JURNAL

by Jurnal_pa Paulus Buat Gb_19

Submission date: 28-Jun-2019 07:41PM (UTC+0700)

Submission ID: 1147702042 **File name:** 8.pdf (534.34K)

Word count: 2477

Character count: 15095

Academia Journal of Agricultural Research 3(9): 213-218, September 2015 DOI: 10.15413/ajar.2015.0150

ISSN: 2315-7739

©2015 Academia Publishing

Research Paper

Vegetation diversity in the high-severity burned <mark>over forest</mark> areas <mark>in East</mark> Kalimantan, Indonesia

Accepted 26th August, 2015

ABSTRACT

Sutrisno Hadi Purnomo¹, Ariffien Bratawinata², B.D.A.S. Simarangkir² and Paulus Matius²

¹Post Gr. 11 ate Program of Forestry Science, Mulawarman University, Samarinda, East Kalimantan, Indonesia. ²Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, Indonesia.

*Corresponding author. E-mail: sutrisnohadipurnomo@yahoo.co.id The forests in Kalimantan, Indonesia were burned several times. Almost half of the forest area was burned and the vegetation in the forest was destroyed. This research is generally aimed at finding what disturbed the forest vegetation towards its rehabilitation process. Particularly, the purpose of this research was to find out the diversity of species. The plot used in this research was a single plot, the scope was 100×100 m (1 ha). The result of the study found that there were 74 species at the trees and poles level, 108 species at the stakes level and 55 species at the seedlings level.

Key words: Vegetation diversity, high severity burned.

INTRODUCTION

East Kalimantan, Indonesia is covered with low land tropical rain forest which is dominated by different types of trees from Dipterocarpaceae family. Tropical rain forest is enriched with its flora diversity compared to other forest formation (Whitmore, 1984). Pristine tropical rain forests encompass various types of vegetation. The forest in Kalimantan covers 40,000 types of different vegetation, and is considered as one of the richest forests in the world. However, the forests in Kalimantan were on fire for several times, just like what happened in 1982/1983 (Matius, 1998), in 1994 (Kustiawan et al., 1999), and in 1997/1998 (Bratawinata, 2002). Hence, almost half of the forest area was burned severely and the vegetation in the forest was destroyed. The condition of the damaged forest vegetation began to recover gradually. After nearly 16 years since the forest fire, the condition of forest vegetation was in secondary level.

MATERIALS AND METHODS

The research was conducted from December 2013 to January 2014 in the burnt forest areas in Bukit Soeharto (from 0°49 to 0°56 south latitude and from 117°00 to

117°08 east longitude), Kutai Kartanegara district, East Kalimantan Province, Indonesia. The plot used in this research was a single plot, the scope was 100×100 m (1 ha). This plot was then divided into several subplots with the scope of 10×10 m so as to observe the vegetation at the tree and pole level. Moreover, the subplots were divided into sub-subplots with the width of 5×5 m to study the stake vegetation and sub-subplot with the width of 1×1 m to identify the vegetation at seedling level. Morphological observation was performed directly in the field. To identify the name of the species at the tree, stake, stand, and bush level which were not recognised directly, thus specimen was done. Afterward, the specimen sample was identified at the Herbarium.

RESULTS AND DISCUSSION

The result of the study found that there were 74 species at the trees and poles level, 108 species at the stakeslevel and 55 species at the seedlings level. Those species are shown in Tables 1 to 3.

Tables 1 to 3 showed differences in the number of species

Table 1. Species and families at the trees and poles level.

