botol yang diisi air

Gambar 11. Pengukuran kecepatan arus sungai dengan menggunakan Current meter
IV. PENGUKURAN LIMPASAN PERMUKAAN DAN EROSI

Hari / Tanggal :
Lokasi Praktikum :
Hutan Pendidikan Fakultas Kehutanan Universitas Mulawarman, Lempake, Samarinda.

Tujuan Praktikum :
1. Mengetahui besarnya Limpasan Permukaan dan massa tanah tererosi.
2. Mengetahui Indeks Bahaya Erosi (IBE), Kelas Bahaya Erosi (KBE) dan Tingkat Bahaya Erosi (TBE).

Alat dan Bahan :
1. Papan, pipa paralon dan alat pertukangan untuk membuat plot-plot pengukuran erosi;
2. Bak penampung air limpasan permukaan dan tanah tererosi;
3. Kertas label untuk pencatatan nama dan keterangan lainnya pada sampel;
4. Botol-botol plastik (500 cc), digunakan sebagai tempat penyimpanan sampel–sampel larutan campuran tanah tererosi dan air limpasan;
5. Bahan ATK untuk pencatatan data di lapangan dan laboratorium;
6. Kompas, GPS dan clinometer digunakan untuk menentukan arah, lokasi dan pengukuran kelerengan lapangan;
7. Meteran 50 m digunakan untuk pengukuran panjang dan lebar plot, penggaris kayu (40 cm) untuk mengukur tinggi volume campuran larutan yang tertampung di dalam kolektor;
8. Kertas saring digunakan untuk pemisahan tanah yang tererosi dengan air limpasan;
9. Gelas ukur kapasitas 500 ml digunakan untuk pengukuran sampel-sampel campuran larutan;
10. Penakar jeluk hujan manual yang dibuat dari kaleng untuk mengukur curah hujan secara manual;
11. Oven pengering untuk mengeringkan sampel tanah yang tererosi;
12. Timbangan analitik untuk mengukur berat kering tanah yang tereosi.

Tinjauan Pustaka:

1. Pengertian Erosi dan Faktor-faktor yang Mempengaruhi

tanah dari suatu tempat ke tempat lain yang diakibatkan oleh media alami. Erosi dan sedimentasi merupakan penyebab penyebab utama dalam terjadinya kemerosotan produktivitas tanah-tanah pertanian, dan kemerosotan kuantitas serta kualitas air. Erosi itu sendiri meliputi proses pelepasan partikel-partikel tanah (*detachment*), penghanyutan partikel-partikel tanah (*transportation*), dan pengendapan partikel-partikel tanah yang telah terhanyutkan (*deposition*). Ditambahkan pula oleh Kartasapoetra (2010) bahwa erosi dapat juga disebut pengikisan atau kelongsoran sesungguhnya merupakan proses penghanyutan tanah oleh desakan-desakan atau kekuatan air dan angin, baik yang berlangsung secara alamiah ataupun sebagai akibat tindakan atau perbuatan manusia.

Secara garis besar erosi tanah dibedakan atas normal atau *geological erosion* dan *accelerated erosion* (Kartasapoetra, 2010). Erosi *geological erosion* adalah erosi yang berlangsung secara alamiah, terjadi secara normal di lapangan melalui tahap-tahap: (1) pemecahan agregat-agregat tanah atau bongkah-bongkah tanah ke dalam partikel-partikel tanah yaitu butiran-butiran tanah yang kecil, (2) pemindahan partikel-partikel tanah tersebut baik dengan melalui penghanyutan ataupun karena kekuatan angin, (3) pengendapan partikel-partikel tanah yang terpindahkan atau terangkut tadi di tempat-tempat yang lebih rendah atau di dasar-dasar sungai. Erosi secara alamiah dapat dikatakan tidak menimbulkan musibah yang
hebat bagi kehidupan manusia atau keseimbangan lingkungan dan kemungkinan-kemungkinan hanya kecil saja, ini dikarenakan banyaknya partikel-partikel tanah yang dipindahkan atau terangkut seimbang dengan banyaknya tanah yang terbentuk di tempat-tempat yang lebih rendah itu. Sedangkan *accelerated erosion* adalah di mana proses-proses terjadinya erosi tersebut yang dipercepat akibat tindakan-tindakan dan atau perbuatan-perbuatan itu sendiri yang bersifat negatif ataupun telah melakukan kesalahan dalam pengelolaan tanah dalam pelaksanaan pertaniannya.

Suripin (2002) membuat klasifikasi bentuk-bentuk erosi menjadi sebagai berikut:
1. Erosi percikan (*splash erosion*);
2. Erosi aliran permukaan (*sheet erosion*);
3. Erosi alur (*rill erosion*);
4. Erosi parit (*gully erosion*);
5. Erosi tebing sungai (*stream bank erosion*);
6. Erosi internal;
7. Tanah longsor;
8. Erosi oleh gelombang.

Dalam hal terjadinya erosi, sehubungan dengan proses-prosesnya yang secara alamiah dan yang secara dipercepat dengan demikian secara keseluruhannya yang menjadi penyebab dan yang mempengaruhi besarnya laju erosi yang terdapat lima faktor, yaitu:
a. Faktor Iklim

Arsyad (1976) menyatakan bahwa di daerah beriklim tropis, hujan merupakan faktor iklim paling dominan terhadap erosi, karena proses yang dialami dari pemecahan terhadap partikel tanah sampai proses pengangkutannya sangat dipengaruhi oleh air hujan yang jatuh ke permukaan tanah. Kombinasi intensitas hujan, distribusi curah hujan dan besarnya butiran-butiran hujan sangat menentukan kekuatan pukulan terhadap tanah, jumlah dan kecepatan limpasan permukaan. Iklim menentukan nilai indeks erosivitas hujan sedang tanah dengan sifat-sifatnya itu dapat menentukan besar kecilnya lajunya pengikisan (erosi) dan dinyatakan sebagai faktor erodibilitas tanah (kepekaan tanah terhadap erosi atau mudah dan tidaknya tanah itu tererosi).

Curah hujan yang menimpa permukaan tanah itu terdiri dari titik-titik air yang dengan sendirinya daya jatuh atau daya timpanya akan berbeda-beda, ada yang keras (berat) dan ada pula yang lemah (Kartasapoetra, 2010), hal ini tergantung pada: (1) kecepatan jatuhnya titik air itu; (2) diameter titik-titik air; (3) intensitas atau kehebatan hujan itu. Daya jatuh atau daya timpa yang berat (keras) akan memecahkan bongkah-bongkah tanah menjadi butiran-butiran tanah yang kecil-kecil dan ada pula yang halus. Butiran-butiran tanah yang kecil ini (partikel) dan yang halus akan terangkat dan terhanyutkan dengan berlangsungnya runoff sedangkan sebagian akan mengikuti infiltrasi air dan bagian ini biasanya dapat menutupi pori-pori
tanah sehingga infiltrasi air ke dalam lapisan-lapisan tanah bagian dalam menjadi terhambat. Dengan menurunnya kapasitas infiltrasi maka runoff menjadi bertambah dan daya tekan air yang dialirkan pun menjadi lebih kuat. Dalam keadaan tekanan yang demikian inilah maka pengikisan dan penghanyutan partikel-partikel tanah akan makin bertambah. Makin besar intensitas hujan makin besar pula partikel tanah yang dilepaskan, dikarenakan daya (energi) kinetiknya makin besar. Makin besar diameter titik-titik hujan, daya kinetiknya akan semakin besar (kuat), dan tentunya partikel-partikel tanah yang dilepaskan dari agregat-agregat akan semakin besar, dengan demikian maka erosi pun akan terjadi (Kartasapoetra, 2010).

b. Faktor Topografi

Faktor bentuk kewilayahan (topografi) menentukan tentang kecepatan lajunya air permukaan yang mampu mengangkut atau menghanyutkan partikel-partikel tanah. Kemiringan dan panjang lereng adalah dua unsur topografi yang paling berpengaruh terhadap limpasan permukaan dan erosi (Arsyad, 1989). Makin miringnya keadaan lahan itu makin cepat pula aliran air itu dan makin jauh pula partikel-partikel tanah tersebut terangkut. Tetapi ukuran partikel itu sendiri dan adanya tanaman-tanaman pada permukaan lahan sering mempengaruhi kelancaran pengangkutan itu, tentang ukuran partikel misalnya (a) makin kecil ukuran partikel, makin jauh partikel tersebut dapat terangkut, (b) pasir akan lebih lamban
terangkutnya daripada liat dan debu, sedangkan tanaman pada permukaan dan batu-batuan jelas dapat menghambat kecepatan aliran permukaan (Kartasapoetra, 2010).

c. Faktor Tanaman Penutup Tanah (Vegetasi)

Vegetasi memiliki sifat melindungi tanah dari timpaan-timpaan keras titik-titik curah hujan ke permukanya, selain itu dapat memperbaiki susunan tanah dengan bantuan akar-akarnya yang menyebar.

d. Faktor Tanah

Berbagai tipe tanah mempunyai erodibilitas yang berbeda-beda terhadap erosi. Kepekaan erosi tanah adalah mudah atau tidaknya tanah tererosi yang merupakan fungsi berbagai interaksi sifat-sifat fisik dan kimia tanah (Kartasapoetra, 2010). Sifat-sifat tanah yang mempengaruhi kepekaan erosi adalah (1) sifat-sifat tanah yang mempengaruhi laju infiltrasi, permeabilitas dan kapasitas menahan air dan (2) sifat-sifat tanah yang mempengaruhi ketahanan struktur tanah terhadap penghancuran dan pengikisan oleh butir-butir hujan yang jatuh dan limpasan permukaan (Arsyad, 1985).

e. Faktor Kegiatan Manusia

Diantara faktor-faktor yang mempengaruhi erosi, ternyata faktor manusia adalah yang paling sukar dikendalikan dan justru merupakan faktor utama timbulnya kejadian erosi (Subagyo, 1970). Faktor kegiatan manusia selain dapat mempercepat terjadinya erosi karena perlakuan-perlakuan
yang negatif, dapat pula memegang peranan yang penting dalam usaha pencegahan erosi yaitu dengan perbuatatan atau perlakuan-perlakuanannya yang positif. Banyak faktor yang menentukan apakah manusia akan memperlakukan dan merawat serta mengusahakan tanahnya secara bijaksana, sehingga diharapkan tanah akan menjadi lebih baik dan dapat memberikan pendapatan yang cukup untuk jangka waktu yang tidak terbatas (Arsyad, 1989).

