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Warming from tropical deforestation reduces
worker productivity in rural communities
Yuta J. Masuda 1✉, Teevrat Garg2,3,4✉, Ike Anggraeni5, Kristie Ebi 6,7, Jennifer Krenz7, Edward T. Game1,

Nicholas H. Wolff 1 & June T. Spector 7

The accelerating loss of tropical forests in the 21st century has eliminated cooling services

provided by trees in low latitude countries. Cooling services can protect rural communities

and outdoor workers with little adaptive capacity from adverse heat exposure, which is

expected to increase with climate change. Yet little is still known about whether cooling

services can mitigate negative impacts of heat on labor productivity among rural outdoor

workers. Through a field experiment in Indonesia, we show that worker productivity was

8.22% lower in deforested relative to forested settings, where wet bulb globe temperatures

were, on average, 2.84 °C higher in deforested settings. We demonstrate that productivity

losses are driven by behavioral adaptations in the form of increased number of work breaks,

and provide evidence that suggests breaks are in part driven by awareness of heat effects on

work. Our results indicate that the cooling services from forests have the potential for

increasing resilience and adaptive capacity to local warming.
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Trees can provide cooling services via shade and
evapotranspiration1,2. These ecosystem services are
widely recognized in urban areas for mitigating heat

island effects3–6, but little to no work has examined this benefit
in rural areas of low-income countries in the tropics where
temperatures already exceed thresholds for human safety7.
Meanwhile, tropical deforestation continues at a rapid pace8,
which can lead to local temperature increases over a single
season, or even day, that exceed a century of warming under
high emissions scenarios9–12. This warming affects not only just
the most vulnerable community members (i.e., the elderly and
the very young) but also the productivity of health workers.
Heat may especially be detrimental to outdoor workers because
they are often engaged in rigorous physical activity for long
durations due to their primary livelihood strategies, such as
farming13. Yet our understanding of whether trees and the
cooling services they provide can increase the well-being and
resilience of outdoor workers in such contexts remains limited
and therefore undervalued. Researchers have struggled to
understand the effects of the cooling services of forests in rural,
low-income settings because of lack of data and the presence of
multiple unobserved confounding factors, making it challen-
ging to estimate the causal effects of cooling services from trees
on worker productivity. We overcome these challenges by
conducting a field experiment where we randomly assign
workers from rural villages to routine tasks in forested and
deforested settings in East Kalimantan, Indonesia.

The focus on rural communities in tropical countries is
important for a few reasons. While studies have long argued for
the importance of tropical forests for combating global climate
change and biodiversity conservation14,15, researchers have more
recently started highlighting how tropical deforestation can
have significant adverse local human health and well-being
impacts16–19. At the same time, the adverse effects of exposure
to hotter temperatures are increasingly seen as an area of
concern20–25. For rural communities in tropical forest settings
where heat and humidity are already high and who are among the
most vulnerable to environmental and other shocks26–29,
deforestation-induced temperature increases through the loss of
cooling services may especially be detrimental. Field studies have
shown temperatures can be up to 8.3 °C hotter in deforested
compared to forested settings9. Recent evidence indicates that
warming is more extreme as the deforested area becomes larger11,
and that adverse heat effects may extend up to 50 km beyond
deforested sites30. Importantly, deforestation is largely driven by
human use8, and indicates that in deforested areas people are
actively working outside. Recent efforts to increase trees on
existing agricultural lands and degraded lands provide an
opportunity to increase tree cover, and may yield co-benefits to
outdoor workers in addition to increasing carbon storage for
achieving global climate mitigation goals.

Many studies have examined how exposure to hot environ-
ments affects productivity and human health20,31–37, but these
studies provide limited insight for understanding how heat affects
the labor productivity of rural populations facing chronic,
deforestation-induced local temperature increases. First, cross-
sectional studies suffer from omitted variable bias and are unable
to distinguish between the effects of heat and other factors cor-
related with heat exposure such as income and health. Second,
longitudinal studies that overcome omitted variable bias rely on
short-run transitory as opposed to longer-run chronic tempera-
ture increases. It is challenging to scale estimates from these
studies to populations facing deforestation-induced chronic
temperature increases because differences in the effects of addi-
tional heat exposure can arise due to differences in income (e.g.,
wealthier individuals may utilize cooling technologies to

minimize heat effects) or differences in baseline exposure. For
example, a 1 °C increase in overall temperature can have different
effects for people living in New Delhi vs. New York either because
New Delhi has a higher baseline temperature than does New York
or because New Delhi has lower per capita income than New
York38.