No	Species	Family	No	Species	Family
1	Alseodaphne elmeri Merr.	Lauraceae	38	Gironniera nervosa Planch.	Ulmaceae
2	Antidesma neurocarpum Miq	Euphorbiaceae	39	<i>Gluta wallichii</i> (Hook.f.) Ding Hou	Anacardiaceae
3	Antidesma tetandrum Blume	Euphorbiaceae	40	Horsfieldia irya Warb	Myristicaceae
4	Aporosa frutescens Blume	Euphorbiaceae	41	60rsfieldia sp.	Myristicaceae
5	Aporosa nitida Merr.	Euphorbiaceae	42	Knema pallens W.J.J.O. de Wilde	Myristicaceae
6	Artocarpus anisophyllus Miq.	Moraceae	43	Lithocarpus conocarpus (Oudem.) Rehder	1 Fagaceae
7	Artocarpus dadah Miq.	Moraceae	44	Lithocarpus coopertus (Blanco) Rehder	Fagaceae
8	Artocarpus elasticus Blume	Moraceae	45	Lithocarpus gracilis (Korth.) Soepadmo	Fagaceae
9	Artocarpus lanceifolius Roxb.	Moraceae	46	6tsea angulata Blume	Lauraceae
10	Artocarpus nitidus Trec.	Moraceae	47	Litsea firma (Blume) Hook.f.	Lauraceae
11	Artocarpus tamaran Becc.	Moraceae	48	Litsea garciae Vidal	Lauraceae
12	Buchanania sessifolia Blume	Anacardiaceae	49	<mark>5 sea</mark> odorifera Vahl	Lauraceae
13	Calophyllum venulosum Zoll	Guttiferae	50	Macaranga bancana (Miq.) Müll.Arg.	Euphorbiaceae
14	Canarium decumanum Gaertn	Burseraceae	51	Macaranga conifera (Zoll.) Mull.Arg.	Euphorbiaceae
15	Canarium hirsutum Willd	Burseraceae	52	Macaranga gigantea (Reichb.f. & Zoll.) Müll.Arg.	Euphorbiaceae
16	Canarium littorale Blume	Burseraceae	53	Macaranga hypoleuca (Reichb.f.& Zoll.) Mull.Arg.	Euphorbiaceae
17	Canthium sp.	Rubiaceae	54	Macaranga pearsonii Merr.	Euphorbiaceae
18	Cleistanthus myrianthus (Hassk.) Kurz	Euphorbiaceae	55	Magnolia lasia Noot.	Magnoliaceae
19	<i>Cratoxylum formosum</i> (Jack) Dyer	Hypericaceae	56	Mallotus affinis Merr	Euphorbiaceae
20	Cratoxylum sumatranum (Jack) Blume	Hypericaceae	57	Mallotus echinatus Elm	Euphorbiaceae
21	Dacryodes co <mark>dt</mark> ata (A.W.Benn.) H.J.Lam	Burseraceae	58	Mallotus leucodermis Hook f	Euphorbiaceae
22	Dacryodes rugosa (Blume) H.J.Lam	Burseraceae	59	Mallotus paniculatus (Lam.) Müll.Arg.	Euphorbiaceae
23	Dillenia excelsa (Jack) Gilg	Dilleniaceae	60	Mallotus sumatranus (Miq.) Airy Shaw	Euphorbiaceae
24	Dillenia reticulata King	Dilleniaceae	61	Pentace laxiflora Merr.	Tiliaceae
25	Dillenia sumatrana Miq	Dilleniaceae	62	Pternandra galeata (Korth.)	Melastomataceae
26	Dipterocarpus humeratus Sloot	Dipterocarpaceae	63	Pternandra sp.	Melastomataceae
27	Durio acutifolius (Mast.) Kosterm.	Bombacaceae	64 8 65	Schima wallichii (DC.) Korth.	Theaceae
28	Durio conicus Becc	Bombacaceae	65	Shorea hemsleyana King	Dipterocarpaceae
29	Eusideroxylon zwageri Teijsm. & Binn.	Lauraceae	66	Shorea johorensis Foxw 8	Dipterocarpaceae
30	Ficus aurata Miq.	Moraceae	67	Shorea parvifolia Dyer	Dipterocarpaceae
31	Ficus geocarpa Teysm & Binnd	Moraceae	68	Shorea seminis (de Vriese) Slooten	Dipterocarpaceae
32	Ficus grossularioides Burm.f.	Moraceae	69	Sterculia sp.	Sterculiaceae
33	Garcinia celebica L	Guttiferae	70	Timonius borneensis Vahl	Rubiaceae
34	Garcinia parvifolia (Miq.) Miq.	Guttiferae	71	Timonius sp.	Rubiaceae

 Table 1 Contd. Species and families at the trees and poles level.

