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Abstract. Numerical computation packages are widely used both in teaching and research. These packages consist of 
license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of 
mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been 
increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the 
teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in 
mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study 
was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing 
programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this 
experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper 
Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical 
methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be 
as a teaching material course has exploited. 

INTRODUCTION 

There are some problems in the transfer of knowledge in teaching numerical methods and modeling simulation 
fields, such as the elimination process line at the solving simultaneous linear equations. Many students who have 
failed in the theoretical understanding of classical algebra and monotonous, for example, the difficulty of 
implementing an algebraic formula into a computer programming language. In addition, the analytic process 
manually on complex evidentiary issues have limitations. Therefore, innovation and variation in this learning by 
doing numerical computation process are indispensable. 

In general, analytic mathematical problem can be solved by numerical processes, such as linear and non-linear 
equations, calculus derivative and integral, differential equations, as well as series and error. Meanwhile, the search 
of linear equations can be solved by various methods, including Gaussian elimination, Gauss-Jordan, matrix inverse, 
decomposition Lower-Upper, and Jacobi and Gauss-Seidel and so forth. 

Nowadays, the complexity of a linear problem is getting complicated. There are multivariable in a linear/non-
linear functions. For this situation, manually processing is no longer possible. Therefore, computational processing 
is required. There are a lot of computational software for the completion of linear solutions, including MS. Excel, 
LINDO, and MATLAB, so on. However, these software are commercial or proprietary, so to use legally, users must 
purchase a license [1,2]. 

However, there are many alternatives that free software and open source. The software is also able to perform 
numerical computation process with a high level of accuracy too. In this paper, we proposed as alternative Scilab 
software in solving complex linear problems. The main reason is that the Scilab software can be developed in a free, 
open and non-commercial and inexpensive [3-5]. 

The rest of this paper is organized as following; recent related work is discussed and presented in section 2. In 
section 3, is proposed the numerical method. In section 4 a set of experiments is presented numerical methods. 
Finally, conclusion and future work. 
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Related Works 

Several researcher have been explored Scilab as a tools in artificial intelligence (AI) area, for example [6] have 
been explored Scilab for time series forecasting using ANN (i.e., ANN-GD using extended back propagation (EBP) 
algorithm, ANN-GA using genetic algorithm (GA), and ANN-DE using differential evolution (DE)). The datasets 
were analysis two time series, from the well-known Hyndman’s time series data library exported from January 1961 
to October 1975 and monthly Wisconsin employment time series from January 1962 to December 1975. The results 
showed that Scilab was an alternative tool in forecasting problem that easy to implemented and inexpensive. Then, 
[3] have been explored the Scilab for linear algebra for teaching activity. The experimental results revealed that 
Scilab commands are fairly simple in write mathematic formula, especially in linear algebra. Moreover, students 
said that this facilitates makes a class more dynamic and interesting. Then, [7] have been used Scilab to improve a 
convergence speed of back propagation neural network (BPNN). The convergence speed is a crucial parameter for 
good training. The Wisconsin Breast Cancer (UCI) Database of 699 patients was used for experiment. The results 
indicated that Scilab was evolving swiftly and good software related to costly. The system was working well. The 
Proposed method of weight updation was providing faster convergence while keeping the same accuracy. Later, [8] 
have been used the Scilab 5.4.0 Programming to solve mathematical model (i.e., Ordinary Differential Equations 
(ODE) with modify Euler’s method called Harmonic Euler). The results revealed that Scilab can be used as an 
alternative software programming especially to solve numerical method. Later, [9] have been conducted novel 
multilevel membraneless enzymatic biofuel cell with wireless sensor. The experimental data chemicals were 
obtained from Sigma-Aldrich and used as received without further purification. The results indicated that Scilab 
could be used as tools for block diagram model environment, especially in 3D architecture of a membraneless 
enzymatic biofuel cell. 

METHODOLOGY 

Introducing to Scilab Programming 

Scilab is a programming language associated with a rich collection of numerical algorithms covering many 
aspects of scientific computing problems. Scilab was written by Institut Nationale de Recherche en Informatique et 
en Automatique – INRIA (National Institute for Informatics and Automation Research) the French National Research 
Institution, in 1990. Scilab is free numerical computational package that have many of the same features with 
proprietary software (i.e., MATLAB, Minitab, etc.). The Scilab is available to download on the Linux, Windows, 
and Mac OS X operating systems. To download Scilab go to web page at www.scilab.org/products/scilab/download. 
The Scilab also interface with LabVIEW, a platform and development environment for visual programming 
languages. Furthermore, Scilab is free source software and no need to pay for license because it is provided under 
the CeCILL license. The Scilab also provided an editor to edit script easily, namely Scinotes. The editor could be 
accessed from the menu of the console, under the Application> Editor menu or from the console [4]. 
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FIGURE 1. The Scilab Console 