2. Erosi yang Masih Dapat Ditoleransi (Nilai T)

Erosi merupakan proses alamiah yang tidak bisa atau sulit untuk dihilangkan sama sekali atau tingkat erosinya nol, khususnya untuk lahan-lahan yang diusahakan untuk pertanian. Tindakan yang dapat dilakukan adalah mengusahakan supaya erosi yang terjadi masih dibawah ambang batas yang maksimum (soil loss tolerance), yaitu besarnya erosi yang tidak melebihi laju pembentukan tanah. Tindakan pengawetan tanah perlu dilakukan apabila laju erosi yang terjadi melebihi besarnya laju pembentukkan tanah, agar tidak menyebabkan kemerrosostan produktivitas tanah (Sarief, 1986). Menurut Kimberlin et al., 1977) dalam Sarief (1986) mengungkapkan bahwa tidak hanya jumlah partikel tanah yang terorosi yang masih dapat dibiarkan, tetapi juga daerah penampungan endapan yang harus dipertimbangkan dalam menilai apakah proses erosi dan pengendapan ini dapat menimbulkan masalah atau tidak. Di suatu tempat mungkin menguntungkan daerah-daerah penampungan endapan, tapi di
lain tempat mungkin besarnya erosi yang masih dibiarkan ini harus diperkecil lagi.

Para ahli tanah mengemukakan bahwa perkiraan paling baik mengenai pembentukan lapisan tanah atas setebal 25 mm atau sekitar 375 ton/ha di bawah kondisi alami adalah selama ± 300 tahun. Tetapi waktu ini dapat dipersingkat menjadi 30 tahun, dengan adanya pengolahan tanah. Sehingga pembentukan tanah setebal 25 mm selama 30 tahun kira-kira sama dengan 12,5 ton/ha/th. Dengan demikian dapat diasumsikan bahwa apabila erosi kurang dari 12,5 ton/ha/th maka erosi tersebut masih dapat dibiarkan dengan syarat harus disertai dengan usaha-usaha pengawetan tanah dan air serta pengolahan tanah yang baik dalam penambahan bahan organik (Bennet, 1939 and Hudson, 1976 dalam Kartasapoetra, 1987). Laju erosi yang dinyatakan dalam mm/tahun atau ton/ha/tahun yang terbesar dan masih dapat dibiarkan atau ditoleransikan agar terpelihara suatu kedalaman tanah yang cukup bagi pertumbuhan tanaman sehingga memungkinkan tercapainya produktivitas yang tinggi secara lestari disebut erosi yang masih dapat dibiarkan atau ditoleransikan yang dalam disebut nilai T. Tabel 1 menyajikan besarnya erosi tanah yang masih dapat dibiarkan (soil loss tolerance) berdasarkan kedalaman tanah menurut Dwiatmo (1982). Untuk nilai besarnya erosi tanah yang masih dapat ditoleransi (T) berdasarkan kedalaman tanah dapat dilihat pada Tabel 1.
Tabel 1. Besarnya erosi tanah yang masih dapat ditoleransi

<table>
<thead>
<tr>
<th>No</th>
<th>Kedalaman Tanah (Soil Depth)</th>
<th>T (ton/ha/tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dalam (>100 cm)</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Sedang (30-100 cm)</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Dangkal (<30 cm)</td>
<td>5</td>
</tr>
</tbody>
</table>

Sumber: Dwiatmo (1982).

Metode Praktikum:

1. Pengamatan dan Pengukuran di Lapangan
 a. Data Kemiringan Lereng

 Kemiringan lereng sangat menentukan potensi erosi, karena hubungannya dengan jumlah air dan energi menghanyutkan tanah sebagai proses erosi.

Tabel 2. Kelas kemiringan lereng

<table>
<thead>
<tr>
<th>No</th>
<th>Kemiringan Lereng (%)</th>
<th>Penilaian</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-8</td>
<td>Datar</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8-15</td>
<td>Landai</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>15-25</td>
<td>Sedang</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>25-45</td>
<td>Agak curam</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>> 45</td>
<td>Sangat curam</td>
<td>5</td>
</tr>
</tbody>
</table>

b. Pengukuran Limpasan Permukaan dan Erosi Tanah

 Pengukuran air limpasan dan tanah tererosi dilakukan setelah hujan berhenti. Pengukuran limpasan permukaan dan massa tanah tererosi pada setiap plot dilakukan dengan pengambilan sampel air yang tertampung dalam bak yang telah diukur volumenya. Diaduk merata seluruh air larian dan sedimen yang tertampung dalam bak hingga larutan dianggap homogen. Jumlah sampel yang diambil sebanyak 35 (tiga puluh
lima) kali hari hujan. Sampel air limpasan dan massa tanah tererosi yang diambil dimasukkan ke dalam botol plastik yang telah disiapkan (500 ml) kemudian dibawa ke laboratorium untuk diketahui berat keringnya.

c. Pengukuran Curah Hujan

Pengamatan curah hujan dilakukan terhadap jeluk hujan pada setiap kejadian hujan dengan menggunakan alat penakar curah hujan yang terbuat dari pipa paralon (modifikasi). Penakar hujan tersebut dipasang secara vertikal pada ketinggian 150 cm dari permukaan tanah untuk menekan kemungkinan kesalahan pengukuran yang dapat terjadi oleh berbagai sebab dan atau gangguan. Jeluk (curah) hujan (mm) dihitung berdasarkan volume air yang tertampung di dalam penakar curah hujan (cm³) dibagi dengan luas permukaan penakar (cm²), kemudian dikonversikan ke dalam satuan mm.

d. Data Tekstur Tanah

Untuk mengetahui sifat fisik tanah terutama tekstur tanah pada beberapa kedalaman tanah di tempat penelitian, maka dibuat profil tanah yang selanjutnya diambil sampel tanah untuk keperluan analisis. Data tekstur hasil analisis tanah di laboratorium dihitung nilai masing-masing fraksi mineralnya (pasir, debu dan liat). Profil tanah dibuat sebanyak satu buah, dengan anggapan bahwa lokasi penelitian memiliki kedalaman dan tekstur tanah yang seragam. Pembagian kedalaman didasarkan atas rona tanah.
e. Pengukuran di Laboratorium

Pengolahan dan Analisis Data:

1. Limpasan Permukaan (l/luas PUE = \(m^2 \))

 \[
 LP = A \ (ml) \times \frac{Vt \ (ml)}{500 \ ml \ (sampel)}
 \]

 Keterangan:

 \(LP \) = Limpasan permukaan (liter)

 \(Vt \) = Volume total air yang tertampung (ml)

 \(A \) = Volume aliran permukaan dari sampel (ml)

2. Massa Tanah Tererosi Sampel (gr/luas PUE = \(m^2 \))

 \[
 B = (BST + BK2) - BK1
 \]

 Keterangan:

 \(B \) = Massa Tanah tererosi sampel (gr)

 \(BST \) = Berat kering oven sampel (gr)

 \(BK1 \) = Berat kertas Saring Sebelum Penyaringan (gr)

 \(BK2 \) = Berat kertas Saring Sesudah Penyaringan (gr)
3. Massa Tanah Tererosi (gr/ luas PUE = m²)

\[MTT = B \ (gr) \times \frac{Vt \ (ml)}{500 \ ml \ (sampel)} \]

Keterangan:
MTT = Massa tanah tererosi
Vt = Volume total air yang tertampung (ml)
B = Massa tanah tererosi sampel (gr)

4. Limpasan Permukaan (m³/ha/tahun)

\[\frac{LP}{1000} \times \frac{10.000}{Luas \ PUE} = m^3/ha \times i = m^3/ha/tahun \]

5. Massa Tanah Tererosi (ton/ha/tahun)

\[MTT \ \frac{1.000.000}{1.000.000} \times \frac{10.000}{Luas \ PUE} = ton/ha \times i = ton/ha/tahun \]

Keterangan: i = 12/jumlah bulan pengamatan.

6. Indeks Bahaya Erosi (IBE)

Nilai IBE berguna untuk mengetahui seberapa besar laju erosi yang terjadi akan membahayakan kelestarian keproduktifan tanah yang bersangkutan. Indeks Bahaya Erosi disajikan pada Tabel 3.

\[IBE = \frac{Erosi \ potensial \ (ton/ha/tahun)}{Laju \ erosi \ yang \ dapat \ ditoleransi \ (ton/ha/tahun)} \]

Tabel 3. Indeks Bahaya Erosi (IBE)

<table>
<thead>
<tr>
<th>No</th>
<th>Indeks Bahaya Erosi</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><1,00</td>
<td>Rendah</td>
</tr>
<tr>
<td>2.</td>
<td>1,01-4,00</td>
<td>Sedang</td>
</tr>
<tr>
<td>3.</td>
<td>4,01-10,00</td>
<td>Tinggi</td>
</tr>
<tr>
<td></td>
<td>>10,01</td>
<td>Sangat Tinggi</td>
</tr>
</tbody>
</table>

Sumber: Hammer (1981)
7. Kelas Bahaya Erosi (KBE)

Kelas Bahaya Erosi tersaji pada Tabel 4 berikut.

Tabel 4. Kelas Bahaya Erosi

<table>
<thead>
<tr>
<th>No</th>
<th>Laju erosi (ton/ha/tahun)</th>
<th>Kelas Bahaya Erosi</th>
<th>Harkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><15</td>
<td>I</td>
<td>SR</td>
</tr>
<tr>
<td>2</td>
<td>15-60</td>
<td>II</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>60-180</td>
<td>III</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>180-480</td>
<td>IV</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>>480</td>
<td>V</td>
<td>ST</td>
</tr>
</tbody>
</table>

Keterangan: SR = Sangat rendah; R = Rendah; S = Sedang; T = Tinggi; ST = Sangat tinggi.