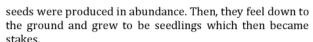
No	Species	Family	No	7 ecies	Family
35	Garcinia sp.	Guttiferae	72	Vernonia arborea BuchHam.	Compositae
36	Gardenia anisophylla Jack	Rubiaceae	73	Vitex pinnata L.	Verbenaceae
37	Gardenia forsteniana Miq	Rubiaceae	74	Vitex vestita Wall.	Verbenaceae

Table 2. Species and families at the stakes level.

No	Species	Family	No	Species	Family
1	Actinodaphne glabra Blume	Lauraceae	55	Gironniera nervosa Planch.	Ulmaceae
2	<i>Aglaia laxiflora</i> Miq	Meliaceae	56	Glochidion arborescens Blume	Euphorbiaceae
3	Alseodaphne elmeri Merr.	Lauraceae	57	Glochidion sericeum (Blume) Zoll. & Mor.	Euphorbiaceae
4	Alstonia iwahigensis Elmer	Apocynaceae	58	Guioa pubescens (Zoll. & Moritzi) Radlk.	Sapindaceae
5	Anthocephalus chinensis (Lamk.) A.Rich. ex Walp.	Rubiaceae	59	Hedyotis sp.	Rubiaceae
6	Antidesma neurocarpum Miq.	Euphorbiaceae	60	Hopea rudiformis P.S.Ashton	Dipterocarpaceae
7	12 rosa confusa Gage	Euphorbiaceae	61	Horsfieldia irya (Gaertn.)	Myristicaceae
8	Aporosa dioica (Roxb.) Müll.Arg.	Euphorbiaceae	62	Lepisanthes amoena (Hassk.) Leenh.	Sapindaceae
9	Aporosa frutescens Blume	Euphorbiaceae	63	Lithocarpus coopertus (Blanco) Rehder	Fagaceae 2
10	Aporosa nitida Merr.	Euphorbiaceae	64	48 ea firma (Blume) Hook.f.	Lauraceae
11	Aquilaria malaccensis Lam.	Thymelaeaceae	65	<i>Macaranga bancana</i> (Miq.) Müll.Arg.	Euphorbiaceae
12	10 hidendron clypearia (Jack) I.C.Nielsen	Leguminosae-Mim.	66	Macaranga beccariana Merr.	Euphorbiaceae
13	Archidendron jiringa (Jack) LC.Nielsen	Leguminosae-Mim.	67	Macaranga <mark>conifera</mark> (Zoll.) Mull.Arg.	Euphorbiaceae
14	Artocarpus anisophyllus Miq.	Moraceae	68	Macaranga gigantea (Reichb.f. & Zoll.) Müll.Arg.	Euphorbiaceae
15	Artocarpus dadah Miq.	Moraceae	69	Macaranga hypoleuca (Reichb.f.& Zoll.) Mull.Arg.	Euphorbiaceae
16	Artocarpus elasticus Blume	Moraceae	70	Macaranga pearsonii Merr.	Euphorbiaceae
17	Artocarpus lanceifolius Roxb.	Moraceae	71	Macaranga tricho 71rpa (Reichb.f. & Zoll.) Müll.Arg.	Euphorbiaceae
18	Artocarpus tamaran Becc.	Moraceae	72	Madhuca sericea (Miq.) 1.Lam	Sapotaceae
19	Baccaurea parviflora (Müll.Arg.)	Euphorbiaceae	73	Melicope glabra (Blume) T.G.Hartley	Rutaceae
20	Baccaurea tetrandra Müll.Arg.	Euphorbiaceae	74	Memecylon sp.	Melastomataceae
21	Barringtonia macrostachya Jack	Lecythidaceae	75	Nauclea subdita Merr.	Rubiaceae
22	Beilschmiedia madang Blume	Lauraceae	76	Neolitsea sp.	Lauraceae
23	Beilschmiedia dictyoneura Kosterm	Lauraceae	77	Nephelium cuspidatum Blume	Sapindaceae
24	Bridelia glauca Blume	Euphorbiaceae	78	Paracroton pendulus (Hassk.) Miq.	Euphorbiaceae
25	Camellia lanceolata (Blume) Seem.	Theaceae	79	Pentace laxiflora Merr.	Tiliaceae
26	Canthium glabrum Blume	Rubiaceae	80	Phoebe sp.	Lauraceae
No	Spesies	Family	No	Spesies	Family

Table 2 Contd. Species and families at the stakes level.