What is also missing from existing studies is an understanding
of how people may adapt in real-time to working in hot envir-
onments, especially among rural subsistence workers. Behavioral
adaptations are one of the first lines of defense against heat39, as it
allows for reducing internal heat generation and external heat
exposure. This is especially important for rural workers in low-
income country settings, as they often lack access to the basic
infrastructure needed for defenses against excess heat exposure
(e.g., air conditioning)13,29. Workers may adapt work behaviors
in several ways, such as working at a slower pace, spending less
time working, or taking more frequent breaks. Survey-based
studies have reported outdoor workers in these settings are aware
of heat effects9,34,40,41, and there are reports that workers are
already adapting to hotter thermal environments by shifting the
timing, intensity, and type of work they engage in9. Importantly,
evidence on real-time adaptation to heat is limited, in part due to
the lack of availability of high-frequency data. Existing work has
focused largely on longer-term adaptations, such as the adoption
of cooling technologies42–44. More recent work has examined
adaptation as changes in behavior from the provision of
information, income supplements45, or within-day changes in
time-use46.

Finally, it remains an open question as to whether heat
represents a binding physical constraint on productivity, or
simply increases the (physical or cognitive) cost of effort. If the
former, increasing incentives tied to output are unlikely to
increase productivity. If, however, heat increases the cost of effort,
then higher incentives are likely to generate higher output.

In our study, we conduct a field experiment that randomly
assigns 361 workers from rural communities in East Kalimantan,
Indonesia to a 90-min work session in either deforested or
forested settings and standard and high piece-rate payment
schemes tied to worker output (for details see ‘Methods’). The
random assignment allows us to compare productivity differences
between two distinct thermal environments while avoiding con-
cerns of omitted variable bias. Unlike past studies, we collect data
on worker output, rest-taking behavior, and core body tempera-
ture for every minute of the experiment, as well as movements for
every second to track physical effort. These data, along with our
research design, allow us to evaluate real-time effects on adap-
tation strategies and output from heat exposure in real-world
settings. The field experiment itself is informed by extensive input
from study villages, and is designed around one of the most
common activities done in and outside of forests—harvesting.
Our primary aim is to test whether the loss of trees and their
cooling services can have adverse effects via the thermal envir-
onment, as this is an increasingly important question given policy
efforts to integrate trees onto working lands for climate mitiga-
tion and adaptation. We hypothesize that heat exposure from
working in deforested areas will lead to significant declines in
productivity, and that those receiving larger financial incentives
will have greater overall output compared to participants in the
standard payment. Further, we hypothesize that those receiving a
larger financial incentive will take less breaks even if their rate of
production declines, as there is a greater incentive to keep
working compared to the standard financial incentive group. Our
results indicate that working in deforested settings decreases
productivity, but that financial incentives have no effect. Further,
we find declines in productivity are driven by rest-taking
behavior.
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Results
Heat exposure due to deforestation reduces productivity. Our
results indicate that, even under favorable conditions, working
just 90 min in deforested settings adversely impacts productivity
(Table 1). Participants working in forested settings were, on
average, 8.22% (p = 0.0089) more productive than their otherwise
equivalent counterparts working in deforested settings (Table 1,
Column 1).

Adverse heat effects on productivity likely arise from differences
in thermal environments. First, compared to deforested sites,
forested sites had, on average, 2.8 °C cooler wet bulb globe
temperatures (WBGT) (Supplementary Fig. 1), which is the gold
standard measure to assess heat stress47 as it captures relative
humidity, ambient and black globe temperatures, and wind speed.
Second, detailed measurements of core body temperature show that
workers in forested settings had significantly lower core body
temperatures (Table 1, Column 2), and during the session
experienced 39.3% (p = 0.0002) lower incidence of moderate
hyperthermia (measured as core body temperature exceeding
38.5 °C). Workers in forested settings had median core body
temperatures 0.14 °C (p = 0.0098) lower than their counterparts in
deforested settings (Table 1, Column 3). The range of median core
body temperatures recorded in our study is 1.8 °C (min = 36.92 °C,
max = 38.72 °C), so the effect is ∼7.8% of the range.