 

 
 

  
FIGURE 2. The Scilab Text Editor (Scinotes) 

 

Numerical Methods 

Numerical methods are a topics related to generate the matrices to solving the linear equation, ordinary 
differential equation (ODE’s) and numerical integration (NI). Numerical methods is use mathematical modeling 
forms [10,11]. In this study, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, 
and Lower-Upper Decomposition (LU) are briefly discussed. 
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Gaussian Elimination Method 
Gaussian elimination method is universally known as method for solving simultaneous linear equations. This 

method was proposed by Karl Friedrich Gauss. The Gaussian elimination is an operating process values in a matrix, 
so that matrix becomes more modest. The process is to perform the operation of the line, so that the matrix into 
echelon-line form. This method can also be used to solve linear equations using matrix. The linear equations is 
modified by inserting into the matrix augmentation and operate it [3,12]. 

 
 

Gauss-Jordan Method 
Elimination Gauss-Jordan method is an improvement of a Gaussian elimination method. The results is much 

better than Gaussian elimination. The trick is to continue the operation of the line of Gaussian elimination to 
produce a matrix that reduced row echelon form [3,12]. 

 
Inverse Matrix Method 

Inverse matrix method could be also be used to compute for solving linear equations. However, this method is 
less effective than Gaussian elimination method, because more of the computing process is needed. Nevertheless, 
this method is effective, if a similar matrix with different vectors [12]. According to Matlab-Mathworks 
“The inverse is returned as a matrix of the same type as the input matrix. If the matrix is not invertible, then fail is 
returned. If the input does not evaluate to a matrix, then a symbolic call of inverse is returned” [13]. 

 
Lower-Upper Decomposition (LU) Method 

Lower-Upper Decomposition (LU) method is also a modification of Gaussian elimination method, because some 
of its steps that must be discarded, but then must be used in the process of LU decomposition method [12]. 
According to Matlab-Mathworks “The LU function expresses a matrix A as the product of two essentially triangular 
matrices, one of them a permutation of a lower triangular matrix and the other an upper triangular matrix. The 
factorization is often called the LU, or sometimes the LR, factorization. A can be rectangular” [13]. 

RESULTS AND DISCUSSIONS 

In this experiment, the common topics that involved in engineering solving and basic conceptual using Scilab 
programming was implemented. The four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse 
Matrix, and Lower-Upper Decomposition (LU) were used as a case study. 

The matrix A has m rows and n columns. Scilab has multidimensional matrices. This paper introduce the 
operations of create a function, generating and using matrices, and applying to solve problem of four numerical 
methods. 

 
Case Study 1  
Create a function for Gauss Method 
function x=backward(a,b,n) 
    x(n)=b(n)/a(n,n) 
    for k=n-1:-1:1 
        sigma=0 
        for j=k+1:n 
            sigma=sigma+a(k,j)*x(j); 
            disp([j,k,sigma]) 
        end 
        x(k)=[b(k)-sigma]/a(k,k) 
        disp(x) 
    end 
endfunction 

 
Generating and using matrices 
a=[4 -1 2 3;0 -2 7 -4;0 0 6 5;0 0 0 3]; 
b=[20;-7;4;6]; 
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Solution 
backward(a,b,4); 
y =linsolve(a,-b); 
disp(y); 

 
Case Study 2 
Create a function for Gauss Method 
function Gauss(A,B) 
n = length(B);  
Aug = [A,B];  
Matrix = Aug(:,:); disp(Matrix ," Initial Matrix = ") 
// Forward Elimination  
for j = 1:n-1  
  // Partial Pivoting  
  [zero,t] = max(abs(Aug(j:n,j)));  
  lrow = t(1)+j-1;  
  Aug([j,lrow],:) = Aug([lrow ,j],:);  

for i = j+1:n  
  Aug(i,j:n+1) = Aug(i,j:n+1) - Aug(i,j) / Aug (j,j) * Aug(j,j:n+1);  
end  

  end 
  Matrix = Aug(:,:); disp(Matrix ," Triangular Matrix = ") 
  // Backward Substitution  
  x = zeros(n,1);  
  x(n) = Aug(n,n+1) / Aug(n,n);  
  for i = n-1:-1:1  

x(i) = (Aug(i,n+1)-Aug(i,i+1:n)*x(i+1:n))/Aug(i, i);  
  end  
  disp(" Results x, y, and z, w = "); disp(strcat(["x = ",string(x(1))])); disp(strcat(["y = ",string(x(2))])); 
disp(strcat(["z = ",string(x(3))])); disp(strcat(["w = ",string(x(4))])) 
endfunction 

 
Solution 
a=[4 -1 2 3;0 -2 7 -4;0 0 6 5;0 0 0 3]; 
b=[20;-7;4;6]; 
Gauss(a,b) 
Initial Matrix=     

    4.  - 1.    2.    3.    20.   
    0.  - 2.    7.  - 4.  - 7.    
    0.    0.    6.    5.    4.    
    0.    0.    0.    3.    6. 