No	Species	Family	No	Species	Family
27	Carallia brachiata (Lour.) Merr.	Rhizophoraceae	81	Polyalthia microtus Miq.	Annonaceae
28	Chaetocarpus castanocarpus (Roxb.) Thwaites	Euphorbiaceae	82	<i>Polyalthia rumphii</i> (Blume) Merr.	Annonaceae
29	Cleistanthus myrianthus (Hassk.) Kurz	Euphorbiaceae	83	Popowia pisocarpa (Blume) Endl.	Annonaceae
30	Cratoxylum formosum (Jack) Dyer	Hypericaceae	84	<i>Pternandra azurea</i> (Blume) Burkill	Melastomataceae
31	Cratoxylum sumatranum (Jack) Blume	Hypericaceae	85	Pternandra coerulescens Jack	Melastomataceae
32	Crypteronia griffithii Clarke in Hook.f.	Crypteroniaceae	86	<i>Pternandra galeata</i> (Korth.) Ridley	Melastomataceae
33	<i>Dacryodes ca<mark>ll</mark>ata</i> (A.W.Benn.) H.J.Lam	Burseraceae	87	Pternandra rostrata (Cogn.)	Melastomataceae
34	Dacryodes rostrata (Blume) H.J.Lam	Burseraceae	88	Quassia indica (Gaertn.) Noot.	Simaroubaceae
35	Dacryodes rugosa (Blume) H.J.Lam	Burseraceae	89	Rhodamnia cinerea Jack	Myrtaceae
36	Dillenia excelsa (Jack) Gilg	Dilleniaceae	90	Schima wallichii (DC.) Korth.	Theaceae
37	Dillenia reticulata King	Dilleniaceae	91	Scorodocarpus borneensis (Baill.) Becc.	Olacaceae
38	Diospyros borneensis Hiern	Ebenaceae	92	Shorea balangeran (Korth.) Burck	Dipterocarpaceae
39	Diospyros buxifolia (Blume)	Ebenaceae	93	Shorea leprosula Miq.	Dipterocarpaceae
40	Durio acutifolius (Mast.) Kosterm.	Bombacaceae	94	Shorea seminis (de Vriese) Slooten	Dipterocarpaceae
41	Dysoxylum acutangulum Miq	Meliaceae	95	Sterculia rubiginosa Vent	Sterculiaceae
42	Elaeocarpus beccarii A.DC. ssp. beccarii	Elaeocarpaceae	96	Sterculia sp.	Sterculiaceae
43	Embelia javanica DC.	Myrsinaceae	97	34nplocos fasciculata Zoll.	Symplocaceae
44	Endospermum diadenum (Miq.) Airy Shaw	Euphorbiaceae	98	Syzygium lineatum (DC) Merr. & Perry	Myrtaceae
45	Enicosanthum paradoxum Becc.	Annonaceae	99	Syzygium polyanthum (Wight) Walp.	Myrtaceae
46	Eugenia heteroclada Merr.	Myrtaceae	100	Syzygium tawahense (Korth.) Merr. & Perry	Myrtaceae
47	Eurycoma longifolia Jack	Simaroubaceae	101	Tabernaemontana macrocarpa Korth. ex Blume	Apocynaceae
48	Eusideroxylon zwageri Teijsm. & Binn.	Lauraceae	102	Teijsmanniodendron bogoriense Koord	Verbenaceae
49	Fagraea racemosa Jack ex Wall.	Loganiaceae	103	Timonius lasianthoides Valet	Rubiaceae
50	Ficus aurata Miq.	Moraceae	104	Timonius flavescens (Jacq.) Baker	Rubiaceae
51	Ficus obscura Blume	Moraceae	105	Urophyllum arboreum (Reinw. ex Blume)	Rubiaceae
52	Galearia fulva (Tul.) Miq.	Euphorbiaceae	106	Vatica odorata (Griff.) Sym.	Dipterocarpaceae
53	Garcinia parvifolia (Miq.) Miq.	Guttiferae	107	Vernonia arborea BuchHam.	Compositae
54	Gardenia tubifera Wall	Rubiaceae	108	Xanthophyllum affine Korth.ex Miq.	Polygalaceae


Table 3. Species and families at the seedling level.