8. Tingkat Bahaya Erosi (TBE)

Hasil yang diperoleh dari perhitungan besar laju erosi tanah (A) dan kedalaman solum tanah kemudian dikelompokkan kedalam kategori kelas bahaya erosi dan tingkat bahaya erosi (Tabel 5).

Tabel 5. Kategori Tingkat Bahaya Erosi (TBE)

<table>
<thead>
<tr>
<th>Kedalaman Tanah (cm)</th>
<th>Solum</th>
<th>Kelas Bahaya Erosi (KBE)</th>
<th>Laju Erosi Tanah (ton/ha/tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 15</td>
<td>15–60</td>
</tr>
<tr>
<td>Dalam (> 90)</td>
<td>SR</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Sedang (60–90)</td>
<td>R</td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>Dangkal (30–60)</td>
<td>S</td>
<td>B</td>
<td>SB</td>
</tr>
<tr>
<td>Sangat Dangkal (<30)</td>
<td>B</td>
<td>SB</td>
<td>SB</td>
</tr>
</tbody>
</table>

Keterangan: I : Sangat rendah; II : Rendah; III : Sedang; IV : Tinggi; V : Sangat tinggi; SR: Sangat ringan; R : Ringan; S : Sedang; B: Berat; SB: Sangat Berat.
Perhitungan dan Pelaporan:

1. Menghitung nilai total, rataan, maksimum dan minimum dari CH (mm), LP(liter) dan MTT (gr) (Data pada Tabel 6).
2. Mengkonversikan besaran Limpasan Permukaan (LP) dalam satuan m³/ha/tahun dan Massa Tanah Tererosi (MTT) dalam satuan ton/ha/tahun masing-masing Petak Ukur Erosi (PUE).
3. Mengetahui Indeks Bahaya Erosi (IBE) dan Tingkat Bahaya Erosi (TBE) masing-masing PUE.
4. Membuat kesimpulan terhadap data tersebut dalam bentuk laporan.

Gambar 12. Bak ukur erosi dan limpasan permukaan
LEMBAR KERJA MAHASISWA (LKM)
ACARA IV. PENGUKURAN LIMPASAN PERMUKAAN DAN EROSI

Table 6. Curah hujan, limpasan permukaan, dan massa tanah tererosi pada petak uji coba kombinasi sengon dan kacang tanah.

<table>
<thead>
<tr>
<th>Kejadian hujan ke-</th>
<th>CH (mm)</th>
<th>Vol. Sampel (ml)</th>
<th>A (ml)</th>
<th>B (gr)</th>
<th>Vt (ml)</th>
<th>LP (L)</th>
<th>MTT (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PUE 1</td>
<td>PUE 2</td>
<td>PUE 1</td>
<td>PUE 2</td>
<td>PUE 1</td>
</tr>
<tr>
<td>1</td>
<td>24,38</td>
<td>500</td>
<td>230</td>
<td>330</td>
<td>12,9</td>
<td>19,7</td>
<td>38151</td>
</tr>
<tr>
<td>2</td>
<td>5,97</td>
<td>500</td>
<td>280</td>
<td>385</td>
<td>3,2</td>
<td>3,2</td>
<td>34972</td>
</tr>
<tr>
<td>3</td>
<td>14,43</td>
<td>500</td>
<td>250</td>
<td>370</td>
<td>3,1</td>
<td>3,2</td>
<td>22255</td>
</tr>
<tr>
<td>4</td>
<td>55,23</td>
<td>500</td>
<td>230</td>
<td>320</td>
<td>33,5</td>
<td>92,1</td>
<td>44510</td>
</tr>
<tr>
<td>5</td>
<td>12,69</td>
<td>500</td>
<td>285</td>
<td>375</td>
<td>4,7</td>
<td>6,4</td>
<td>34972</td>
</tr>
<tr>
<td>6</td>
<td>42,30</td>
<td>500</td>
<td>250</td>
<td>375</td>
<td>27,2</td>
<td>30,7</td>
<td>38151</td>
</tr>
<tr>
<td>7</td>
<td>26,37</td>
<td>500</td>
<td>250</td>
<td>390</td>
<td>11,0</td>
<td>10,0</td>
<td>38151</td>
</tr>
<tr>
<td>8</td>
<td>6,72</td>
<td>500</td>
<td>240</td>
<td>380</td>
<td>3,3</td>
<td>3,5</td>
<td>38151</td>
</tr>
<tr>
<td>9</td>
<td>8,46</td>
<td>500</td>
<td>220</td>
<td>375</td>
<td>10,2</td>
<td>9,6</td>
<td>38151</td>
</tr>
<tr>
<td>10</td>
<td>36,33</td>
<td>500</td>
<td>260</td>
<td>370</td>
<td>14,9</td>
<td>16,5</td>
<td>38151</td>
</tr>
<tr>
<td>11</td>
<td>8,96</td>
<td>500</td>
<td>270</td>
<td>360</td>
<td>6,8</td>
<td>6,6</td>
<td>34972</td>
</tr>
<tr>
<td>12</td>
<td>14,18</td>
<td>500</td>
<td>220</td>
<td>360</td>
<td>4,3</td>
<td>9,7</td>
<td>38151</td>
</tr>
<tr>
<td>13</td>
<td>13,44</td>
<td>500</td>
<td>285</td>
<td>345</td>
<td>6,0</td>
<td>8,2</td>
<td>23844</td>
</tr>
<tr>
<td>14</td>
<td>13,68</td>
<td>500</td>
<td>230</td>
<td>385</td>
<td>5,8</td>
<td>7,7</td>
<td>41330</td>
</tr>
<tr>
<td>15</td>
<td>2,99</td>
<td>500</td>
<td>280</td>
<td>345</td>
<td>3,3</td>
<td>3,6</td>
<td>5564</td>
</tr>
<tr>
<td>16</td>
<td>2,49</td>
<td>500</td>
<td>270</td>
<td>380</td>
<td>2,4</td>
<td>5,0</td>
<td>3179</td>
</tr>
<tr>
<td>17</td>
<td>17,42</td>
<td>500</td>
<td>290</td>
<td>330</td>
<td>5,3</td>
<td>6,8</td>
<td>34972</td>
</tr>
<tr>
<td>18</td>
<td>19,66</td>
<td>500</td>
<td>250</td>
<td>355</td>
<td>12,2</td>
<td>11,7</td>
<td>31793</td>
</tr>
<tr>
<td>19</td>
<td>29,86</td>
<td>500</td>
<td>280</td>
<td>350</td>
<td>11,0</td>
<td>10,9</td>
<td>41330</td>
</tr>
<tr>
<td>20</td>
<td>8,71</td>
<td>500</td>
<td>270</td>
<td>365</td>
<td>2,2</td>
<td>2,2</td>
<td>28613</td>
</tr>
<tr>
<td>21</td>
<td>38,81</td>
<td>500</td>
<td>260</td>
<td>350</td>
<td>11,0</td>
<td>16,1</td>
<td>38151</td>
</tr>
<tr>
<td>22</td>
<td>7,71</td>
<td>500</td>
<td>280</td>
<td>380</td>
<td>2,9</td>
<td>4,3</td>
<td>28613</td>
</tr>
<tr>
<td>23</td>
<td>17,17</td>
<td>500</td>
<td>270</td>
<td>370</td>
<td>13,4</td>
<td>13,2</td>
<td>34972</td>
</tr>
</tbody>
</table>

Nama :
NIM/Kelompok :
<table>
<thead>
<tr>
<th>Kejadian hujan ke-</th>
<th>CH (mm)</th>
<th>Vol. Sampel (ml)</th>
<th>A (ml)</th>
<th>B (gr)</th>
<th>Vt (ml)</th>
<th>LP (L)</th>
<th>MTT (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>UKE 1</td>
<td>UKE 2</td>
<td>UKE 1</td>
<td>UKE 2</td>
<td>PUE 1</td>
</tr>
<tr>
<td>24</td>
<td>26,87</td>
<td>500</td>
<td>260</td>
<td>350</td>
<td>9,5</td>
<td>8,4</td>
<td>39741</td>
</tr>
<tr>
<td>25</td>
<td>2,74</td>
<td>500</td>
<td>290</td>
<td>390</td>
<td>2,6</td>
<td>3,1</td>
<td>9538</td>
</tr>
<tr>
<td>26</td>
<td>2,74</td>
<td>500</td>
<td>255</td>
<td>390</td>
<td>1,9</td>
<td>2,1</td>
<td>4769</td>
</tr>
<tr>
<td>27</td>
<td>3,98</td>
<td>500</td>
<td>240</td>
<td>390</td>
<td>1,7</td>
<td>3,0</td>
<td>3179</td>
</tr>
<tr>
<td>28</td>
<td>5,47</td>
<td>500</td>
<td>260</td>
<td>370</td>
<td>3,6</td>
<td>5,0</td>
<td>22255</td>
</tr>
<tr>
<td>29</td>
<td>3,73</td>
<td>500</td>
<td>280</td>
<td>395</td>
<td>2,0</td>
<td>3,7</td>
<td>4769</td>
</tr>
<tr>
<td>30</td>
<td>15,43</td>
<td>500</td>
<td>270</td>
<td>390</td>
<td>3,1</td>
<td>3,1</td>
<td>20665</td>
</tr>
<tr>
<td>31</td>
<td>43,29</td>
<td>500</td>
<td>240</td>
<td>375</td>
<td>4,5</td>
<td>3,5</td>
<td>38151</td>
</tr>
<tr>
<td>32</td>
<td>18,66</td>
<td>500</td>
<td>285</td>
<td>395</td>
<td>1,9</td>
<td>3,6</td>
<td>5564</td>
</tr>
<tr>
<td>33</td>
<td>45,28</td>
<td>500</td>
<td>270</td>
<td>385</td>
<td>6,3</td>
<td>5,7</td>
<td>44510</td>
</tr>
<tr>
<td>34</td>
<td>10,45</td>
<td>500</td>
<td>280</td>
<td>350</td>
<td>2,6</td>
<td>2,4</td>
<td>41330</td>
</tr>
<tr>
<td>35</td>
<td>14,43</td>
<td>500</td>
<td>270</td>
<td>380</td>
<td>2,8</td>
<td>3,1</td>
<td>20665</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Rataan</th>
<th>Maksimum</th>
<th>Minimum</th>
</tr>
</thead>
</table>

