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Abstract
Waste or low-cost feedstock utilization for preparing renewable energy is a noble effort towards a greener environment. In 
this work, palm fatty acid distillate (PFAD), which is usually transacted at a concession rate versus crude palm oil, is esteri-
fied to methyl esters. Conventional catalysts are not feasible in the process since PFAD consists of a significant amount of 
free fatty acids. As such, nickel sulfate supported on waste rice husk ash is utilized to catalyse the reaction under moderate 
reaction conditions of 15 wt.% catalyst, 5:1 methanol: PFAD (molar ratio) for 7 h, that produces 93% of methyl esters. The 
prepared catalyst was characterized for thermal stability (TGA), acid strength, surface analysis and compositional analysis 
via XPS, XRD and FTIR. The esterification of PFAD with  NiSO4/SiO2 under the optimized reaction conditions of 15 wt.% 
catalyst, 5:1 methanol to PFAD molar ratio and 7 h reaction time gave the highest methyl esters conversion of 93%. The 
utilization of low-cost feedstock and waste utilization in catalyst preparation readily implies merits in term of environmental 
gains and lower cost biodiesel preparation.
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Introduction

Undoubtedly, climate change is a natural phenomenon. Most 
of the models that predict global climate change and the 
impairments have been quite accurate (Buis 2020). Numer-
ous efforts have been taken to mitigate the adverse effects 
of climate variation, including the use of renewable energy 
(Hajjari et al. 2017; Dadak et al. 2016; Aghbashlo et al. 
2015), switching to more efficient power sources (Silva 
and Santos 2019; Backlund et al. 2012), turn to low-carbon 
sources (Kumar et al. 2019; Roadmap 2011; Bhuyar et al. 

2019a). Apart from mitigation, adaptation is crucial in tack-
ling the global issue, yet the impacts are felt locally. As for 
renewable energy, biodiesel is one of the options which has 
been successfully implemented in many regions (Mahlia 
et al. 2020; Jayakumar et al. 2021; Manmai et al. 2020a, b).

Biodiesel has the potential to replace fossil-based fuels 
and contribute to the mitigation of GHGs emission (Lin et al. 
2011; Bhuyar et al. 2019b). Biodiesel from soy oil gives a 
57% reduction (on average) in greenhouse gases than fossil 
diesel, and biodiesel produced from waste grease results in 
about 86% reduction (EPA 2010). The credibility of bio-
diesel as a source of low-carbon energy that delivers green-
house gas savings compared with fossil fuels is a crucial 
driver of many countries efforts to set standards worldwide 
for lowering emissions in the future (Saengsawang et al. 
2020; Whangchai et al. 2021). Europe demands that 1 in 
10 vehicles in their region fuelled with biofuels to cut GHG 
emission by one-fifth by 2020 and the USA 28% by 2020 
(Buckley 2015; Bhuyar et al. 2021). To realize the role of 
biodiesel in the broader scope, the feedstock and the catalyst 
cost need to be lowered as much as possible (Nguyen et al. 
2020).
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On the other hand, PFAD brownish in colour is produced 
from the refining process of crude palm oil (CPO). The 
amount of readily available PFAD is significant, and about 
820 360 tonnes of PFAD were produced in Malaysia in the 
year 2019 as a by-product of palm refining, which processing 
about 19 516 141 tonnes of CPO annually (MPOB 2019). 
The greater the amount of CPO is processed, the greater the 
volume of PFAD is generated. Several researchers have suc-
ceeded in esterifying PFAD at significantly high conversion 
(above 90%) (Akinfalabi et al. 2017; Syazwani et al. 2017; 
Soltani et al. 2017).

Alumina, silica, montmorillonite, organic polymer, and 
zeolite are some of the supports or precursors used for solid 
catalysts. These materials have a porous structure and a large 
surface area (100–1000  m2/g). Any active catalyst must have 
a large surface area for reactants and products to pass mass 
quickly and have robust and active phase dispersion (Mansir 
et al. 2017; Singh and Patel 2014). Due to its ease of han-
dling, abundance, low-cost, and non-corrosive nature, silica 
is one of the most commonly used cases (Shirini et al. 2013). 
Amorphous silica has been successfully used as a help in the 
biodiesel sector in numerous studies. Lin and Radu (2006) 
patented the use of sulfonic acid aided by mesoporous silica 
as a concentrated solid acid in a transesterification reaction 
using tetraethoxysilane (TEOS) silica precursor. Shao and 
co-authors (Shao et al. 2013) used the sol–gel method to 
investigate the efficiency of sulphated titania assisted with 
silica. In terms of cost, current research favours agricultural 
wastes, specifically rice husk ash (RHA), as a source of 
silica.