No	Species	Family	No	Species	Family
1	Actinodaphne glabra Blume	Lauraceae	29	Knema furfuracea Warb.	Myristicaceae
2	Anacolosa frutescens (Blume)	Olacaceae	30	Knema glauca (Blume) Warb	Myristicaceae
3	Aporosa dioica (Roxb.) Müll.Arg.	Euphorbiaceae	8 31	Koompassia malaccensis Maing.ex Benth.	Leguminosae-Caes.
4	Aporosa frutescens Blume	Euphorbiaceae	32	Litsea elliptica Blume	Lauraceae
5	Aquilaria malaccensis Lam.	Thymelaeaceae	33	43 ea firma (Blume) Hook.f.	Lauraceae
6	10 hidendron clypearia (Jack) I.C.Nielsen	Leguminosae-Mim.	34	Macaranga gigantea (Reichb.f. & Zoll.) Müll.Arg.	Euphorbiaceae
7	<i>Archidendron jiringa</i> (Jack) I.C.Nielsen	Leguminosae-Mim.	35	Macaranga <mark>hypoleuca</mark> (Reichb.f.& Zoll.) Mull.Arg.	Euphorbiaceae
8	Artocarpus lanceifolius Roxb.	Moraceae	36	Neolitsea sp.	Lauraceae
9	Beilschmiedia sp.	Lauraceae	37	Payena acuminata Pierre	Sapotaceae
10	<i>Bridelia glauca</i> Blume	Euphorbiaceae	38	Phoebe sp.	Lauraceae
11	Camellia lanceolata (Blume) Seem.	Theaceae	39	Polyalthia lateriflora Blume	Annonaceae
12	Cratoxylum formosum (Jack) Dyer	Hypericaceae	40	<i>Polyalthia rumphii</i> (Blume) Merr.	Annonaceae
13	Cratoxylum sumatranum (Jack) Blume	Hypericaceae	41	Pternandra sp.	Melastomataceae
14	Dimocarpus longan Lour.	Sapindaceae	42	Rhodamnia cinerea Jack	Myrtaceae
15	Diospyros borneensis Hiern	Ebenaceae	43	Shorea seminis (de Vriese) Slooten	Dipterocarpaceae
16	Diospyros sp.	Ebenaceae	44	Symplocos fasciculata Zoll.	Symplocaceae
17	Fagraea racemosa Jack ex Wall.	Loganiaceae	45	Syzygium lineatum (DC) Merr. & Perry	Myrtaceae
18	Ficus aurata Miq.	Moraceae	46	Syzygium nigricans (King) Merr. & Perry	Myrtaceae
19	Ficus obscura Blume	Moraceae	47	Syzygium tawahense (Korth.) Merr. & Perry	Myrtaceae
20	Galearia fulva (Tul.) Miq.	Euphorbiaceae	48	Tabernaemontana macrocarpa Korth. ex Blume	Apocynaceae
21	Garcinia parvifolia (Miq.) Miq.	Guttiferae	49	Timonius sp.	Rubiaceae
22	Gardenia sp.	Rubiaceae	50	Urophyllum sp.	Rubiaceae
23	Gironniera nervosa Planch.	Ulmaceae	51	Vatica odorata (Griff.) Sym.	Dipterocarpaceae
24	Glochidion arborescens Blume	Euphorbiaceae	52	Vernonia arborea BuchHam.	Compositae
25	Goniothalamus macrophyllus (Blume) Hook.f. & Thomson	Annonaceae	53	Villebrunea rubescens Blume	Urticaceae
26	Hopea rudiformis P.S.Ashton	Dipterocarpaceae	54	Walsura sp.	Meliaceae
27	Horsfieldia sp.	Myristicaceae	55	Xanthophyllum affine Korth.ex Miq.	Polygalaceae
28	Irvingia malayana Oliv.	Simaroubaceae	56	-	-

between vegetation level. It happened due to the competition for growing space, nutrient, and enough sunlight while not all species were able to compete and survive up to the stand and tree level. High-severity burnt forest had smaller number of species compared to primary forest. This was because high-severity burnt forest had experienced horrible disturbance with severe vegetation damage, which led to the loss of many types of vegetation. Thus, pioneer plants started to dominate the forest areas,

such as; Macaranga gigentea, M. bancana, M. conifera, M. hypoleuca, M. pearsonii, Mallotus affinis, M. echinatus, M. leucodermis, M. paniculatus, M. sumatranus, Vernonia arborea, Vitex pinnata, V. vestica. Consequently, when the forest was burned severely, the open forest area became wider which made the pioneer plants grew abundantly.