Triangular Matrix =     
    4.  - 1.    2.    3.    20.   
    0.  - 2.    7.  - 4.  - 7.    
    0.    0.    6.    5.    4.    
    0.    0.    0.    3.    6. 

Results x, y, and z, w =     
x = 3   y = -4    z = -1    w = 2 

 
Case Study 3 
Create a function for Gauss-Jordan Method  
function Jordan(A,B) 
n = length (B);  
Aug = [A,B];  
Matrix = Aug(:,:);  
disp(Matrix ," Initial Matrix = ") 
//Forward Elimination  

for j = 1:n-1  
    for i = j+1:n  
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        Aug(i,j:n+1) = Aug(i,j:n+1) - Aug(i,j) / Aug (j,j) * Aug(j,j:n+1);  
    end  
end 

Matrix = Aug(:,:); disp(Matrix ," Triangular Matrix = ") 
// Backward Elimination 

for j = n:-1:2  
  Aug(1:j-1,:) = Aug(1:j-1,:) - Aug(1:j-1,j) / Aug (j,j) * Aug(j,:);  
end 

Matrix = Aug(:,:); disp(Matrix ," Diagonal Matrix = ") 
// Diagonal Normalization  
for j=1:n  

Aug(j,:) = Aug(j,:) / Aug(j,j);  
end 
Matrix = Aug(:,:); disp(Matrix ," Matrix Identity = ") 
x = Aug(:,n+1);  
disp(" Results x, y, z and w = "); disp(strcat(["x = ",string(x(1))])); disp(strcat(["y = ",string(x(2))])); disp(strcat(["z 
= ",string(x(3))])); disp(strcat(["w = ",string(x(4))])) 
endfunction 

 
Solution 
a 

 a  = 
    4.  - 1.    2.    3.   
    0.  - 2.    7.  - 4.   
    0.    0.    6.    5.   
    0.    0.    0.    3. 

b 
 b  = 
    20.   
  - 7.    
    4.    
    6. 

Jordan(a,b) 
Initial Matrix =     

    4.  - 1.    2.    3.    20.   
    0.  - 2.    7.  - 4.  - 7.    
    0.    0.    6.    5.    4.    
    0.    0.    0.    3.    6. 

 
Triangular Matrix =     
    4.  - 1.    2.    3.    20.   
    0.  - 2.    7.  - 4.  - 7.    
    0.    0.    6.    5.    4.    
    0.    0.    0.    3.    6. 

Diagonal Matrix =     
    4.    0.    0.    0.    12.   
    0.  - 2.    0.    0.    8.    
    0.    0.    6.    0.  - 6.    
    0.    0.    0.    3.    6. 

  Matrix Identity =     
    1.    0.    0.    0.    3.   
    0.    1.    0.    0.  - 4.   
    0.    0.    1.    0.  - 1.   
    0.    0.    0.    1.    2. 

Results x, y, z and w =     
x = 3   y = -4   z = -1   w = 2 

 
Case Study 4 
Create a function for Invers Matrix Method  
function Invers(A,B) 
n = length (A(1,:));  
Aug = [A,eye(n,n)];  
Matrix = Aug(:,:); disp(Matrix ," Initial Matrix = ") 
// Forward Elimination  

for j = 1:n-1 
  for i = j+1:n  
   Aug(i,j:2*n) = Aug(i,j:2*n) - Aug(i,j) / Aug(j,j) * Aug(j,j:2*n);  
  end  
end  
Matrix = Aug(:,:); disp(Matrix ," Triangular Matrix = ") 
// Backward Elimination  
for j = n:-1:2  
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  Aug(1:j-1,:) = Aug(1:j-1,:) - Aug(1:j-1,j) / Aug (j,j) * Aug(j,:);  
end  
Matrix = Aug(:,:); disp(Matrix ," Diagonal Matrix = ") 
// Diagonal Normalization  
for j=1:n  
    Aug(j,:) = Aug(j,:) / Aug(j,j);  
end  
Matrix=Aug(:,:); disp(Matrix,"Matrix Identity & Invers Results =") 
Inv_A = Aug(:,n+1:2*n);  
// Invers from A (A-1) 
disp(Inv_A ," Invers from A = ") 
x = Inv_A*B 
disp(" Results x, y, z and w = "); disp(strcat(["x = ",string(x(1))])); disp(strcat(["y = ",string(x(2))])); 

disp(strcat(["z = ",string(x(3))])); disp(strcat(["w = ",string(x(4))])) 
endfunction 
 
Solution 
a 

 a  = 
    4.  - 1.    2.    3.   
    0.  - 2.    7.  - 4.   
    0.    0.    6.    5.   
    0.    0.    0.    3. 

b 
 b  = 
  20.   
  - 7.    
    4.    
    6. 