Rice husk ash (RHA) is primarily made up of silica 
(87–99%) and a small number of inorganic salts (Prasetyoko 
et al. 2006). RHA was collected during the milling process 
after the rice husk (outer cover of rice grain) was burned in 
the air, resulting in agricultural waste. RHA contains a high 
percentage of silica (87–99%) and cellulose, hemicellulose, 
lignin, and a small amount of inorganic salt (Hindryawati 
et al. 2014; Chakraborty et al. 2011). RHA can be an eco-
nomically viable support for the preparation of silica-based 
solid acids catalyst because of its high pozzolanic activity 
and a large amount of silica content (Malek et al. 2021; Feng 
et al. 2004; Chen et al. 2015). Present study aimed to esterify 
the methyl esters from Palm fatty acid distillate (PFAD) as 
a feedstock in the presence of  NiSO4 loaded on RHS-based 
 SiO2 as a catalyst for the enhanced biodiesel production.

Materials and methods

Material collection

A local oil palm refinery provided palm fatty acid distillate 
(PFAD) (Felda Vegetable Oil Products Sdn. Bhd, Pahang, 

Malaysia). Our previous paper (Embong et al. 2016) defined 
the fatty acid profile of PFAD. Rice husk ash (RHA) was 
obtained from rice mills in Kedah, Malaysia, and used as a 
source of silica. Bendosen Laboratory Chemicals provided 
methanol, heptane, sulfuric acid, Hammett indicator (crystal 
violet, bromophenol blue, and methyl red), and analytical 
grade hexane (Norway). Sigma-Aldrich (Switzerland) pro-
vided the chromatographic grade internal standard (methyl 
heptadecanoate)  NiSO46H2O, and RM Marketing (Essex) 
provided the analytical grade titanium dioxide (UK).

Preparation and characterization of catalyst

Preparation of RHA as a silica source

The  SiO2 from RHA was obtained using a method previ-
ously published (Hindryawati et al. 2014). The rice husk 
was washed and heated in a furnace for 4 h at 900 degrees 
Fahrenheit. The ash was macerated into a fine powder using 
porcelain mortal. Before washing with 60 mL of 0.1 M HCl 
for an hour, about 10 g of RHA powder was weighed. The 
powder was then neutralized (pH7) with deionized water and 
dried in an oven at 110 °C overnight. The filtered powder 
 (SiO2) was ready to use in the catalyst as a supporter.

Preparation  NiSO4/SiO2 catalyst

NiSO4/  SiO2 was made by impregnating RHA support with 
an aqueous solution of  NiSO46H2O to achieve a 20% active 
metal loading. To stimulate the acidity of catalyst and com-
plete dissolution of  NiSO46H2O is attained by adding a suit-
able amount of 0.2 N  H2SO4 was added. The metal (salt) and 
silica slurry were then refluxed for about 3 h (90 °C), dried 
for 1 day at 110 °C, and calcined for 3 h at 300, 900, and 
500 °C (Kim et al. 2013).

Esterification of PFAD using  NiSO4/  SiO2 catalyst

The PFAD was first heated in the range 60–70 °C to be 
liquefied from its solid state at room temperature. The esteri-
fication and transesterification reaction were carried out in 
a round-bottom flask with the constituent of 3 g of PFAD 
and varying amount of solid acid catalyst,  NiSO4/SiO2 with 
desired oil to methanol molar ratio at a constant temperature 
with a specific reaction time. The reaction temperature is 
set up at 110 °C. The esterification reaction was performed 
with a condenser immersed in an oil bath. Then, the reaction 
mixture was centrifuged to separate the solid catalysts from 
the reaction after the stipulated reaction time. n-Hexane was 
used to extract the supernatant. The supernatant could set-
tle down to separate into three layers (n-hexane, oil phase 
consisted of methyl esters, and the aqueous phase contained 
water, unreacted methanol, and glycerol) and then subjected 
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to place in a fume hood to remove n-hexane. The methyl 
esters content in the final product is quantified using GC-
FID (Agilent 7890A). The methyl ester was determined as 
stipulated in EN 14103, and the content was quantified as 
followd by Eq. (1):

Where Atotal is the total peak area of methyl esters from 
 C12–C18.3

AISTD is the area of methyl heptadecanoate
VISTD is the volume of methyl heptadecanoate in mL
CISTD is the concentration of methyl heptadecanoate in 

mg/mL
WSample is the weight of sample in mg.

