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Abstract. In this study, the hypothesis testing of geographically weighted bivariate logistic 

regression (GWBLR) procedure is proposed. The GWBLR model is a bivariate logistic 

regression (BLR) model which all of the regression parameters depend on the geographical 

location in the study area. The geographical location is expressed as a point coordinate in two-

dimensional geographic space (longitude and latitude). The response variables of BLR model 

are constructed from a (2  2) contingency table and it follows the multinomial distribution. The 

purpose of this study is to test the GWBLR model parameters. There are three hypothesis tests. 

The first is a parameters similarity test using the Vuong test method. The test is to obtain a 

significant difference between GWBLR and BLR. The second is a simultaneous test using the 

likelihood ratio test method. The simultaneous test is to obtain the simultaneous significance of 

the regression parameters. The last is a partial test using Wald test method. The result showed 

that the Vuong statistic and Wald statistic have an asymptotic standard normal distribution, 

whereas the likelihood ratio statistic has an asymptotic chi-squared distribution. 

1. Introduction 

Geographically weighted regression (GWR) is an effective technique for modelling spatial non-

stationary data [1, 2]. Hypothesis testing is one of the statistical inference tools that have an important 

contributed in GWR modelling and it was developed [3, 4, 5]. The response variable of the GWR model 

in previous studies is quantitative data and normally distributed. However, in fact, not only the response 

variable is quantitative data and normally distributed, but also is qualitative (categorical) data and 

follows other distributions, such as Bernoulli, binomial, and multinomial. 

Recently, the GWR models with response variable are categorical data have been proposed. GWR 

and a logistic regression model are combined to form a geographically weighted logistic regression 

(GWLR) [6]. The proposed model has two categories of the response variable which follows Bernoulli 

distribution and it was applied to model the spatial variation in the relation between erosion (presence 

or absence) and several controlling variables for the Afon Dyfi in West Wales. Furthermore, a 

geographically weighted logistic model (GWLM) was employed and it has shown that the GWLM is an 

efficient tool to account for spatial heterogeneity, showing better fit and residual properties compared 

to the logistic regression model (LRM) and logistic mixed model (LMM) in modeling the occurrence of 

cloud cover, using the spatial data derived from satellite imagery and GIS [7]. On the other hand, the 

GWLM and global logistic model (GLM) were used to model and analyze the spatial variation in the 
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human factors associated with forest fires [8].  GWLM techniques have shown a high predictive 

potential for human-caused wildfire occurrence modelling, surpassing classical regression techniques 

like GLM and allowing the detection of non-stationary relationships between response and independent 

variables. However, the number of categories in the response variable of the GWR model for categorical 

data is also more than two categories. There are several studies have been developed. 

The geographically weighted multinomial logistic regression (GWMLR) model was introduced and 

it has the number of category of the response variable is more than two categories [9, 10]. In the 

GWMLR model, each category is unordered and follows the multinomial distribution. As a follow-up, 

previous studies, the geographically weighted ordinal logistic regression (GWOLR) and geographically 

weighted ordinal logistic regression semiparametric (GWOLRS) model were proposed [11, 12]. Like 

the GWMLR model, the response variable of GWOLR and GWOLRS model follows the multinomial 

distribution and has more than two categories, but each category is ordered. In the GWOLRS model, 

some of the independent variables are global and the other variables are local [12]. 

The previous studies extend the GWR models for categorical data that have only one response 

variable (univariate). However, in many fields of research, several cases have two response variables 

(bivariate). Therefore, a new spatial regression model is proposed in this study, namely the 

geographically weighted bivariate logistic regression (GWBLR). The GWBLR model is to focus on two 

variable responses which each variable has two categories. This study aims to test the GWBLR model 

parameters. There are three kinds of hypothesis tests. The first test is a parameters similarity test by 

using the Vuong test method. This test is used to obtain if there is a significant difference between 

GWBLR model and BLR model. The second test is a simultaneous test by using a likelihood ratio test 

(LRT) method. This test aimed to obtain the simultaneous significance of the regression parameters. 

The last test is a partial test by using the Wald test method. This test is used to obtain the significance 

of each parameter in the regression model. 