Workers adapt to heat by taking more breaks. We find that
heat-induced productivity declines were driven by adaptive
behavior. Participants working in forested settings took 44.4% (p
= 0.000002) fewer breaks (Table 1, Column 4), and, rather than
adjusting the speed or effort of work, rest-taking behavior appears
to be the primary mechanism through which we observe pro-
ductivity declines. We found no difference in moderate-to-
vigorous physical activity (MVPA)—a proxy measure for effort
calculated from accelerometer data—between participants in
forested and deforested settings (Table 1, Column 5). In contrast
to prior work48, we found that even doubling incentives where
participants could earn double the average daily wage rate in 90
min had no effect on heat strain, effort, or productivity, and that
the large increase in incentives was unable to induce workers to
exert more effort.

Importantly, the thermal environments, which are determined
by the amount of tree cover, are likely the key pathway driving
productivity declines. Experimental sites were selected with input
from villagers to be comparable (e.g., flat, clear from obstructions
for the activity, a reasonable distance from the village center).
Other factors, such as elevation, are also a negligible concern
given our model specification included village fixed effects.

One of our primary findings is that participants adapted to
working in hotter environments by taking more breaks, as there
was no difference in work effort between the two groups. But
whether breaks were taken evenly throughout the activity, at the
end of the activity, or in some other pattern is important for
understanding how behavioral adaptations manifest and can be
complemented by other heat protection strategies. We used high-
frequency data to estimate the difference in rest-taking behavior
between participants in forested and deforested settings over the
course of the 90 min experimental session. Figure 1 presents the
cumulative time to breaks. We found that in forested settings,
participants took the first break, on average, 12 min later than
their counterparts in deforested settings. The cumulative effects
decreased with each successive break; the difference in time to
second break between treatment and control groups was 10 min
whereas the difference in time to third break was just under 9
min. However, the differences in time to breaks over successive
breaks are not statistically different from each other, though they
are individually and jointly significantly different from zero at the
1% level.

Workers are aware heat exposure affects productivity. Finally,
we evaluated how well participants could subjectively assess the
effects of heat exposure on their output speed and quality. Health
promotion and behavior research49 has highlighted how aware-
ness of adverse heat effects is a critical first step for engaging in
protective behaviors. To assess whether differences in heat
exposure based on work environment affected subjective assess-
ments of heat effects on work speed and output, we asked
respondents two different questions: (1) How did heat affect the
speed of your work, and (2) How did heat affect the quality of
your work. For each question, respondents had three choices: (a)
no effect, (b) positive effect, and (c) negative effect. We found that

Table 1 Effect of treatment on productivity, core body temperature, hyperthermia, breaks, and physical activity. Below each
coefficient, we report 95% confidence intervals in parenthesis and two-tailed p values, respectively. We denote conventional
statistical significance as ***p < 0.01, **p < 0.05, *p < 0.1 for two-sided t tests. The dependent variable in Column (1) is the log of
total output. In Columns (3), (4), and (5), the dependent variable is the inverse hyperbolic sine of, number of minutes with
moderate hyperthermia (with moderate hyperthermia (core body temperature exceeding 38.5 ∘C), total breaks, and number of
minutes spent in moderate-to-vigorous physical activity, respectively. The coefficients can be interpreted as semi-elasticities
following appropriate econometric transformations80. Core body temperatures are estimated from oral temperatures and heart
rate data using a validated algorithm73.

(1) (2) (3) (4) (5)

% Output Core body % Mins in % Breaks % Mins in moderate-to-

temperature (∘C) hyperthermia vigorous physical activity

Forested setting 0.0822*** −0.140*** −0.393*** −0.444*** −0.147
(0.0208, 0.144) (−0.247, −0.0341) (−0.598, −0.189) (−0.626, −0.262) (−0.366, 0.0717)
0.00887 0.00982 0.000164 1.67e–06 0.188

High incentive −0.0266 −0.00642 0.0437 −0.0224 −0.0588
(−0.0904, 0.0372) (−0.113, 0.100) (−0.380, 0.467) (−0.372, 0.327) (−0.230, 0.112)
0.413 0.906 0.840 0.900 0.500

Forest X high incentive −0.0320 0.0582 −0.0958 0.291 0.0917
(−0.117, 0.0535) (−0.0830, 0.199) (−0.542, 0.351) (−0.334, 0.916) (−0.283, 0.466)
0.462 0.418 0.674 0.362 0.631

Observations 361 361 343 329 329
R-squared 0.371 0.306 0.192 0.232 0.079
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participants working in deforested settings were 15% more likely
to report having slower work speed and 12% more likely to report
having lower work quality because of heat (Table 2), providing
support that participants were aware of adverse effects of heat and
is consistent with the evidence of behavioral adaptations.