Reusability and leachability test

The reusability of  NiSO4/  SiO2 catalyst was studied by col-
lecting the remaining solid after each reaction without post-
treatment and refluxed with PFAD and methanol for 3 h with 
stirring. About 3 g catalyst was used for the first run reac-
tion. The catalyst was reused four times while maintaining 
catalyst amount of 15 wt.%, 15:1 methanol to PFAD and 
110 °C of reaction temperature. A leachability test of  NiSO4/ 
 SiO2 was performed to determine the heterogeneity of the 
catalyst in the reaction mixture. The  NiSO4/SiO2 catalyst (15 
wt.%) was refluxed with methanol (15:1 methanol to PFAD 
molar ratio) without the presence of PFAD. After that, the 

(1)

Methyl ester conversion (%)

=
Atotal − AISTD

AISTD

×
CISTD × VISTD

Wsample

× 100%

liquid was added to 2 g of PFAD and refluxed for 7 h with 
stirring. The remaining solid catalyst was added to PFAD 
and refluxed for 7 h.

Results and discussion

Characteristic of PFAD

FFA content and an acid value of PFAD are found to be 
91.63% and 183.25 mg KOH/g, respectively. The fatty acids 
compositions of the PFAD are shown in Table 1. Palmitic 
acid was the major fatty acid for PFAD. PFAD was found 
to contain 55.12% saturated fatty acids and 44.88% unsatu-
rated fatty acids. Malaysian PFAD was said to have more 
than 88% FFA content, as reported by Bonnie and Mohtar 
(2009). Over the years, intensives research has been done 
to convert PFAD to biodiesel (Ibrahim et al. 2020; Hidayat 
2015; Cho et al. 2012). A breakthrough happened in Octo-
ber 2009 when the world’s first continuous large-scale 200 
MT/day PFAD biodiesel plant (in Sumatra, Indonesia) had 
successfully operated by a large Asian-based multinational 
palm oil group, in which fresh PFAD from the refineries is 
sent directly to the PFAD biodiesel plant for conversion to 
biodiesel. In addition, biodiesel made from PFAD was found 
to meet the European Standards specifications for biodiesel 
(Cheah et al.2010).

Characteristic of  NiSO4/  SiO2 catalyst

Three weight-loss steps were discovered for  NiSO4/SiO2 
catalyst calcined at 300 °C but only two weight losses when 
calcined at 500 and 700 °C as illustrated in Fig. 1. The first 
weight loss was below 100 °C, attributed to water evapora-
tion in the catalyst sample. Weight loss ranging from 300 
to 350 °C is due to the preliminary release of sulphur from 
the catalyst, and the subsequent weight loss ranging from 
710 to 780 °C is due to the evolution of  SO3 decomposed 
from nickel sulphate (Hua et al. 2000). According to the 
Hammett test,  NiSO4/SiO2 was firmly lying in the acidic 
form (1.8 <  H0 < 3) as depicted by Table 2. The FTIR spec-
tra (Fig. 2) for the three-calcination temperature shows 
the existence of bidentate sulphate ion coordinated to 
metal like  Si4+ at the bands around 985  cm−1, 1093  cm−1, 
1150  cm−1,1200  cm−1. However, these bands tend to be 
overlapped with the characteristic’s bands of  SiO2 in the 
region of 1300–900  cm−1 (Sohn et al. 2006). Besides, all the 
catalysts show broad peaks around 3300  cm−1 coupled with 
bands at 1630  cm−1, confirming the existence of adsorbed 
water. The adsorbed water contributes to the Brønsted 
acidity after being acidified by the neighbouring cationic 
Lewis acid site (Gu et al. 2013). The  NiSO4/SiO2 calcined 
at 300 °C has a larger pore size of 177.62 Å compared to 

Table 1  Fatty acid composition of PFAD

Fatty acid Composition (%)