Keterangan:

CH = curah hujan; A = volume limpasan permukaan sampel; B = berat kering sampel tanah; Vt = volume total air dalam bak penampung; LP = limpasan permukaan; MTT = massa tanah tererosi; PUE 1 = Petak Ukur Erosi pada kelas kelerengan agak curam (15-<25%); PUE 2 = Petak Ukur Erosi pada kelas kelerengan curam (25-40%); PUE berukuran 10 m x 3 m; kedalaman solum tanah > 100 cm; Erosi yang masih ditoleransi sebesar 25 ton/ha/tahun untuk lahan perbukitan dan miring (Rahim, 1995); Pengukuran curah hujan dilakukan selama 4 bulan.
Tabel 7. Hasil analisis Limpasan Permukaan (LP), Massa Tanah Tererosi (MTT), Indeks Bahaya Erosi (IBE), Kelas Bahaya Erosi (KBE), dan Tingkat Bahaya Erosi (TBE)

<table>
<thead>
<tr>
<th>No. PUE</th>
<th>LP (m³/ha/tahun)</th>
<th>MTT (ton/ha/tahun)</th>
<th>IBE</th>
<th>KBE</th>
<th>TBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 8. Contoh perhitungan besaran Massa Tanah Tererosi (ton/ha/th), Limpasan Permukaan (m³/ha/th) dan Indeks Bahaya Erosi (IBE)

<table>
<thead>
<tr>
<th>No.</th>
<th>Uraian / Perhitungan</th>
<th>Keterangan</th>
</tr>
</thead>
</table>
| 1 | Perhitungan massa tanah tererosi (ton/ha/th) | 1 ton = 1000 kg
| | | 1 kg = 1000 gram
| | | 1 ha = 10000 m²
| | | 1 tahun = 12 bulan
| | | 1 m³ = 1000 liter |

$$MTT = \frac{10000}{Luas \ PUE}$$

$$= \text{ton/ha/} \times i$$

$$= \text{ton/ha/tahun}$$

Misal PUE 1 (petak ukur kontrol), total erosi tanah yang terjadi pada 35 kali hari hujan dengan luasan petak ukur 25 m² adalah 43687,11 gram. Hal ini sama dengan 43,68711 kg/25 m²/3 bulan. Jika satuan tersebut...
<table>
<thead>
<tr>
<th>No.</th>
<th>Uraian / Perhitungan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dikonversikan ke dalam satuan ton/ha/th, maka nilainya adalah 0,0436711 ton/0,0025 ha/0,25 tahun atau 69,89 ton/ha/tahun</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Perhitungan limpasan permukaan (m³/ha/th)</td>
<td></td>
</tr>
</tbody>
</table>
| | \[
| | \frac{LP}{1000} \times \frac{10.000}{Luas PUE} = m^3/ha/\times i \]
| | \[
<p>| | = m^3/ha/tahun | |
| | Misal PUE 1 (petak ukur kontrol), total limpasan permukaan yang terjadi pada 35 kali hari hujan dengan luasan petak ukur 25 m² adalah 402,81 liter | |
| | Hal ini sama dengan 402,81 liter/25 m²/3 bulan jika satuan tersebut dikonversikan ke dalam | |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Uraian / Perhitungan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>satuan 0,40281 m³/0,0025 ha/0,25 tahun, maka nilainya adalah 644,50 m³/ha/th</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | Erosi yang diperkenankan (Edp) untuk tanah dengan kedalaman > 100 cm adalah sebesar 14 ton/ha/tahun. Perhitungan IBE: Misalnya PUE I (petak ukur kontrol), erosi potensial dibagi laju erosi yang dapat diperkenankan \(\frac{A}{t} \): \[
\begin{align*}
\text{69,89 ton/ha/tahun} & \div 14 \text{ ton/ha/tahun} \\
& = 4,99
\end{align*}
\] | |

V. IDENTIFIKASI JENIS-JENIS EROSI DI LAPANGAN

Hari / Tanggal :

Lokasi Praktikum :
Di wilayah Kalimantan Timur, pada lahan yang terdegradasi.

Tujuan Praktikum :
Mengidentifikasi jenis-jenis erosi yang terjadi di lahan terdegradasi di wilayah Kalimantan Timur.

Tinjauan Pustaka :
Pada umumnya erosi yang terjadi di wilayah tropis khususnya Indonesia adalah akibat adanya curah hujan yang tinggi ataupun intensitas hujan yang tinggi dan berlangsung secara terus menerus. Jenis-jenis erosi yang terjadi di lapangan adalah sebagai berikut:

1. Erosi percikan *(splash erosion)*

Gambar 13. Erosi Percikan

2. Erosi lembar (Sheet Erosion)

Erosi lembar (sheet erosion) merupakan pengangkutan suatu lapisan tanah yang tebalnya merata dari suatu permukaan tanah. Erosi lembar disebut juga erosi kulit, yang bisa diartikan dengan tipisnya lapisan permukaan tanah didaerah berlereng yang terkikis oleh kombinasi air hujan dan air larian (run off). Penyebab erosi kulit berdasarkan sumber tenaga kinetis air hujan lebih penting karena kecepatan air jatuhkan lebih besar, yaitu antara 0,3-0,6 m/dt.

Erosi lembar yaitu proses pengikisan lapisan tanah paling atas sehingga kesuburannya berkurang. Pengikisan lembar ditandai oleh : warna coklat, warna air yang terkikis menjadi lebih pucat, kesuburan tanah berkurang.
3. **Erosi alur (rill erosion)**

Erosi alur (rill erosion) terjadi karena adanya proses erosi dengan sejumlah saluran kecil (alur), yang kedalamannya < 30 cm, dan terbentuk terutama di lahan pertanian yang baru saja diolah. Erosi ini sebenarnya sebagai perkembangan lebih lanjut dari erosi lembar, hanya tenaga aliran perluapan sudah mulai terkonsentrasi pada alur. Alur-alur tersebut terbentuk karena daya tahan tanah terhadap pengaruh tenaga erosi oleh aliran perluapan tidak merata. Alur-alur yang terjadi masih dangkal dan dapat dihilangkan dengan pengolahan tanah. Erosi alur biasanya terjadi pada tanah-tanah yang ditanami dengan tanaman yang ditanam berbaris menurut lereng atau akibat pengolahan tanah menurut lereng atau bekas tempat menarik balok-balok kayu. Erosi lembar dan erosi alur merupakan kedua bentuk erosi yang lebih banyak dan luas terjadinya jika dibandingkan dengan bentuk erosi lainnya. Erosi akibat pengikisan tanah oleh aliran air yang membentuk parit atau
saluran kecil. Aliran air telah membentuk bagian tersebut menjadi konsentrasi aliran air hujan di permukaan tanah. Aliran air menyebabkan pengikisan tanah, lama-kelamaan membentuk alur-alur dangkal pada permukaan tanah yang arahnya dari atas memanjang ke bawah. Contoh erosi alur dapat dilihat pada gambar di bawah ini.

![Gambar 15. Erosi Alur](image)

4. **Erosi parit (gully erosion)**

Kelanjutan dari erosi alur. Biasanya erosi parit yang baru terbentuk berukuran sekitar 40 cm lebarnya dengan kedalaman sekitar 30 cm. Terjadi bila alur-alur menjadi semakin lebar dan dalam yang membentuk parit dengan kedalaman yang mencapai 1 sampai 2,5 m atau lebih. Parit ini membawa air selama dan segera setelah hujan. Parit tidak dapat lenyap oleh pengolahan tanah secara normal. Erosi parit biasanya berbentuk V atau U tergantung pada kepekaan erosi substratanya.
5. **Erosi tebing sungai (*river bank erosion*)**

Erosi sungai terjadi akibat terkikisnya permukaan tanggul sungai dan gerusan sedimen di sepanjang dasar saluran. Erosi ini dipengaruhi oleh variabel hidrologi yang mempengaruhi sistem sungai. Contoh erosi di daerah Rambong, Aceh dapat dilihat seperti gambar di bawah ini.

Gambar 17. Erosi Tebing Sungai

6. **Longsor**

Longsor (*landslide*) merupakan erosi yang pemindahan tanah terjadi pada saat bersamaan dalam volume yang besar terjadi secara sekaligus. Longsor terjadi sebagai akibat
meluncurnya suatu lapisan sedikit kedap air. Lapisan kedap air terdiri atas tanah liat yang tinggi.

Gambar 18. Longsor

Metode Praktikum :

1. Menentukan lokasi lahan yang terdegradasi untuk diidentifikasi erosi yang terjadi;
2. Mendokumentasikan bentuk-bentuk/ jenis-jenis erosi yang terjadi ke dalam gambar foto;
3. Mendeskripsikan bentuk-bentuk/ jenis-jenis erosi yang terjadi dan didokumentasikan dalam gambar foto menurut referensi-referensi tentang bentuk-bentuk/ jenis-jenis erosi;
4. Laporan hasil pengamatan dituangkan dalam bentuk tampilan gambar foto dan dideskripsikan, diketik rapi dengan huruf Time New Roman ukuran 12, spasi 1,5.
VI. LUBANG RESAPAN BIOPORI (LRB)

Hari / Tanggal :
Lokasi Praktikum :

Di sekitar kampus Universitas Mulawarman.

Tujuan Praktikum :

Setelah mengikuti kegiatan praktikum pada pokok bahasan ini, mahasiswa diharapkan mengerti dan memahami proses dan mekanisme pembuatan LRB serta pemeliharaannya. Mampu menjelaskan fungsi, keunggulan dan manfaat dari pembuatan LRB terhadap lingkungan.