Discussion
Warming from both climate change and deforestation is expected
to adversely affect rural communities in low latitude, low-income
countries. Dramatic warming from deforestation may exacerbate
vulnerability to environmental and other shocks, as many tropical
countries are already frequently exceeding thresholds for human
safety7 and are particularly vulnerable to impacts from climate
change50,51. Many members of rural communities engage in
activities sensitive to heat13, such as farming, and have limited
adaptive capacity to defend against rising temperatures29. Our
understanding of how and to what extent these effects will
manifest is still emerging. One pathway is through productivity
declines of healthy, working populations from increased heat
exposure. This population serves as a pillar for the resilience and
well-being of families in rural communities, as they are often
caretakers, breadwinners, and provide the primary support for
vulnerable subgroups, especially absent social protection
programs25,45. Our study provides unique and timely insights
about how deforestation—one of the main drivers of global
emissions and a significant source of local warming9–11,30,52—can

impact productivity through increased heat exposure, and how
conserving forests or engaging in tree planting can provide
cooling services that can bolster resilience to adverse heat effects.

An important component of our study was the cross-
randomization of the level of piece-rate incentives53. Surpris-
ingly, we found no evidence that doubling piece-rate incentives
affected worker productivity in forested or deforested settings.
There are two possible explanations. First, our baseline incentive
was already very high and workers were operating at the peak of
their physical capacity, so a higher marginal incentive would
make little to no difference in effort or output. We conducted
extensive validation and testing to ensure financial incentives
were, on average, high enough to motivate active participation in
the experimental task during the busy agricultural season. Indeed,
only two participants out of 402 recruited actively declined to
participate, indicating the financial incentive was high enough to
have people avoid work and other duties and spend up to 4–5 h in
the study. Second, ambient temperatures already approach or
exceed safety thresholds for human health and productivity in
both forested (average WBGT = 27.41 °C) and deforested
(average WBGT = 30.25 °C) settings, and so heat, rather than
incentives, represent the binding constraint. Therefore, our study
provides evidence on physical constraints to productivity that are
unlikely to be overcome through changes in incentives.

Poor households who are liquidity constrained and face
incomplete credit and insurance markets are likely unable to
smooth consumption, and for these households declines in pro-
ductivity will decrease resilience to climate change and may
potentially lead to poverty traps28,54,55. Recent research indicates
losses in agricultural output can decrease cognitive performance25

and increase suicidal behavior56. Despite rural communities
having heightened vulnerability to temperature increases com-
pared to their urban counterparts, little work has illuminated
whether and to what extent large temperature increases may
decrease productivity. Importantly, we are unaware of any work
that has studied real-time behavioral adaptations to heat among
these populations, especially in local contexts. Given that many of
these communities lack access to infrastructure, trees, and their
cooling services arguably provide an important and readily
available approach to minimizing adverse health effects from
increased heat exposure.

Our study documents productivity effects and work adapta-
tions to heat exposure among subsistence agricultural commu-
nities, which remains an understudied population9,34. We found
that even under favorable conditions, working just 90 min in
deforested areas, compared to forested areas, decreased pro-
ductivity by 8.22% for an average 2.84 °C WBGT difference. To
put this into context, this is the equivalent effect of increasing
ozone exposure by 15 parts per billion (ppb) amongst agricultural
workers in the United States53 or 13.6 micrograms per cubic
meter of PM2.5 exposure amongst pear packers57. For reference,
the National Ambient Air Quality Standards (NAAQS) in the
United States are set at 53 ppb for Ozone and 15 micrograms per
cubic meter for PM2.5. Our results indicate that behavioral
adaptations in the form of more frequent breaks likely driven by
elevated core body temperatures are the primary mechanism for
productivity declines. Our experimental design gives us con-
fidence that differences in core body temperatures between par-
ticipants in forested and deforested areas were elevated largely
from external heat exposure rather than internal heat generation,
as there were no differences in work effort as measured using
high-frequency accelerometer data. Self-reported subjective
assessments about whether the external temperature was affecting
work speed and quality provide plausible evidence that the greater
frequency in break-taking behavior was in part due to partici-
pants in deforested areas being aware that their thermal
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Fig. 1 Treatment effect of cumulative time to breaks. This figure shows
the treatment effect of being in a forested versus deforested setting on the
cumulative time to breaks 1–5. The treatment effect is measured in minutes.
The bars around the point estimate denote the 95% confidence interval
using robust standard errors. n= 361.