In the high-severity burned over forest areas, pioneer plants like *Macaranga* spp would be easily found at the tree and stake level, hence it produced flower and seed. The

The presence of Dipterocarpaceae at the stake level in the climax forest was abundant, however, only a small number could be found in the burned over forest areas. It happened because of the narrow gap of the canopy which led to stimulated Dipterocarpaceae seedlings. The wide canopy gap would actually make Dipterocarpaceae to become scarce. Therefore, plenty sunlights would lead to the growth of pioneer plants either their species or their number.

Conclusion

It can be concluded that the more severe disruption experienced by the vegetation, the more the number of the vegetation would be more abundant and the species of pioneer vegetation became more varied. The number of Dipterocarpaceae families in the burned over forest areas was limited.

REFERENCES

Matius P (1998). Effect of Selective L 15 ing on Tree Species Diversity in East Kalimantan.Proceeding of The Second International Symposium on Asian Tropical Forest Management.PusrehutEast Kalimantan and JICA, Samarinda.

Kustiawan W, Aipassadan Makhrawie MI (1999). Erosionand Soil Degradation After Forest Burned in Education Forest Areas of Bukit Soeharto. Frontier 26: 85-96.

Bratawinata AA (2002). Influence of Selective Logging and Forest Burned on Stand and Stakesin Education Forest Areasof Bukit Soeharto, East Kalimantan. Frontir 16 (1): 28-31.

Cite this article as:

Purnomo SH, Bratawinata A, Simarangkir BDAS, Matius P (2015). Vegetation diversity in the high-severity burned over forest areas in East Kalimantan, Indonesia. Acad. J. Agric. Res. 3(9): 213-218.

Submit your manuscript at http://www.academiapublishing.org/journals/ajar

JURNAL

ORIGINALITY REPORT

15% SIMILARITY INDEX

8%

INTERNET SOURCES

7%

PUBLICATIONS

12%

STUDENT PAPERS

PRIMARY SOURCES

Submitted to Higher Education Commission Pakistan

Student Paper

www.harapanrainforest.org

Internet Source

1%

2%

Submitted to University of Kufa

Student Paper

1%

www.academiapublishing.org

Internet Source

1%

J.W.F. Slik. "El Niño droughts and their effects on tree species composition and diversity in tropical rain forests", Oecologia, 09/2004

Publication

forda-mof.org

Internet Source

1%

Submitted to Program Pascasarjana Universitas Negeri Yogyakarta

Student Paper

1%

Kartawinata K., Priyadi H., Sheil D., Riswan S.,

8	Sist P., Machfudh. "A field guide to the permanent sample plots in the conventional logging blocks 28 & 29 at CIFOR Malinau research forest East Kalimantan", Center for International Forestry Research (CIFOR), 2006 Publication	1%
9	Submitted to University of Sheffield Student Paper	1%
10	Thant Shin, Kazumi Fujikawa, Aung Zaw Moe, Hiroshi Uchiyama. "Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar", Journal of Ethnobiology and Ethnomedicine, 2018 Publication	1%
11	Submitted to Universitas Pendidikan Indonesia Student Paper	1%
12	Quattrocchi, . "A", CRC World Dictionary of Medicinal and Poisonous Plants, 2012. Publication	1%
13	平塚 基志. "Evaluation of industrial plantation forests and rehabilitated forests for restoring degraded lands in the tropics of Southeast Asia", [出版者不明], 2008. Publication	<1%
14	Submitted to Udayana University Student Paper	<1%

Student Paper

15	"Pasoh", Springe	er Nature, 2003	<1%				
16	adoc.tips Internet Source		<1%				
17	www.searca.org		<1%				
18	Submitted to University of Birmingham Student Paper						
19	Rehabilitation of degraded tropical forest ecosystems workshop proceedings 2-4 November 1999 Bogor Indonesia, 2001. Publication						
	de quotes Off de bibliography Off	Exclude matches	Off				