Alat dan Bahan :

Pelaksanaan praktikum ini menggunakan alat-alat dan bahan sebagai berikut:

1. Bor tanah 1 buah
2. Pipa paralon bekas ukuran 4 inch sepanjang 10-15 cm sebanyak 3 buah
3. Ajir 3 buah
4. Label plastik atau pita plastik sebagai penanda
5. Spidol
6. Alat dokumentasi
7. Alat ukur
8. Sampah organik
Tinjauan Pustaka:

Lubang Resapan Biopori (LRB)

Biopori sebagai batasan istilah, karena sebagian besar masyarakat belum banyak yang mengetahui dan memahami istilah tersebut. Oleh karena itu, untuk membahas masalah ini penulis menggunakan tiga pandangan sebagai tinjauan untuk mendefinisikan arti kata Biopori sebagai berikut:

1. Lubang resapan biopori menurut Peraturan Menteri Kehutanan Nomor : P.70/Menhut-II/2008/Tentang Pedoman Teknis Rehabilitasi Hutan dan Lahan, adalah lubang-lubang di dalam tanah yang terbentuk akibat berbagai aktivitas organisme di dalamnya, seperti cacing, perakaran tanaman, rayap, dan fauna tanah lainnya. Lubang-lubang yang terbentuk akan terisi udara dan akan menjadi tempat berlalunya air di dalam tanah;

2. Bila ditinjau dari Kamus Besar Bahasa Indonesia, istilah biopori masih belum ditemukan. Bila ditinjau dari asal kata, biopori terdiri dari dua kata yaitu "bio" yang berarti hidup dan "pori" yaitu pori-pori yang bermanfaat. Ada juga yang menyebut biopori "mulsa vertikal", karena ini mengandalkan jasa hewan-hewan tanah seperti cacing dan rayap untuk membentuk pori-pori alami dalam tanah, dengan bantuan sampah organik, sehingga air bisa terserap dan struktur tanah diperbaiki (TIM IPB, 2010);

3. Menurut Brata (2011), lubang resapan biopori adalah metode resapan air yang ditujukan untuk meningkatkan

Tahapan Kegiatan :

1. **Persiapan**

 Sebelum melaksanakan praktikum hal utama dan pertama adalah memahami dengan baik apa itu LRB, keunggulan serta manfaat dari LRB bagi lingkungan. Lubang resapan biopori adalah lubang silindris yang dibuat secara vertikal ke dalam tanah dengan diameter 10 cm dan kedalaman 100 cm. Jika LRB ini dibuat pada kondisi tanah dengan muka air tanah dangkal maka kedalaman LRB dibuat dengan tidak melebihi kedalaman muka air tanah. Lubang ini diisi dengan sampah organik untuk menciptakan biopori. Biopori adalah pori yang terbentuk akibat adanya aktifitas fauna dan akar tanaman seperti pada gambar dibawah ini.
Lubang resapan biopori merupakan teknologi tepat guna untuk mengurangi banjir, meningkatkan kualitas lingkungan dengan beberapa cara diantaranya:

1. Meningkatkan daya resapan tanah terhadap air limpasan permukaan
 Lubang resapan yang dibuat dengan diameter 10 cm dan kedalaman 100 cm akan menyediakan ruang sebanyak 7850 cm² bagi air untuk diresapkan ke dalam tanah. Hal ini jauh lebih baik dibandingkan dengan luas resapan permukaan tanah dengan diameter 10 cm yang hanya berkisar 78,5 cm². Jadi, LRB dengan kedalaman 100 cm akan menambah sepuluh kali kesempatan air untuk diresapkan.

2. Mengurangi masalah genangan air yang menyebabkan penyakit demam berdarah dan malaria. Dengan hadirnya lubang-lubang biopori akan mencegah genangan air yang dapat menimbulkan masalah berupa penyakit malaria, demam berdarah, dan penyakit kaki gajah (filariasis)

4. Memanfaatkan peran aktifitas fauna dan akar tanaman. Peran organisme tanah dalam LRB khususnya fauna dan akar tanaman akan menciptakan rongga-rongga di dalam tanah, hal inilah yang akan meningkatkan resapan air. Proses dekomposisi sampah organik selain menjadi humus juga sebagai pakan biota tanah sehingga akan mengurangi emisi gas rumah kaca (karbon dan metan) yang tidak langsung lepas ke atmosfer sehingga mengurangi pemanasan global, selain manfaat lainnya yaitu memelihara biodiversitas dalam tanah.

2. Penentuan Lokasi

Pelaksanaan praktikum LRB ini dilakukan pada area sekeliling pohon dengan jarak sekitar 1-1,5 m dari batang utama pohon yang dipilih di lingkungan Fakultas Kehutanan Universitas Mulawarman.
3. **Pembutan LRB**

Langkah-langkah yang dilakukan dalam pelaksanaan pratikum pembuatan LRB adalah:

1. Buat lubang silindris secara vertikal dengan diameter 10 cm dan kedalaman 100 cm menggunakan bor tanah. Penempatan lubang berada pada area tempat air mengalir/menggenang.

2. Perhatikan jarak pembuatan lubang dari batang utama pohon dan dari lubang yang telah dibuat sebelumnya agar tidak berdekatan minimal berjarak 50-100 cm antar lubang.

3. Disarankan agar lubang yang dibuat mengelilingi pohon yang dipilih dengan jumlah minimal lubang yang dibuat adalah 3 buah.

5. Ambil sampah organik yang telah disiapkan. Amati dan dokumentasikan kondisi permukaan tanah, tempat dimana LRB dibuat, LRB yang dibuat dan kondisi awal sampah organik yang akan dimasukkan ke LRB.

6. Masukkan sampah organik ke dalam lubang sampai lubang penuh terisi.

7. Kondisikan agar bibir lubang tertutup oleh sampah kering sebagai penahan material lain seperti lumpur, pasir dan tanah yang masuk. Selain itu untuk menghambat bau yang
keluar dari dekomposisi jenis sampah organik yang berpotensi menimbulkan bau.

8. Beri penanda dengan ajir dan plastik label dimana LRB dibuat.

Perhitungan dan Pelaporan:

Laporan kegiatan praktikum ini dibuat perkelompok. Laporan ini berisi penjelasan perihal:

1. Kondisi awal lingkungan/permukaan tanah sebelum LRB dibuat
2. Kondisi sampah organik sebelum dimasukkan
3. Kondisi permukaan tanah setelah 14 hari LRB dibuat
4. Kondisi sampah organik setelah 14 hari di dalam LRB
5. Kendala yang dihadapi saat pelaksanaan praktikum pembuatan LRB
6. Saran dan masukan terhadap teknis pelaksanaan LRB
7. Pelajaran dan manfaat yang telah diperoleh dari praktikum pembuatan LRB
VII. PENGAMATAN BENTANG ALAM

Hari / Tanggal :

Lokasi Praktikum :
Di wilayah Kalimantan Timur, baik yang berada di wilayah perkotaan maupun di luar perkotaan.

Tujuan Praktikum :
Mengamati satu diantara bentang alam yang yang ada ke dalam bentuk dokumen visual dan mendeskripsikan kondisi biogeofisik daripada bentang alam tersebut.

Tinjauan Pustaka :
Bentang alam adalah suatu unit geomorfologis yang dikategorikan berdasarkan karateristik seperti elevasi, kelandaian, orientasi, stratifikasi, paparan batuan, dan jenis tanah. Jenis-jenis bentang alam antara lain adalah bukit, lembah, tanjung, dll, sedangkan samudra dan benua adalah contoh jenis bentang alam tingkat tertinggi.

Berdasarkan pengertian diatas, maka untuk menyederhanakan tentang bentang alam adalah suatu pemandangan alam atau daerah dengan aneka ragam bentuk permukaan bumi (gunung, sawah, lembah, sungai, dsb) yang sekaligus merupakan satu kesatuan lanskap.
Beragam Bentang Alam Perairan dan Daratan

A. Kenampakan Bentang Alam Perairan

Perairan merupakan bagian dari permukaan bumi yang tergenangi air. Sama seperti daratan, wilayah perairan juga ada yang alamiah dan buatan manusia. Kenampakan alam yang termasuk wilayah perairan adalah sebagai berikut:

1. Sungai

Sungai merupakan tempat air mengalir. Di daerah pegunungan, sungai berasal dari mata air. Sungai mengalir dari dataran tinggi di pegunungan ke dataran rendah dan berakhir di laut.

Gambar 20. Bentang alam

2. Danau

3. Lautan dan Pantai
baik di pantai adalah kelapa dan bakau. Pantai terkenal di Indonesia adalah Pantai Ancol dan Pantai Kuta - Bali.

4. Teluk dan Semenanjung

Laut yang menjorok masuk ke daratan disebut Teluk. Sebaliknya, daratan menjorok ke laut disebut semenanjung atau jazirah.

5. Pulau, Kepulauan, dan Selat

6. Kenampakan Perairan Buatan

Kenampakan alam buatan manusia di wilayah perairan contohnya bendungan. Bendungan adalah danau buatan manusia. Sungai diberi tanggul agar air sungainya bisa dibendung.
B. Kenampakan Bentang Alam Daratan

Wilayah daratan adalah bagian dari permukaan bumi yang tidak digenangi air dan yang berbentuk padat. Di daratan, terdapat dataran rendah, dataran tinggi, dan gunung.

1. Dataran Rendah

Dataran rendah adalah wilayah darat dengan ketinggian 0-200 meter di atas permukaan laut (dpi). Pada peta, dataran rendah biasanya digambarkan dengan warna hijau.

2. Dataran Tinggi

3. Gunung dan Pegunungan

Gunung adalah bagian bumi yang menonjol tinggi dengan ketinggian puncaknya lebih dari 600 meter dpi. Beberapa bagian dari gunung antara lain puncak, kawah, magma,
aliran lava, bukit, lereng, dan jurang. Gunung dibedakan menjadi dua jenis, yaitu gunung berapi dan gunung tidak berapi.