Table 2 Effect of forest treatment on subjective perceptions
of the negative effects of heat on productivity. Marginal
effects estimated from a multinomial logit regression. The
two rows below each coefficient report the 95% confidence
intervals in parenthesis and two-tailed p values,
respectively. We denote conventional statistical significance
as ***p < 0.01, **p < 0.05, *p < 0.1 for two-sided t tests.

(1) (2)

Output speed Output quality

Forest setting −0.152*** −0.121*
(−0.279, −0.026) (−0.243, 0.001)
0.018 0.062

Observations 361 361
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environment was having an adverse effect on work quality and
output. Participants are from rural villages in Berau, Indonesia,
and as a result, are acclimated to working in local environments.
Berau is also emblematic of tropical forest conditions in other
countries experiencing land-use pressures from the expansion of
agriculture, oil palm, mining, and other activities58, with factors
such as tenure security shaping the incentives around land
use59,60. As a result, our results may provide insights into how
heat from deforestation is affecting worker productivity of similar
populations, of which there is an estimated 800 million people
live in or near tropical forests61.

Our experiment likely provides conservative estimates of heat
effects on productivity. Our experimental protocol limited work
time to 90min and provides favorable working conditions (i.e.,
access to shade, water, and snacks with participants encouraged to
rest ad libitum). In contrast, survey data from the same population
on work behavior and access to resources important for heat
health indicate workers in real-world settings face greater risks of
heat strain compared to participants in our study. For instance,
time-use data from the same population indicate that, on average,
workers spend 6.5 h a day working in agriculture, taking an
average of 2.1 breaks during the day9. When working in open
areas, such as agricultural fields, 90% of outdoor workers have
relatively easy access to shade, 94% report wearing protective
clothing, and 59% of participants reported having access to water
while working9. Our experimental activity limits our ability to
extrapolate how increased heat exposure would impact pro-
ductivity for other types of agricultural activities beyond harvest-
ing, which the experimental activity was designed to mimic.
Increased heat exposure may lead to different adaptation strategies
depending on the farming activity. Activities such as plowing may
require greater physical exertion, as, for instance, farmers com-
monly plowed fields by hand rather than by animal-drawn plows
or tractors. In the absence of cooling or other technical inter-
ventions, plowing may require more drastic behavioral adapta-
tions given similar thermal environments, while other activities,
such as dry direct seeding, may require less physical exertion and
thus fewer behavioral adaptations. The study aimed to identify a
real-world activity that is done in both forested and deforested
settings through extensive testing and in-depth community
engagement. Community members at our study sites indicated
that such harvesting activities are indeed done in both settings,
such as carrying equipment, chopping wood, and harvesting from
agricultural fields, which are activities commonly done in other
rural communities living in and around forests. However, because
tasks are standardized for the purposes of research, our estimates
are only measuring the effect of the thermal environment on
productivity, not baseline differences by tasks. The randomization
of workers to experimental settings alleviates any concern of bias
based on prior skill. Future work should empirically test whether
and how people adapt differently based on the activity, and assess
real-time adaptation strategies over longer time horizons.

The experimental findings speak to broader questions about
how rural community lands are being used, and how existing land
use patterns may be decreasing resilience to hotter environments.
Our study answers the question of how productivity would differ
in sites if they were not deforested. This is important because
cooling services provided by forested patches are critical for
understanding how different land-use patterns are tied to local
and global goals. Locally, silvopasture, agroforestry, and other
types of agriculture that have the potential to integrate trees into
working lands have the potential to also provide cooling services
to workers. Yet, there is currently little evidence of these benefits.
Globally, natural climate solutions62–65, such as the agricultural
and land-use practices just mentioned, are a critically important
pathways for meeting the nationally determined contributions for

the Paris Climate Agreement for many countries. The extent that
these practices provide co-benefits to local populations is an
important consideration for determining where these practices
will advance carbon storage goals and increase the climate resi-
lience of local communities.

