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Abstract—The paper deals with the developing of the 

methodological backgrounds for studying 3-D chaotic systems. 
Such backgrounds allow us to perform the coordinate 
transformation for 3-D nonlinear dynamical object from serial 
form into parallel one. Above-mentioned transformation is based 
on the partial fraction decomposition of the systems’ 
feedforwards. Usage of the proposed approach is one of the ways 
of constructing a system with a chaotic dynamic and defining novel 
attractors. The approach has been proven by considering the 
example of modeling and simulating of third order chaotic system. 
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I.  INTRODUCTION  

Many areas of mankind activities deal with dynamical 
systems which are sensitive to initial conditions [1]. One can 
find that various processes in meteorology, communication, 
robotic, chemistry, finance, sociology, medicine, and others are 
studied by using systems with a chaotic dynamic.  

Since Lorenz discovered his 3-D chaotic models [2], one can 
mark that nonlinear third order dynamical systems are a very 
powerful tool for studying chaotic dynamic and performing 
chaos control [3-10]. There are a lot of various systems which 
can generate this type of oscillations [11-27]. 

These systems are different from each other by structure and 
parameters. That is why, it is very hard to find some common 
features, to predict systems characteristics and to discover their 
properties.  

It would be preferred that dynamic chaotic system is 
represented by one state space before performing any 
comparison. Moreover, transformation into the parallel form is 
useful from computational, methodological and control 
viewpoints. Partial fraction decomposition ws used in this work 
to perform transformation of such kind.  

The paper is organized as follows: at first, the transformation 
of the generalized 3-D chaotic system was considered as the 

main topic which dynamic is given in canonical state space. At 
second, observer’s algorithm was offered for defining first and 
second derivatives of the system’s outputs. Then, an example of 
transformation for 3-D jerk chaotic system and studying its 
dynamic was performed.  

II. GENERALIZED 3-D JERK CHAOTIC SYSTEM’S MODEL  

A. Transformation of chaotic system’s dynamic into counter- 
parallel form 
Generalized controllable 3-D jerk system dynamic was given 

as (1) 

� � � umx,x,xfx;xx;xx 332133221 ���� ��� �� ����

where 321 x,x,x  are state variables, u  is a control effort, 

� �321 x,x,xf  is some function, 3m  is some coefficient.  

Afterward, the function � �u,x,x,xf 321  was replaced with (2). 

� � � � � 	
�

��
3

1i
ii321321 xax,x,xgx,x,xf �� �
��

where ia  are some coefficients. it was assumed that coefficients 

ia  are nonzero coefficients and coefficient 3m  is positive one. 

Coefficients ia  was offered to be defined in such a manner 

that in polynomial expressed in (3) 

� � � 0aaaD 12
2

3
3 ����� ���� � ����

has three different negative real eigenvalues 321 ,, ��� . In 

that case, unknown function � �321 x,x,xg  was defined as (4). 

� � � � � 332211321321 xaxaxax,x,xfx,x,xg � �� ����

where  
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The above-given transformation has led to the rewritten of 
(1) into pseudo-affine form 

� � � umxax,x,xgx;xx;xx 3

3

1i
ii32133221 ����� 	

�

��� �� ����

Then, the equation in (6) has been transformed into operator 
form as (7). 

� � � umxax,x,xgsx;xsx;xsx 3

3

1i
ii32133221 ����� 	

�
������

where dt/ds �  is a derivative operator. 

Block diagram of chaotic system (7) is shown in Fig. 1. 

 

Fig. 1. Block diagram of generalized 3-D jerk chaotic system 

Equations (7) can be rewritten as (8). 

� � �� �1
2

11

3

1i
31

1i
i1

3 xs,sx,xgumxsaxs ��
�

�
�
�

�
�� 	

�

 �� ����

It has been found that dynamic of considered chaotic system 
is described with third order differential equation. This equation 
has two summands which are shown in brackets. The first one is 
linear and the second one is nonlinear summands. 

Later, linear part of (8) has been considered and defined at 
this following transfer function shown in (9).  

� � � � �
� � 12

2
3

3
31

asasas
m

su
sx

sW
���

�� �� ����

Above-given transfer function has been used to simplify 
block-diagram of the considered system by using 
transformations of block-diagrams (Fig. 2). 

 

Fig. 2. 3-D chaotic system with linear feedforward and nonlinear feedback 

Fig. 2 shows a chaotic system as serial 3-D chaotic system 
with the nonlinear feedback. Moreover, Block-diagram which 
are shown on Fig. 2 define the formulation of the following 
statement: 

Statement 1. Dynamic of generalized third order chaotic 
system is defined by linear differential operator (9) in system’s 
feedforward and nonlinear one (4) in it’s feedback. 