4. Hutan, Padang Rumput, dan Gurun Pasir

5. Tebing dan Gua

6. Kenampakan Alam Buatan
Kenampakan alam buatan adalah hasil buatan manusia. Contohnya persawahan, perkebunan, desa, kota, bandara, jalan, dan perumahan.
Gambar 21. Bentang alam

Metode Praktikum

1. Menentukan lokasi bentang alam yang akan dikaji;
2. Mendokumentasikan bentang alam yang dipilih ke dalam gambar foto.
3. Mendeskripsikan bentang alam yang sudah dipilih dan didokumentasikan dalam gambar foto menurut pemahaman masing-masing tentang pengertian bentang alam;
4. Laporan hasil pengamatan dituangkan dalam bentuk tampilan gambar foto dan deskripsinya pada 1 (satu) lembar halaman kertas A4 diketik rapi dengan huruf Time New Roman ukuran 12, spasi 1,5.
VIII. PENDUGAAN ERODIBILITAS TANAH (K)

Hari / Tanggal :

Lokasi Praktikum :
Hutan Pendidikan Fakultas Kehutanan Universitas Mulawarman, Lempake, Samarinda.

Tujuan Praktikum :
Menduga tingkat kepekaan tanah terhadap erosi (erodibilitas) pada tutupan lahan yang berbeda dengan menggunakan Nomograf.

Alat dan Bahan :
1. Alat Praktikum :
 a. Kompas, untuk menentukan arah dan kelurusan plot.
 b. Clinometer, untuk mengetahui kelerengan plot.
 c. Meteran, untuk mengukur panjang plot.
 d. Kuas cat, untuk membatasi plot pengamatan
 e. Parang, untuk membersihkan plot dari rumput, semak ataupun rintangan fisik lainnya.
 f. Kafi/centong semen, sebagai alat bantu dalam pengambilan sampel tanah.
 g. Staples, untuk melekatkan label pada plastik sampel tanah.
 h. Ring sampel, untuk mengambil tanah yang akan digunakan pada pengukuran permeabilitas tanah.
i. Pisau lipat, untuk merekatkan tanah pada ring sampel.

j. Alat ukur permeabilitas tanah.

k. Gelas ukur, untuk menampung air pada pengukuran permeabilitas tanah.

l. Stopwatch, untuk menghitung lamanya waktu yang diperlukan dalam pengukuran permeabilitas tanah.

m. Alat tulis menulis dan Buku *Munsell Soil Colour Chart*.

2. Bahan Praktikum:

a. Sampel tanah, untuk dianalisis di laboratorium.

b. Air, sebagai bahan untuk mengukur permeabilitas tanah.

c. Kantong plastik, digunakan untuk tempat pengambilan sampel tanah

d. Kain kasa, untuk menyangga tanah pada ring sampel pada waktu perendaman.

e. Isolasi, untuk merekatkan kain kasa pada ring sampel pada pengukuran permeabilitas tanah.

Tinjauan Pustaka

1. **Pengertian Erodibilitas Tanah**

 Young *et al.*, dalam Veiche (2002) mendefinisikan erodibilitas tanah sebagai mudah tidaknya suatu tanah untuk dihancurkan oleh kekuatan jatuhnya butir-butir hujan,

$$K = 1,292\left\{2,1 \, M \, 1,14 \, (10^{-4}) \, (12-a) + 3,25 \, (b-2) + 2,5 \, (c-3)\right\}/100$$

Keterangan:

$M = \text{ukuran partikel} \, (\% \text{ pasir sangat halus} + \% \text{ debu} \times (100-\% \text{ liat}) \, \% \text{ pasir sangat halus} = 30 \, \% \text{ dari pasir (Sinukaban dalam Sinulingga, 1990)}$

$a = \text{kandungan bahan organik} \, (\% \text{ C} \times 1,724)$

$b = \text{harkat struktur tanah}$

$c = \text{harkat permeabilitas tanah}$

(pasir kasar, pasir halus, debu, dan liat) dan bahan organik tanah sedangkan struktur dan permeabilitas ditetapkan berdasarkan hasil pengamatan pada profil tanah yang dapat digambar dalam Nomograph, yang terjadi pada gambar 22.

Sumber: Hardjowigeno (2007)

Gambar 22. Nomograph Erodibilitas (K).

erodibilitas (K) tanah- tanah yang ada di Indonesia dapat disajikan pada Tabel 9 dibawah ini:

Tabel 9. Klasifikasi kelas erodibilitas

<table>
<thead>
<tr>
<th>Kelas</th>
<th>Nilai K</th>
<th>Tingkat Erodibilitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0,00 - 0,10</td>
<td>Sangat rendah</td>
</tr>
<tr>
<td>2.</td>
<td>0,11 - 0,21</td>
<td>Rendah</td>
</tr>
<tr>
<td>3.</td>
<td>0,22 - 0,32</td>
<td>Sedang</td>
</tr>
<tr>
<td>4.</td>
<td>0,33 - 0,44</td>
<td>Agak tinggi</td>
</tr>
<tr>
<td>5.</td>
<td>0,45 - 0,55</td>
<td>Tinggi</td>
</tr>
<tr>
<td>6.</td>
<td>0,56 - 0,64</td>
<td>Sangat Tinggi</td>
</tr>
</tbody>
</table>

Sumber : Arsyad (2006)

Faktor erodibilitas menunjukkan kemudahan tanah mengalami erosi, semakin tinggi nilainya semakin mudah tanah tererosi. Tingginya faktor erodibilitas antara satu tempat dengan yang lainnya disebabkan kondisi tekstur tanahnya yaitu rendahnya tekstur liat, tingginya persentase pasir sangat halus dan debu jika dibandingkan tanah lokasi yang satu. Menurut Morgan (1986), tekstur berperan dalam erodibilitas tanah, partikel berukuran besar tahan terhadap daya angkut karena ukurannya sedangkan partikel halus tahan terhadap daya penghancur karena daya kohesifitasnya. Partikel yang kurang tahan terhadap kedua adalah debu dan pasir sangat halus.

Erodibilitas tanah sangat penting untuk diketahui agar tindakan konservasi dan pengolahan tanah dapat dilaksanakan secara lebih tepat dan terarah. Namun demikan, Veiche (2002) menyatakan bahwa konsep dari erodibilitas tanah dan bagaimana cara menilainya merupakan suatu hal yang bersifat

2. **Faktor-Faktor yang Mempengaruhi Erodibilitas Tanah**

Erodibilitas tanah dipengaruhi oleh banyak sifat-sifat tanah, yakni sifat fisik, mekanik, hidrologi, kimia, reologi / litologi, mineralogi dan biologi, termasuk karakteristik profil tanah seperti kedalaman tanah dan sifat-sifat dari lapisan tanah (Veiche, 2002). Poesen (1983) menyatakan bahwa erodibilitas bukan hanya ditentukan oleh sifat-sifat tanah, namun ditentukan pula oleh faktor-faktor erosi lainnya yakni erosivitas, topografi, vegetasi, fauna dan aktivitas manusia. Suatu tanah yang memiliki erodibilitas rendah mungkin akan mengalami erosi yang berat jika tanah tersebut terdapat pada lereng yang curam dan panjang, serta curah hujan dengan intensitas yang tinggi.

Sebaliknya tanah yang memiliki erodibilitas tinggi, kemungkinan akan memperlihatkan gejala erosi ringan atau bahkan tidak sama sekali bila terdapat pada pada lereng yang landai, dengan penutupan vegetasi baik, dan curah hujan dengan intensitas rendah. Hudson (1978) juga menyatakan bahwa selain fisik tanah, faktor pengelolaan / perlakuan

Meskipun erodibilitas tanah tidak hanya ditentukan oleh sifat-sifat tanah, namun untuk membuat konsep erodibilitas tanah menjadi tidak terlalu kompleks, maka beberapa peneliti menggambarkan erodibilitas tanah sebagai pernyataan keseluruhan pengaruh sifat-sifat tanah dan bebas dari faktor penyebab erosi lainnya (Arsyad, 2000). Pada prinsipnya sifat-sifat tanah yang mempengaruhi erodibilitas tanah adalah sifat-sifat tanah yang mempengaruhi laju infiltrasi, permeabilitas dan kapasitas tanah menahan air serta sifat-sifat tanah yang mempengaruhi ketahanan struktur tanah terhadap dispersi dan pengikisan oleh butir-butir air hujan dan aliran permukaan.

Sifat-sifat tanah tersebut mencakup tekstur, struktur, bahan organik, kedalaman tanah dan tingkat kesuburan tanah (Morgan, 1979; Arsyad, 2000). Secara umum tanah dan kandungan debu tinggi, liat rendah dan bahan organik rendah

1. Tekstur

Tekstur tanah menunjukkan kasar halusnya tanah, ditentukan berdasarkan perbandingan butir-butir (fraksi) pasir (sand), debu (silt) dan liat (caly). Fraksi pasir berukuran 2 mm – 50 μ lebih kasar dibanding debu (50 μ – 2 μ) dan liat (lebih kecil dari 2 μ). Karena ukurannya yang kasar, maka tanah-tanah yang didominasi oleh fraksi pasir seperti tanah-tanah yang tergolong dalam sub-ordo Psamment, akan melalukan air lebih cepat (kapasitas infiltrasi dan permeabilitas tinggi) dibandingkan dengan tanah-tanah yang didominasi oleh fraksi debu dan liat. Kapasitas infiltrasi dan permeabilitas yang tinggi, serta ukuran butir yang relatif lebih besar menyebabkan tanah-tanah yang didominasi oleh pasir umumnya mempunyai tingkat erodibilitas yang rendah. Tanah dengan kandungan pasir yang halus (0,01 mm – 50 μ) tinggi juga mempunyai kapasitas infiltrasi cukup tinggi, akan tetapi jika terjadi aliran permukaan, maka butir-butir halusnya akan mudah terangkut.

Fraksi halus juga dapat menyumbat pori-pori tanah dilapisan permukaan akan meningkat. Akan tetapi, jika tanah demikian mempunyai agregat yang mantap, yakni tidak mudah terdispensi, maka penyerapan air ke dalam tanah masih cukup besar, sehingga aliran permukaan dan erosi relatif tidak berbahaya (Arsyad, 2000). Nilai ukuran butir-butir tanah suatu kelas tekstur tanah (Tabel 10).