While we note several limitations, we also highlight several
advances. Prior work has insufficiently documented short-run
adaptations; indeed, recent evidence suggests that workers already
make marginal changes in their work routines to cope with excess
heat exposure9. High-frequency data on worker output, core body
temperature, and worker adaptation behavior allowed us to exam-
ine adjustments workers make in response to excess heat exposure.
Our study design also overcomes practical and research design
hurdles found in past studies that made estimating the causal effect
of heat exposure from deforestation on productivity challenges.
Observational studies may suffer from spurious correlation since
forest cover loss is associated with economic activity66–68 and health
effects16,17. Using random assignment we overcome these chal-
lenges: workers in our setting across deforested and forested settings
should be, on average, similar (Supplementary Table 1).

Importantly, our study provides an additional motivation for the
significant efforts for global forest restoration and protection, which
have, by and large, been rooted in arguments for biodiversity and
combating climate change through increased carbon storage62,69.
Largely missing in these ambitious calls is that strategies, such as
wide-scale adoption of agroforestry on pasture or agricultural lands,
may provide significant local cooling services that can increase the
resilience of subsistence workers to increasing temperatures, and
thus have positive spillover effects for their own and their house-
hold’s well-being. Identifying strategies that provide climate miti-
gation and adaptation benefits is critical for achieving global
sustainable development and climate change goals, and for
increasing climate resilience and adaptive capacity of rural com-
munities in low latitude, low-income countries.

Methods
The primary methodology in this paper exploits random assignment of workers to
forested and deforested settings for a period of 90 min. Within the sample setting
we exploit this random assignment to estimate the treatment effect of being in a
forested compared to deforested setting. Our analysis examines the causal rela-
tionship between exposure to heat in deforested settings on the productivity of
workers. Study protocols and outcomes were registered at the American Economic
Association’s Randomized Control Trial Registry (Study ID: AEARCTR-0002778)
before receiving the data from the experiment. As per our pre-analysis plan, we
consider the effect of being in a forested setting, receiving a high piece-rate
incentive, and both. All study protocols were approved by the University of
Washington Institutional Review Board. Household surveys were drafted and
finalized in Microsoft Word 16, and data were entered using CSPro 6.

Study setting. The study recruited healthy, working adults from ten rural villages
in the Berau Regency of East Kalimantan, Indonesia from October 1 to November
6, 2017, the tail end of the dry season. The Berau regency is similar to other tropical
forest settings around the world, as the Regency has experienced significant land-
use change in the past 20 years from human-driven activities, such as from the
expansion of oil palm, agriculture, logging, and mining58, which are major
industries for the Regency and its population70. Its annual rate of forest loss from
2000–2010 is more than 50% higher than the pantropical mean71. Daylight hours
throughout the year vary little (Supplementary Fig. 2), and communities are
engaged in agricultural activities throughout the year. For more on the study
setting and population see Aggraeni et al.72 and Masuda et al.9.

Sampling. We employed a multiphase random sampling approach to select indi-
viduals into our study. We first randomly selected eligible villages, followed by
households, and finally eligible individuals within randomly selected households.
Inclusion criteria were developed to capture the populations living in and around
forests and engaged in manual labor9,40. Villages were included if they were (1) on
the mainland, (2) had less than 15% of water cover within a 5 km buffer around the
village, (3) had less than 5% mangrove cover within a 5 km buffer around the
village, (4) was more than 20 km straight-line distance from the regency capitol,
and (5) was accessible by road. A 5 km buffer was informed by earlier findings in
Kalimantan of deforestation’s effects on perceptions of heat40. Thirty-seven out of
113 villages in the Berau Regency met these criteria. We randomly selected five
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villages above and below the median of intact forest cover (31% of landcover being
intact forest in a 5 km buffer) for a total of ten villages from the eligible 37 villages
(Supplementary Fig. 3). We randomly sampled from above and below the median
of intact forest cover to have even representation of villages embedded more deeply
in forests. Finally, individuals were eligible if they were (1) above 21 years old, (2)
able to lift more than 10 kilograms, and (3) had no recent or chronic reported
respiratory or cardiac issues. The study provided informed consent prior to par-
ticipation. Participants were offered 20,000 Rupiah for participating in the
experimental activity, and, in addition, had the opportunity to earn more based on
their performance on the experimental activity.