Invers(a,b) 
Initial Matrix =     

    4. - 1.  2.   3.  1.  0.  0.  0.   
    0. - 2.  7. - 4.  0.  1.  0.  0.   
    0.   0.  6.   5.  0.  0.  1.  0.   
    0.   0.  0.   3.  0.  0.  0.  1. 

 
Triangular Matrix =     

    4. - 1.  2.   3.  1.  0.  0.  0.   
    0. - 2.  7. - 4.  0.  1.  0.  0.   
    0.   0.  6.   5.  0.  0.  1.  0.   
    0.   0.  0.   3.  0.  0.  0.  1. 

Diagonal Matrix =     
    4.    0.    0.    0.    1.  - 0.5    0.25                 - 2.0833333   
    0.  - 2.    0.    0.    0.    1.      - 1.1666667    3.2777778   
    0.    0.    6.    0.    0.    0.      1.                     - 1.6666667   
    0.    0.    0.    3.    0.    0.      0.                     1. 

Matrix Identity & Invers Results =     
    1.    0.    0.    0.    0.25  - 0.125   0.0625         - 0.5208333   
    0.    1.    0.    0.    0.      - 0.5       0.5833333   - 1.6388889   
    0.    0.    1.    0.    0.      0.           0.1666667   - 0.2777778   
    0.    0.    0.    1.    0.      0.           0.                 0.3333333 

Invers from A =     
    0.25  - 0.125    0.0625        - 0.5208333   
    0.    - 0.5          0.5833333  - 1.6388889   
    0.      0.            0.1666667  - 0.2777778   
    0.      0.            0.                0.3333333 

Results x, y, z and w =     
 x = 3  y = -4  z = -1  w = 2 

 
Case Study 5 
Create a function for Lower-Upper Decomposition (LU) Method 
function Decomposition (A,B) 
n = length (B);  
L = zeros(n,n); // L = Initial Lower-Matrix 
U = eye(n,n);   // U = Initial Upper-Matrix  
// LU Decomposition 

for i = 1:n  
    sum1 = zeros(n-i+1,1);  
    for k = 1:i-1  
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        sum1 = sum1 + L(i:n,k) * U(k,i);  
    end 
    L(i:n,i) = A(i:n,i) - sum1;  
    sum2 = zeros(1,n-i);  
    for k = 1:i-1  
        sum2 = sum2 + L(i,k) * U(k,i+1:n);  
    end  
    U(i,i+1:n) = (A(i,i+1:n) - sum2) / L(i,i);  
end  
Matrik = L(:,:); disp(Matrix ," Lower-Matrix = "); 
Matrik = U(:,:); disp(Matrix ," Upper-Matrix = "); 
// Forward Substitution 
D = ones(n,1);  
for i = 1:n  
    sum3 = 0;  
    for k = 1:i-1  
        sum3 = sum3 + L(i,k) * D(k);  
    end  
    D(i) = (B(i) - sum3) / L(i,i);  
end  
// Back Substitution  
x = ones(n,1);  
for i = n:-1:1  
    sum4 = 0;  
    for k = i+1:n  
        sum4 = sum4 + U(i,k) * x(k);  
    end  
    x(i) = D(i) - sum4;  
end  
disp(" Results x, y, z and w = ") 
disp(strcat(["x = ",string(x(1))])); disp(strcat(["y = ",string(x(2))])); disp(strcat(["z = ",string(x(3))])); 

disp(strcat(["w = ",string(x(4))])) 
endfunction 

 
Solution 
a 

 a  = 
    4.  - 1.    2.    3.   
    0.  - 2.    7.  - 4.   
    0.    0.    6.    5.   
    0.    0.    0.    3. 

b 
 b  = 
    20.   
  - 7.    
    4.    
    6. 

Decomposition(a,b) 
Lower-Matrix =     

    4.    0.    0.    0.   
    0.  - 2.    0.    0.   
    0.    0.    6.    0.   
    0.    0.    0.    3. 

 
Upper-Matrix =     

    1. - 0.25    0.5   0.75        
    0.   1.    - 3.5   2.          
    0.   0.      1.    0.8333333   
    0.   0.      0.    1. 

Results x, y, z and w =     
x = 3   y = -4   z = -1   w = 2 
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CONCLUSION 

This paper presented four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and 
Lower-Upper Decomposition (LU). The process of numerical methods can be expressly and easily presented by 
using the Scilab as open source computational programming software in the market, especially in solving 
simultaneous linear equations. Means, several researchers have agreed that Scilab software is quite good and easy to 
use. In other words, Scilab is an alternative teaching and learning software in numerical method. 
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