Since (3) has been assumed to have real negative 
eigenvalues, it can be concluded that linear feedforward is an 
asymptotically stable and chaotic oscillations caused by 
nonlinear feedback only. 

Now, transfer function (9) can be transformed into parallel 
form. Since it has only three different eigenvalues, such 
transformation is trivial. 

�
3

3

2

2

1

1

12
2

3
3

3

s
A

s
A

s
A

asasas
m
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�

���
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Equation (10) can be reduced to a common denominator and 

written down equations for defining unknown iA  coefficients. 

� � � � � � �
.mAAA

;0AAA
;0AAA

3213312321

213312321

321

���
������

���

������
������ �� �����

Equation (11) has been solved for unknown iA  coefficients and 

put down this following expression. 

�

.
m

A

;
m

A

;
m

A

2
3323121

3
3

32
2
23121

3
2

323121
2
1

3
1

�������

�������

�������

�
�

�
�

�
�

�� ��
��

Expression (10) makes it possible to transform block-
diagram Fig. 2 as it is shown in Fig. 3. 

 

2018 International Symposium on Advanced Intelligent Informatics (SAIN)

180



 

Fig. 3. 3-D chaotic system with linear parallel feedforward 

Block-diagram in Fig. 3 and (10) emerges a possibility to 
write down new state space equations. 

�

� �
� �
� �
,yyyx

;uAxs,sx,xgkysy

;uAxs,sx,xgkysy

;uAxs,sx,xgkysy

3211

31
2

113333

21
2

112222

11
2

111111

���
���

���

���

�

�

�

� �����

where  

� 3ii m/Ak � �� �����

Dynamic system (13) has three parallel channels with inner 
linear feedbacks and outer nonlinear ones. It is clearly 
understood that outer feedback depends on the first and second 

derivatives of output variable 1x . Calculation of these 

derivatives is quite nontrivial problem. 

B. Parallel observer for definition of state variables’ 
derivatives 
partial fraction decomposition of transfer function (9) has 

been offered not only for getting parallel model of dynamical 
objects, but also for calculation of derivatives from output 
variable as well.  

Later, equation (9) differentiate between its left and right 
hand expressions. This operation in the operator form can be 
performed by multiplying the function on derivative operator. 

� � � � �
� � 12

2
3

3
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1 asasas
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ssx

sW
���

�� �� �����

Transfer function (15) can be converted into parallel form by 
using above-described approach. 
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Coefficients iB  were defined after reducing right-hand 

expression (16) to a common denominator and write down 

equations for defining unknown iB  coefficients. 

� � � � � � �
.0BBB

;mBBB
;0BBB

213312321

3213312321

321

���
������

���

������
������ � �����

Solution of (17) has put down the following expressions. 
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The second derivative of output variable can be defined in a 
similar way by multiplying (15) on the derivative operator’s 
image. 

� � � � � � �
� � 12

2
3

3

2
31

2

12 asasas
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sxsssWsW

���
��� � �����

and replacing transfer function (19) with (20). 
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Unknown coefficients iC  can be defined by solving (21). 

� � � � � � �
0CCC

;0CCC
;mCCC

213312321

213312321

3321

���
������

���

������
������ � �
���

and writing down the solution as (22). 
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Analysis of the above-given formulas helps to make the 
following statement. 

Statement 2. When the model of the considered system is 
given in parallel form, the determination of derivatives from 
output state variable can be performed by using specially defined 
coefficients only. 

Comparison of (12), (18), and (22) make it possible to 
generalize these coefficients and write down following recursive 
formulas. 

� � � i
j
i1jiiij AKK �� ��  �� �
���
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where i  is a parallel channel number, j  is a derivative’s order. 

Expression (23) can be rewritten (13) as follows. 

�

� �
� �
� �

.yyyxs

,yyysx,yyyx
;uAxs,sx,xgkysy

;uAxs,sx,xgkysy

;uAxs,sx,xgkysy

3
2
32

2
21

2
11

2
33221113211

31
2

113333

21
2

112222

11
2

111111

���

���
�

�

�

���

������
���

���

���

�� �
���

It is necessary to assume that the last three equations of (24) 
describe observer dynamic. 

Fig.4 shows a block-diagram of chaotic system which is 
described with equations (24).  

 

Fig. 4. Block-diagram of 3-D chaotic system with the parallel observer 

Analysis of (24) makes it possible to conclude that the 
proposed approach constructed both mathematical model of 
considered system and observer for defining unknown state 
variables. Moreover, this following statement has been made. 