In total, 363 people were randomized in the experiment (Supplementary Fig. 4).
For our primary and secondary analysis, we exclude observations that are missing
any key covariates, or are missing sensor data. In total, 361 participants are in our
primary analysis on output and breaks, 343 participants are in our evaluation of
work effort (i.e., accelerometer data), and 329 participants are in our analysis of
core body temperature and minutes in hyperthermia. Randomization checks for
those with and without sensors indicate the samples are by and large similar and
therefore missing data from sensors is likely random (Tables S2, S3). Participants
are, on average, 42 years old, have 6.3 years of education, live in households that
consist of ∼4–5 members, and 83% and 73% are farmers and regularly work in
forests, respectively. Further information about participants and the study
population can be found in Supplementary Table 1 and Aggraeni et al.72 and
Masuda et al.9.

Experimental design. Enumerators allocated participants via simple randomiza-
tion to one of four conditions in a 2 × 2 factorial design, where participants selected
their experimental assignment out of a container. The experiment involved having
participants conduct a generalizable work activity for 90 min. The activity was
designed to mimic harvesting activities, and was developed via extensive field
testing and input from study villages. For the activity, participants packed 14, 500 g
bags of dried corn kernels into a backpack, then carried the filled backpack 25 m,
and unpacked the bags and created a stacked pile. Participants were instructed to
repeat this activity for 90 min, or until participants chose to quit, and were paid a
financial incentive for each pile created. Participants were provided water, snacks,
and a shaded area to rest ad libitum.

The two experimental factors were work setting and the amount of the financial
incentive. Participants were assigned to either forest or deforested settings (i.e., an
open field) (Supplementary Fig. 5), and to a standard and high piece-rate incentive for
each pile the participant created. The standard incentive was set so that, in addition to
the participation incentive (20,000 IDR), participants could, on average, earn the daily
wage for a day laborer in local villages in 90min (∼5 USD or 65,000 IDR). The high
incentive was set so that, on average, participants could earn approximately double
the daily wage rate for a day laborer in local villages in 90min (∼8 USD or 110,000
IDR). Participants were required to conduct the experimental activity during daylight
hours (Supplementary Fig. 2 for daylight hours across the year). Participants were
allowed to schedule the day and time of the experimental activity to maximize
participation, although within-day randomization suggests this should not be a source
of non-random bias (Supplementary Table 1).

During the activity, enumerators collected data on worker output and rest-
taking behavior in 1-min intervals. A unit of worker output was recorded whenever
a participant collected, carried, and created a pile. We also used Polar® (Polar Inc.,
Lake Success, NY, USA) and Wahoo Tickr X (Wahoo Fitness, Atlanta, GA, USA)
chest band monitors to collect heart rate data for every minute. Heart rate data,
along with body temperature data from oral measurements using 53–287 Digital
Oral Thermometers (3M Company, Maplewood, MN, USA), were used to estimate
1-min interval core body temperatures using a validated algorithm73. This
approach uses an extended Kalman filter, along with baseline resting body
temperatures and sequential heart rate data, to estimate core body temperatures for
every minute73,74. We processed the heart rate data by first excluding values
outside the physiological range (i.e., <40 or >200 beats per minute) from the raw 1-
s interval data, and then averaging heart rates for each minute. For oral
temperature measurements, enumerators were trained on how to take oral
measurements, as well as where and when measurements should be taken. As such,
enumerators took two measurements before the experimental activity with
participants in a rested state in a shaded area. These data were checked for extreme
outliers, such as those outside physiological limits, and then averaged. We used the
Axivity AX3 3-axis accelerometer (Axivity Ltd, New Castle upon Tyne, UK), data
logger, to collect data on participant movements, which tracked a participant’s
movement in 1-s intervals during the activity. Data loggers were placed on the
participants’ dominant hand, and were calibrated before the study. At the end of
every day, enumerators downloaded data from the data loggers and checked that
data were completely logged for the participant during the time of their
experiment. We calculated moderate-to-vigorous activity (MVPA) following Menai
et al.75, where a participant’s physical activity was counted as being MVPA if the
mean 5s-epoch Euclidean Norm Minus One was above 100 mg for at least 1 min76.
MVPA for the entire session was then calculated by summing the total number of
minutes in MVPA for each participant during the 90 min experiment.