Tabel 10. Nilai ukuran butir-butir tanah (M) untuk suatu kelas tekstur tanah

<table>
<thead>
<tr>
<th>Kelas tekstur tanah</th>
<th>Nilai M</th>
<th>Kelas tekstur tanah</th>
<th>Nilai M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lempung berat</td>
<td>210</td>
<td>Geluh lempung</td>
<td>2160</td>
</tr>
<tr>
<td>pasir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lempung sedang</td>
<td>750</td>
<td>Debu</td>
<td>8245</td>
</tr>
<tr>
<td>Kelas tekstur tanah</td>
<td>Nilai M</td>
<td>Kelas tekstur tanah</td>
<td>Nilai M</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lempung ringan</td>
<td>1685</td>
<td>Geluh debuan</td>
<td>6330</td>
</tr>
<tr>
<td>Lempung debuan</td>
<td>2830</td>
<td>Geluh</td>
<td>4390</td>
</tr>
<tr>
<td>Lempung pasiran</td>
<td>3245</td>
<td>Geluh pasiran</td>
<td>3245</td>
</tr>
<tr>
<td>Geluh lempung debuan</td>
<td>3770</td>
<td>Pasir geluhan</td>
<td>4005</td>
</tr>
<tr>
<td>Geluh lempung</td>
<td>2830</td>
<td>Pasir</td>
<td>3035</td>
</tr>
</tbody>
</table>

Sumber: Asdak (2002)

2. Bahan organik

Bahan organik sangat berperan pada proses pembentukan dan pengikatan serta menstabilkan agregat tanah. Pengikatan dan penstabilan agregat tanah oleh bahan organik dapat dilakukan melalui pengikatan secara fisik butir-butir primer tanah oleh mycelia jamur, *actionmycetes*, dan/atau akar-akar halus tanaman; dan pengikatan secara kimia, yaitu dengan menggunakan gugus-gugus aktif dari bahan panjang, atau gugusan positif (gugus amine, amide, atau amino) pada senyawa organik berbentuk rantai (polymer).

Bahan organik yang masih dalam bentuk serasah, seperti daun, ranting, dan sebagainya yang belum hancur yang menutupi permukaan tanah, merupakan pelindung tanah terhadap kekuatan perusak butir-butir hujan yang jatuh. Bahan organik tersebut juga menghambat aliran permukaan, sehingga kecepatan alirannya lebih lambat dan relatif tidak merusak. Bahan organik yang sudah mengalami pelapukan mempunyai kemampuan menyerap dan menahan air yang tinggi, sampai dua-tiga
kali berat keringnya. Akan tetapi, kemampuan menyerap air ini hanya merupakan faktor kecil dalam mempengaruhi kecepatan aliran permukaan. Pengaruh utama bahan organik adalah memperlambat aliran permukaan, meningkatkan infiltrasi, dan memantapkan agregat tanah (Arsyad, 2000).

Bahan organik di dalam tanah jumlahnya tidak sama antara jenis tanah yang satu dengan yang lainnya seperti Histosol yang mengandung bahan organik > 65 %. Perbedaan kandungan bahan organik ini tergantung pada jenis tanah dan cara pengelolaan tanah. Menurut Puslitanak (2005), Bogor ada beberapa kriteria dari bahan organik sebagaimana disajikan pada Tabel 11.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kriteria Bahan Organik</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sangat tinggi</td>
<td>> 6,00</td>
</tr>
<tr>
<td>2.</td>
<td>Tinggi</td>
<td>4,30 - 6,00</td>
</tr>
<tr>
<td>3.</td>
<td>Sedang</td>
<td>2,10 - 4,20</td>
</tr>
<tr>
<td>4.</td>
<td>Rendah</td>
<td>1,00 - 2,00</td>
</tr>
<tr>
<td>5.</td>
<td>Sangat rendah</td>
<td>< 1,00</td>
</tr>
</tbody>
</table>

Sumber: Puslitanak (2005)

3. Struktur/Agregasi tanah

Bentuk dan stabilitas agregat, serta persentase tanah yang teragregasi sangat berperan dalam menentukan tingkat kepekaan tanah terhadap erosi. Hasil
penelitian Meyer dan Harmon (*poorly aggregated*). Tanah-tanah dengan tingkat agregasi tinggi, berstruktur kersai atau granular, serang, tingkat penyerapan airnya lebih tinggi dari pada tanah yang tidak berstruktur atau susunan butir-butir primernya lebih rapat.

Selain dipengaruhi oleh tekstur dan kandungan bahan organik, pembentukan agregat tanah dipengaruhi juga oleh jumlah dan jenis kation yang diadsorbsi liat. Pengaruh kandungan besi dan aluminium oksida terhadap tingkat erodilitas tanah, juga erat hubungannya dengan pembentukan dan penstabilan agregat tanah (Liebenow *et al.*, 1990). Besi dan aluminium oksida membentuk dan meningkatkan kesatabilan agregat tanah, melalui peningkatan gugus-gugus negatif dari liat oleh gugus positif dari oksida-oksida tersebut.

Stabilitas agregat tanah sangat berpengaruh terhadap kematapan pori tanah. Tanah-tanah yang mudah terdispensi atau agregatnya tidak stabil menyebabkan pori-porinya tanah juga mudah hancur atau tertutup / tersumbat oleh liat atau debu (erosi internal), sehingga laju dan kapasitas infiltrasi tanah mengalami penurunan.

Struktur tanah merupakan sifat fisik tanah yang menggambarkan susunan keruangan partikel-partikel tanah yang bergabung dengan satu dengan yang lain membentuk agregat. Dalam tinjauan morfologi, struktur
tanah diartikan sebagai susunan partikel-partikel primer menjadi satu kelompok (cluster) yang disebut agregat yang dapat dipisah-pisahkan kembali serta mempunyai sifat yang berbeda dari sekumpulan partikel primer yang tidak teragregasi. Dalam tinjauan edafologi, sejumlah faktor yang berkaitan dengan struktur tanah jauh lebih penting dari sekedar bentuk agregat. Dalam hubungan tanah-tanaman, agihan ukuran pori, stabilitas agregat, kemampuan teragregasi kembali saat kering dan kekerasan (hardness) agregat jauh lebih penting dari ukuran dan bentuk agregat itu sendiri (Suci dan Bambang, 2002).

Istilah struktur tanah merujuk cara butiran-butiran tanah saling mengelompok secara bersama-sama diikat oleh koloida tanah. Tingkat perkembangan struktur tanah ditentukan berdasarkan atas kemantapan dan ketahanan bentuk struktur tanah tersebut terhadap tekanan. Tanah dikatakan tidak berstruktur bila butir-butir tanah tidak melekat satu sama lain atau saling melekat menjadi satu satuan yang padu dan disebut massive atau pejal. Tanah dengan struktur yang baik mempunyai tata udara yang baik, unsur-unsur hara lebih mudah tersedia dan mudah diolah (Hardjowigeno, 2003).

Struktur tanah sangat berpengaruh pada pertumbuhan akar dan bagian tanaman di atas tanah. Apabila tanah padat maka ruang pori tanah berkurang
sehingga pertumbuhan akar terbatas yang akhirnya produksi menurun. Struktur tanah berpengaruh kuat terhadap kerapatan isi tanah (Winarso, 2005).

Bentuk dan stabilitas agregat serta persentase tanah yang teragregasi sangat berperan dalam menentukan tingkat kepekaan tanah terhadap erosi. Tanah yang peka terhadap erosi adalah tanah yang paling rendah persentase agregasinya. Tanah-tanah dengan tingkat agregasi yang tinggi, berstruktur kersai, atau granular tingkat penyerapan airnya lebih tinggi dari pada tanah yang tidak berstruktur atau susunan butir-butir primernya lebih rapat (Meyer dan Harmon, 1984).

Dalam menentukan erodibilitas tanah perlu memperhatikan keadaan struktur tanah dalam ukuran diameter yang dapat dilihat pada Tabel 12.

Tabel 12. Penilaian kelas struktur tanah (ukuran diameter)

<table>
<thead>
<tr>
<th>No.</th>
<th>Struktur</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Granuler sangat halus</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Granuler halus</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Granuler sedang sampai kasar</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Masif kubus, lempeng</td>
<td>4</td>
</tr>
</tbody>
</table>

4. Jenis Mineral

Jenis mineral sangat erat hubungannya dengan sifat-sifat tanah yang dihasilkan. Liat yang mempunyai nisbah silika terhadap sesquioksida \([\text{SiO}_2/(\text{Fe}_2\text{O}_3+\text{Al}_2\text{O}_3)]\) lebih besar dari nilai kritikal (>2), umumnya plastis dan mengembang jika basah, sedangkan yang mempunyai nisbah <2 umumnya kersai dan tidak mudah tererosi. Mineral liat smektit (montmorillonit) mempunyai nisbah silika terhadap sesquioksida yang tinggi, dan diketahui bahwa tanah-tanah yang banyak mengandung liat ini bersifat mengembang dan plastis jika basah, sehingga agregatnya tidak begitu stabil dalam air, dan oleh karenanya mudah tererosi. Mineral liat kaolinit yang mempunyai nisbah silika terhadap sesquioksida rendah, bersifat tidak mengembang dan hanya sedikit plastis jika basah, dan membentuk agregat yang stabil. Kepekaan erosi tanah dengan mineral liat ilit berbeda di antara liat smektit (montmorillonit) dan kaolinit. Oxisol, yang mengandung sesquioksida tinggi dan silika yang rendah, membentuk agregat yang stabil dan tahan terhadap erosi (Arsyad, 2000).

5. Kedalaman dan sifat lapisan tanah

Karakteristik profil tanah yang sangat menentukan tingkat erodibilitas tanah adalah kedalaman tanah dan sifat lapisan tanah. Kedalaman tanah sampai lapisan kedepan atau bahan induk akan menentukan jumlah air
yang meresap ke dalam tanah. Sedangkan sifat lapisan tanah sangat berpengaruh terhadap laju peresapan air kedalam tanah. Selanjutnya, jumlah dan laju peresapan air ke dalam tanah sampai lapisan kedap sangat menentukan besarnya aliran permukaan, dan hal ini sangat menentukan besarnya aliran permukaan. Tanah-tanah yang dangkal seperti Etinol, umumnya mempunyai kemampuan untuk menampung air relatif rendah. Sedangkan pada tanah-tanah yang tergolong Ultisol atau Alfisol, keberadaan horizon bawah permukaan yang tergolong Ultisol, keberadaan horizon bawah proses peresapan air ke dalam tanah.