Statement 3. Transformation of mathematical model into 
parallel form, which is performed by using partial fraction 
decomposition, defines that parallel mathematical model 
consists of three parts: linear feedforward, linear observer and 
nonlinear feedback.  

This structure makes it possible to construct novel chaotic 
systems by studying feedback’s properties. 

III. MODELING AND SIMULATION OF 3-D JERK CHAOTIC SYSTEM 

WITH THREE QUADRATIC NONLINEARITIES 

The 3-D jerk controllable chaotic system has been now 
considered with quadratic nonlinearities. 

� � � ,uxxpxcxxbxaxx

;xx;xx
2
2

2
1213213

3221

����

��

�

��
� �
���

where  

� 9.0p;03.0c;4b;5.7a ���� �� �
���

A. Chaotic system’s parallel modeling 
It was assumed that desired eigenvalues were expressed as 

(27). 

� 3;2;1 321 ��� ��� �� �
���

Usage of (5) defined the coefficients of the characteristic 
polynomial.  

�
6a

;11a;6a

3213

32312123211

��
������

���
���������

� �
���

and rewrite (9) in such a way. 

� � � � �
� � 6s11s6s

1
su
sx

sW
2

2
3

3
1

���
�� �� �
���

expressions (12), (18) and (22) have been used for defining 
model’s and observer parameters.  

�
.5.4C;4C;5.0C

;5.1B;2B;5.0B
;5.0A;1A;5.0A

321

321

321

���
���

���
�� �����

parameters (26) and (28) have been used to write down nonlinear 

function � �321 x,x,xg  

�
� �

� �.xx9.0xx03.0

x5x7x5.13x,x,xg
2
2

2
121

321321

��

����
� �����

Parameter (29) can be used as feedforward and (31) as 
feedback while considered chaotic system is being modeled and 
simulated.  

This way for studying the chaotic system is very convenient, 
but it requires using an observer for defining high derivatives. 
We can avoid observer’s using by substituting into (31) their 
values from (24). This substitution rewrite parallel model (24) 
as follows. 

� �
� �

� �
� �

� �
� �

.yyyx
,0.5u+4.545y-15.75y+y6.375y-9.75+2.28y-

-y3.66y-2.745y-5.75+-0.915ysy

;u-9.09y+37.5y-y12.75y+21.5-+4.56y

+y7.32y+5.49y+11.5-+1.83ysy

;0.5u+4.545y-18.75y+y6.375y-9.75+2.28y-

-y3.66y-2.745y-4.75+-0.915ysy

3211

2
3323

2
2

132
2
13

2
3323

2
2

132
2
12

2
3323

2
2

132
2
11

���

�

�

�

�

���
��

This model has three parallel channels but it is more complex 
than previous one and it has nonlinearities in every equation. 
Analysis of (32) shows that it has similar nonlinearities in the 
first and third equations which are differed only by linear 

summands near 1y  and 3y .  

B. Chaotic system’s dynamic studying 
Dynamics of the considered system are now observed which 

are given in two ways: by (29) and (31), and by (32). 

At first, it should be mentioned that all of three considered 
models which are described by (29) and (31), by (32), and by 
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(25) give us equal results with the high precision. These results 

are shown in Fig. 5 and errors ix�  are multiplied on 1000. 

 

Fig. 5. Chaotic system’s dynamic 

Contrary to source model (25) models with and without 

observer produce some virtual state variables iy  (Fig. 6). 

  

Fig. 6. Parallel system’s dynamic in virtual state variables 

It has been shown that above-mentioned virtual coordinates 
define the novel attractors (Fig. 7) which are differed from well-
known one (Fig. 8). 

 

Fig. 7. Novel chaotic attractor of considered system  

 

Fig. 8. Well-known chaotic attractor of considered system 

Analysis of simulation result shows that chaotic system has 
unpredictable oscillations in each of state spaces which are used 
for describing of this system. 

IV. CONCLUSIONS  

Transformation of nonlinear system with chaotic dynamic into 
parallel form has several benefits. At first, it was performed in 
analytical way with high precision. This fact provides a similar 
system dynamic while different implementations are being used. 
Other benefit is the possibility to define feedforward’s dynamic 
by assuming its desired eigenvalues. This fact makes its possible 
to produce chaotic oscillations in linear stable system by using 
nonlinear feedback. It also can be found that it is possible to get 
the desired dynamic by defining feedforward’s one and 
performing compensation of nonlinear feedback. Finally, it is 
possible to generate various attractors which can be used for 
different technical and scientific applications. 
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