Once participants completed the experimental activity, they rested in a shaded
area where they were given water and snacks and allowed to rest before completing

an additional survey. Survey data collected demographic information, such as age,
sex, occupation, educational attainment, and marital status, and also questions
about work and time use. We also asked post-activity questions on subjective
perceptions of heat on work during the experimental activity. Here, we used two
questions from a post experiment survey. One question asked, “How did the heat
affect your speed?” The other question asked, “How did the heat affect the quality
of your work?” Responses were open-ended, and enumerators have noted whether
the responses were positive (e.g., “the heat invigorated me”) or negative (e.g., “the
heat slowed me down”). These responses were then coded as the heat (1) having no
effect, (2) having a positive effect, and (3) having no effect. In addition, we report
descriptive statistics on data from 53–287 Digital Oral Thermometers (3M
Company, Maplewood, MN, USA), scales to weigh participants, and 3M
QUESTemp WBGT monitors (3M Company, Maplewood, MN, USA) which
measured ambient temperature, wet bulb temperature, black globe temperature,
relative humidity, and WBGT for experimental sites. Resting oral temperatures
were taken before participants started the activity. 3M QUESTemp WBGT
monitors were placed at each experimental site for the duration of the data
collection period at each village, and were deployed at a height of 1.1 m in the
middle of the area where experiments were conducted at each of our forested and
deforested sites. The units were randomly assigned a location, and remained
deployed at each location until the end of village visits. The units collected data
every 5 min, and data were downloaded everyday to a laptop at each location.

Power calculations for a 2 × 2 factorial experiment with one observation per
participant at α= 0.05 and power= 0.80 indicate that for a conservative sample
size (Cohen0sf ¼ 0:14), 400 individual participants are needed. Power calculations
were done to estimate the interaction effect, and thus have sufficient power to
estimate main effects given the efficiency gains from employing a factorial design.

Statistical methods. We estimated the average treatment effect of deforested con-
ditions on productivity using ordinary least squares regressions with indicator vari-
ables for the two experimental factors, as well as an interaction of the two indicator
variables to account for the factorial design. We employed clustered robust standard
errors at the individual level, which is the unit of randomization77, and village fixed
effects to account for unobserved heterogeneity across villages. We present fully
adjusted models that include baseline covariates for age, an indicator variable for
female, years of education, an indicator variable if the respondent indicated their
primary occupation was farming, an indicator for regularly collecting firewood for the
household which reflects familiarity with the experimental activity, an indicator for
regularly working in the forest, self-assessed health status, body mass index, an
indicator variable if the activity was conducted past noon to account for diurnal
trends, and an indicator variable if it rained during the activity. We included these
covariates to increase the precision of estimates in case baseline covariates are cor-
related with the outcome, as well as to correct for any imbalance in baseline covariates
between the experimental groups78,79. Doing so can increase statistical power and
efficiency by subtracting explained variation for linear models78,79. We show in the
supplemental materials (Supplementary Table 4) that our findings are similar with
and without these covariates. Finally, our analysis on subjective perceptions of heat on
work used two questions from a post experiment survey and employed a multinomial
logit model using the same specification discussed above, and then estimated marginal
effects holding variables at their means.

For analysis pertaining to Fig. 1, we calculated the cumulative time lapsed in
the experiment before each break is taken. If a study participant had not taken a
given break, we coded them as if they had taken that break at the end of the
study which means the time to each break is capped at the total study duration of
90 min. It is possible that the participant may not have taken a break until
beyond the 90 min mark if the study had continued; therefore, our effects
represent a lower bound on the effects of working in a forested setting on
productivity. We limit our analysis to the first five breaks taken, but our analysis
can easily be extended to a higher number of breaks. The coefficient reported for
the effect of treatment on cumulative time to each break is estimated
independently in a separate regression.

All statistical analyses were performed with Stata version 14 (Stata Corp,
College Station, TX, USA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available
upon reasonable request.

Code availability
The code for the analyses is available upon reasonable request.
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