Selanjutnya menurut Veiche (2002), karakteristik penampang tanah, khususnya kedalaman tanah dan sifat-sifat lapisan tanah, juga akan berpengaruh terhadap pertumbuhan vegetatif tanaman. Pertumbuhan vegetatif tanaman yang cepat akan memperbesar kebutuhan air untuk proses evapotranspirasi, sehingga kandungan air di dalam tanah akan cepat menurun, termasuk air di dalam pori akan menjadi cepat kosong yang memungkinkan terjadinya penyerapan air dari hujan berikutnya.

6. Kesuburan tanah

Pengaruh kesuburan tanah terhadap eridibilitas tanah berpangkal pada kaitannya dengan pertumbuhan tanaman. Pada tanah yang relatif lebih subur, pertumbuhan tanaman akan relatif lebih baik. Hal ini
akan berdampak pada tingkat kemampuan penyerapan air oleh tanah. Pada \textit{in situ} akan lebih terjamin. Seperti telah diuraikan sebelumnya bahwa peran bahan organik dalam menentukan kepekaan tanah terhadap erosi sangat penting.

3. Permeabilitas Tanah

Permeabilitas adalah kualitas tanah untuk meloloskan air atau udara, yang diukur berdasarkan besarnya aliran melalui satuan tanah yang telah dijenuhi terlebih dahulu persatuan waktu tertentu. Permeabilitas sangat dipengaruhi oleh tekstur, struktur, dan porositas (Susanto, 2009). Menurut Millar \textit{et al.}, (1958), permeabilitas adalah karakteristik sifat fisik tanah, berhubungan dengan sifat geometri yang bisa diukur, misalnya porositas, distribusi ukuran pori, dan sifat lapisan bawah. Dalam suatu medium yang mayoritas tersusun pori mikro dengan porositas total tinggi tampaknya menunjukkan permeabilitas yang lebih rendah dibandingkan dengan tanah berporositas yang lebih rendah tetapi banyak pori mikronya.

Penentuan kelas permeabilitas tanah dapat dilihat pada tabel berikut yang merupakan permeabilitas dalam menentukan erodibilitas tanah.

Tabel 13. Penilaian kelas permeabilitas tanah-tanah

<table>
<thead>
<tr>
<th>No</th>
<th>Kecepatan Permeabilitas Tanah</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sangat lambat (< 0,5 cm/jam)</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Lambat (0,5-2 cm/jam)</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Lambat sampai sedang (2,0-6,3 cm/)</td>
<td>4</td>
</tr>
</tbody>
</table>
4. Pengukuran Erodibilitas

Wischmeier dan Smith (1978) telah mengembangkan konsep erodibilitas tanah yang cukup populer, dalam hal ini faktor erodibilitas tanah (K) didefinisikan sebagai besarnya erosi persatuan indeks erosi hujan untuk suatu tanah dalam keadaan standar, yakni tanah terus-menerus diberakan (fallow) terletak pada lereng sepanjang 22 m, berlereng 9% dengan bentuk lereng seragam. Dari hasil percobaan sistem...
petak kecil/standar tersebut, nilai erodibilitas tanah dapat
dihitung dengan persamaan :

\[K = \frac{A}{R} \]

Keterangan:

K = faktor erodibilitas tanah
A = erosi tanah (t ha\(^{-1}\) tahun\(^{-1}\))
R = faktor erosifitas curah hujan

Tinggi rendahnya tingkat erodibilitas tanah (dapat
disebut sebagai kelas erodibilitas tanah), berdasarkan
rekomendasi RLT-RLKT Departemen Kehutanan (1995) dibagi
kedalam enam kelas erodibilitas tanah pada tabel 14 berikut.

Tabel 14. Klasifikasi erodibilitas tanah

<table>
<thead>
<tr>
<th>No.</th>
<th>Kelas</th>
<th>Nilai K</th>
<th>Harkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>0,00-0,10</td>
<td>Sangat rendah</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>0,11-0,20</td>
<td>Rendah</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>0,21-0,32</td>
<td>Sedang</td>
</tr>
<tr>
<td>4</td>
<td>IV</td>
<td>0,33-0,40</td>
<td>Agak tinggi</td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td>0,41-0,55</td>
<td>Tinggi</td>
</tr>
<tr>
<td>6</td>
<td>VI</td>
<td>0,56-0,64</td>
<td>Sangat tinggi</td>
</tr>
</tbody>
</table>

Metode Praktikum :

1. Pembuatan plot penelitian

Plot penelitian berukuran 20m x 20m di tempatkan
pada lahan terbuka, hutan sekunder muda, lahan kelapa
sawit, dan semak belukar dengan kelas kelerengan (15\%-
25%).

2. Pengumpulan data

Pengumpulan data dilapangan dilakukan masing-masing pada plot pengamatan di areal Hutan Pendidikan Fakultas Kehutanan Universitas Mulawarman dengan kegiatan sebagai berikut.

3. Pengambilan sampel tanah

Pengambilan sampel tanah dilakukan masing-masing permukaan tanah di beberapa tutupan lahan yang berbeda, dengan langkah-langkah sebagai berikut:
 a. Membersihkan permukaan tanah yang akan diambil sampelnya dari rumput, semak ataupun daun-daunan dan ranting/dahan dengan mandau atau tangan
 b. Mengambil sampel tanah pada masing-masing plot pengamatan sebanyak 3 sampel dengan menggunakan ring sampel tanah (untuk analisis permeabilitas) dan sampel tanah berat kurang lebih 1 kg untuk analisis sifat fisik tanah, dan bahan organik.
 c. Sampel tanah tersebut dimasukkan dalam kantong plastik dan diberi label dan distaples. Selanjutnya sampel-sampel tanah dibawa ke laboratorium untuk dianalisis lebih lanjut.

4. Penentuan Struktur Tanah

 Bentuk struktur tanah ditentukan sekaligus pada waktu pengambilan sampel tanah, dengan langkah-langkah dibawah ini:
a. Mengambil sampel tanah secukupnya dan meletakkan di telapak tangan.
b. Memilah-milah, memilin dengan sedikit tekanan dan merasakan geseran butiran-butiran tanah.
c. Selanjutnya dapat menentukan bentuk struktur tanah yang didapat pada masing-masing plot sesuai dengan tabel struktur tanah untuk dimasukkan kedalam nomograph.

5. Pengukuran Permeabiltitas Tanah

Langkah-langkah pengukuran permeabilitas tanah adalah sebagai berikut:

a. Dengan ring sampel tanah yang terbuat dari logam dengan panjang 5 cm dimasukkan kedalam permukaan tanah yang terlebih dahulu telah dibersihkan dari serasah, rumput, daun-daunan, ranting, ataupun dahan pohon. Dengan melapisi papan diatas ring sampel sebelah atas dan ditekkan secara perlahan-lahan.
b. Bila telah tenggelam maka ring sampel diangkat dengan jalan membuat ruang di sekitar ring sampel, sehingga kita dapat memotong tanah pada permukaan tanah sebelah dalam/bawah dari ring sampel agar tanah didalam ring sampel tidak terganggu susunanya. Dengan pisau lipat dirapikan bagian atas dan bawah ring, kemudian ditutup dan siap dibawa pulang.
c. Sampel tanah tersebut setelah tutupnya dibuka kemudian permukaan tanah silapisi dengan kain kasa
dan isolasi, selanjutnya sampel tanah tersebut direndam selama 24 jam agar tanah jenuh dengan air.
d. Kemudian sampel tanah diletakkan pada alat pengukuran permeabilitas tanah seperti pada gambar 1. Setelah itu air dialirkan dari kran atas dimana air yang didalam alat sudah dipersiapkan dalam keadaan tinggi maksimal.
e. Di kran bawah telah dipersiapkan gelas ukur untuk menampung cucuran air yang diambil. Bila menetes, biarkan beberapa saat sampai diperkirakan konstan.
f. Bila sudah diperkirakan konstan (1 menit setelah air pertama menetes), maka mulai ditampung air yang keluar kedalam gelas ukur dan hitung volume dalam setiap menit (cm³/menit) dengan menggunakan stopwatch.
g. Untuk mencari laju permeabilitas tanah digunakan rumus
6. Di Laboratorium
 Sampel tanah diambil dari masing-masing plot pengamatan dimana tiap plot diambil 3 sampel tanah, jadi keseluruhan sampel tanah sebanyak 12 sampel tanah yang akan dianalisis adalah persen tekstur tanah dan persen bahan organik tanah.
7. Perhitungan nilai Erodibilitas dengan Nomograf
 Nilai erodibilitas tanah dihitung dengan menggunakan nomograph penduga erodibilitas tanah. Untuk itu perlu

Tabel 15. Klasifikasi struktur tanah untuk menggunakan nomograph

<table>
<thead>
<tr>
<th>No.</th>
<th>Struktur tanah (ukuran diameter)</th>
<th>Kode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Granular sangat halus (<1 mm)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Granular halus (1-2 mm)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Granular sedang-kasar (2-10 mm)</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Berbentuk blok, blocky, plat, massif</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 16. Klasifikasi permeabilitas tanah menggunakan nomorapah

<table>
<thead>
<tr>
<th>No</th>
<th>Permeabilitas(cm/jam)</th>
<th>Keterangan</th>
<th>Kode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>25,4</td>
<td>Cepat</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>12,7 – 25,4</td>
<td>Agak cepat</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6,3 – 12,7</td>
<td>Sedang</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2,0 – 6,3</td>
<td>Agak lambat</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0,5 – 2,3</td>
<td>Lambat</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td><0,5</td>
<td>Sangat lambat</td>
<td>6</td>
</tr>
</tbody>
</table>
DAFTAR PUSTAKA