This work (Chang et al. 
2016)

(Lokman 
et al. 
2015)

Saturated
 Tridecyclic  (C13:0)
 Myristic  (C14:0)
 Palmitic  (C16:0)
 Stearic  (C18:0)
 Arachidic  (C20:0)
 Docosonoic  (C22:0)
 Tetracosanoic  (C24:0)
 Sub total

0.13
1.13
48.23
2.5
–
1.69
1.44
55.12

–
0.42
41.25
7.29
0.27
0.07
0.05
49.35

–
1.9
45.7
4.3
–
–
–
51.9

Unsaturated
 Palmitoleic  (C16.1)
 Oleic  (C18:1)
 Linoleic  (C18:2)
 Eicosenoic  (C20:1)
 Sub total

0.25
36.52
8.11
–
44.88

–
41.58
8.95
0.04
50.57

–
40.2
7.9
–
48.1

Total 100 99.92 100
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145.57 and 86.4782 Å at 500 and 700 °C (Table 3). The pol-
ynucleation of the sulphate species and their condensation 
on the outer face pores may be the product of calcination at 
a higher temperature. However, calcination at 500 °C results 
in a significant increase in pore volume and surface area 
(Table 2). As the broad sulphate anions are easily deposited 
on the pore mouth area (Lei et al. 2000), nickel sulphate spe-
cies are required to decompose to  Ni2+ and  SO4

2−, enhancing 

Fig. 1  Thermogram of  NiSO4-SiO2: a NS300; b NS500; c NS700

Table 2  Acidic strength of 
 NiSO4/SiO2

Indicator pH range Acidic form Colour change

NS300 NS500 NS700

Methyl red 4.2–6.2 Red (< 4.2) Red Red Red
Red–Yellow

Bromophenol blue 3.0–4.6 Yellow (< 3.0) Yellow Yellow Yellow
Yellow–Purple

Crystal violet 0.0–1.8 Yellow (< 0.0); Purple Purple Purple
Yellow–Purple Purple (< 1.8)

Fig. 2  FTIR spectra of NS300, 
NS500 and NS700

Table 3  Surface area and pore structure analysis of RHA300, NS300, 
NS500 and NS700

Parameters RHA300 NS300 NS500 NS700

BET surface area  (m2 
 g−1)

14.1997 10.1919 15.6018 12.5449

Total pore volume  (cm3 
 g−1)

0.082999 0.045257 0.056779 0.027121

Average pore size (Å) 226.7181 177.6170 145.5708 86.4782
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nickel species dispersion by pushing them to pass into inner 
pores, causing pore deepening.

Jacabson and his co-authors (2008) studied pore struc-
ture as a primary requirement for an ideal solid catalyst for 
biodiesel production because a typical triglyceride molecule 
has a pore diameter of approximately 58 Å. Furthermore, 
mesopores (2–50 nm) are favourable to a macromolecule 
such as oleic acid and palmitic acid diffusing in and out the 
interior of the catalyst (Shu et al. 2010). The result showed 
that NiSO4/SiO2 cannot stand at higher temperature as at 
500 °C above cubic phase of nickel oxide (NiO) appeared 
(Fig. 3). The XPS spectrum (Fig. 4) indicates Ni, S, Si and 
O entities in and on the support.

As a result of NiSO4 species accumulation on the sup-
port surface, deceitful agglomeration of support particles to 
bulky aggregates is depicted in Fig. 5. (RHA). Calcination 
of NS500 shows that the accumulation of NiSO4 causes the 
bulky aggregates to dissociate into agglomerates of small 
particles. Further calcination of the NiSO4-SiO2 catalyst 
at 700 °C (NS700) results in creating larger particles that 
appear to be uniformly distributed and result from sulphate 
polynuclation on the surface as well as nickel crystallite 
growth. Therefore, the  NiSO4/SiO2 calcined at 300 °C was 
selected for the esterification of PFAD in this study.

Fig. 3  XRD patterns of NS300, 
NS500 and NS700.:  NiSO4 
(orthorphobic):NiO (cubic)

Fig. 4  XPS spectra of 
 NiSO4-SiO2
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Effect of methanol molar ratio on methyl esters 
conversion

The methyl ester conversion increased with increasing 
methanol to PFAD molar ratio (Fig. 6). At 15 wt.%  NiSO4/
RHA and reaction temperature of 110 ± 5 °C, the results 
suggest that the ME conversion increase when the MeOH/
PFAD molar ratio increase until the conversion rate attained 
a plateau. In this work, the molar ratio of 5:1 has the highest 
ME content (83–93%), and the molar ratio of 7:1 has the 
lowest ME content (77–79%). The higher methanol molar 
ratio than 5:1 was not efficient to improve the conversion 
rate. The effect of water formation during the esterification 
of FFA and a small amount of water already existed in the 
commercially grade methanol may have influenced the sus-
tainability of the FFA conversion to methyl ester (Nakpong 
and Wootthikanokkhan 2010; Malek et al. 2020). Hence, 
the methanol to PFAD molar ratio of 5:1 was selected as the 
optimum methanol molar ratio in this reaction.

Fig. 5  FESEM-EDX images analysis of a NS300, b NS500 and c NS700

Fig. 6  Effect of MeOH/PFAD molar ratio on methyl esters conver-
sion at 15 wt.% catalyst amount and 110 °C
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Effect of catalyst amount on methyl ester conversion

Weight ratios of 6–18 wt. %  NiSO4/  SiO2 catalyst to PFAD 
were analysed in reactions performed at 110 °C with a molar 
ratio of methanol/PFAD of 5:1 as shown in Fig. 7 to inves-
tigate the effect of catalyst number conversion efficiency. 
When the volume of catalyst was increased, the methyl ester 
conversion increased until it reached equilibrium. Beyond 
the equilibrium state, the methyl ester conversion dropped 
no matter how long the reaction takes place. In this study, 
the highest methyl ester conversion obtained at 15 wt.% 
catalyst. If the dosage was surpassed, the reaction equilib-
rium phenomenon avoided any rise in the overall amount of 
available catalyst active sites. In this case, the extra dose of 
solid catalyst affects the stirring effectiveness, disturbing the 
mixing of reactant (methanol and PFAD), thus lowering the 
esterification reaction rate. Besides that, too much catalyst 
provides different active sites to attract the methyl esters pro-
duced attached to them. Consequently, lower methyl esters 
conversions were recorded with a higher amount of catalyst.

Effect of reaction time on methyl ester conversion

The times of reaction duration were varied (5, 7 and 9 h) 
under the fixed conditions of methanol/PFAD of 5:1, 15 
wt.% of catalyst and at the temperature of 110 °C (Fig. 8). 
The results show that methyl esters yield increased as 
increasing reaction time. However, once the reaction time 
exceeded 7 h, the methyl esters did not increase substan-
tially. Therefore, it can be assumed that the FFA conversion 
to methyl esters as biodiesel accomplished in 7 h with 93% 
conversion.

Reusability and leachability of catalysts

NiSO4/SiO2 catalyst can be reused twice while maintain-
ing methyl esters at about 80% (drop from 90.14% in first 

use to 79.85%). The obvious dropped could be due to the 
leachability of Ni and S, which reduce the number of active 
sites and, in turn, the reactivity of the catalyst (Ahmad et al. 
2021). The ICP-MS results of the methanol sample after 
separated the catalyst, which undergoes a reaction process 
(leachability test as prepared in Sect. 2.2), showed that about 
2121 ppm (0.2121%) of Ni and 43 ppm (0.0043%) of S 
leached. To increase the catalyst’s recyclability, more study 
on the active ingredient stability (the anchoring strength of 
Ni and S on the support) is needed.

Conclusion

The esterification of PFAD with  NiSO4/SiO2 under the opti-
mized reaction conditions of 15 wt.% catalyst, 5:1 methanol 
to PFAD molar ratio and 7 h reaction time gave the highest 
methyl esters conversion of 93%. The prepared catalyst was 
well characterized and performed well with significantly 
higher conversion that implies that the catalyst having a 
significant number of active sites for esterification to takes 
place. However, more effort is needed in improving the reus-
ability of it beyond two cycles of reusable, by enhancing the 
stability of Ni and S on the support material. Nevertheless, 
the production of biodiesel from low-cost PFAD and waste-
derived catalyst support is a noble effort towards a greener 
environment.
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Fig. 7  Effect of catalyst amount on methyl ester conversion con-
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tion of MeOH/PFAD molar ratio 5:1, 15 wt.% and 110 °C
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