2. Bivariate logistic regression 

The bivariate logistic regression (BLR) is an extension of the univariate logistic regression when there 

are two categorical data of response variables and they are correlated to each other. In this study, each 

of the response variables has two categories. Let 𝑌1 and 𝑌2 are response variables of the BLR model. 

The response variables can be shown in Table 1 and the joint probability of the response variables in 

Table 1 is presented in Table 2. 

 

Table 1. The (2 × 2) contingency table of the response variables. 

𝑌1 
𝑌2 

Total 
𝑌2 = 1 𝑌2 = 0 

𝑌1 = 1 𝑌11 𝑌10 𝑌1+ 

𝑌1 = 0 𝑌01 𝑌00 𝑌0+ = 𝑛 − 𝑌1+ 

Total 𝑌+1 𝑌+0 = 𝑛 − 𝑌+1 𝑌++ = 𝑛 

 

Table 2. The joint probability of the response variables. 

𝑌1 
𝑌2 

Total 
𝑌2 = 1 𝑌2 = 0 

𝑌1 = 1 𝑝11 𝑝10 𝑝1+ 

𝑌1 = 0 𝑝01 𝑝00 𝑝0+ = 1 − 𝑝1+ 

Total 𝑝+1 𝑝+0 = 1 − 𝑝+1 𝑝++ = 1 

 

Based on Table 1 and Table 2, the random variables 𝑌11, 𝑌10, 𝑌01, and 𝑌00 are follows the multinomial 

distribution with joint probability function defined by 
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𝑃(𝑌11 = 𝑦11, 𝑌10 = 𝑦10, 𝑌01 = 𝑦01) = ∏ ∏
𝑝𝑔ℎ

𝑦𝑔ℎ

𝑦𝑔ℎ!
1
ℎ=0

1
𝑔=0 , 0 < 𝑝𝑔ℎ < 1,  

where 𝑔, ℎ = 0,1; 𝑦𝑔ℎ = 0,1; 𝑦00 = 1 − 𝑦11 − 𝑦10 − 𝑦01; and 𝑝00 = 1 − 𝑝11 − 𝑝10 − 𝑝01. 

Furthermore, the BLR model can be written as follows 

𝑔1(𝑥) = 𝑙𝑜𝑔𝑖𝑡 (𝑝1(𝑥)) = 𝛽1
𝑇𝑥,  

𝑔2(𝑥) = 𝑙𝑜𝑔𝑖𝑡 (𝑝2(𝑥)) = 𝛽2
𝑇𝑥,  

𝑔3(𝑥) =𝑙𝑛 𝑙𝑛 𝜓1(𝑥)   = 𝛽3
𝑇𝑥,  

where 𝑥 = [1 𝑥1 𝑥2 ⋯ 𝑥𝑘]𝑇 is a vector of the covariate, 𝛽1
𝑇 = [𝛽01 𝛽11 𝛽21  ⋯ 𝛽𝑘1], 𝛽2

𝑇 =
[𝛽02 𝛽12 𝛽22  ⋯ 𝛽𝑘2], and 𝛽3

𝑇 = [𝛽03 𝛽13 𝛽23  ⋯ 𝛽𝑘3] are the parameters, 𝑝1(𝑥) is the marginal 

probability function of 𝑌1, 𝑝2(𝑥) is the marginal probability function of 𝑌2, and 𝜓1(𝑥) is the odds ratio 

that is shown an association between 𝑌1 and 𝑌2. The marginal probability function and the odds ratio are 

defined by 

𝑝1(𝑥) = 𝑝1+(𝑥) =
𝑒𝛽1

𝑇𝑥

1+𝑒𝛽1
𝑇𝑥

,  

𝑝2(𝑥) = 𝑝+1(𝑥) =
𝑒𝛽2

𝑇𝑥

1+𝑒𝛽2
𝑇𝑥

,  

𝜓1(𝑥) =
𝑝11(𝑥)𝑝00(𝑥)

𝑝10(𝑥)𝑝01(𝑥)
.  

 According to [13], the joint probability of 𝑝11(𝑥) in Equation  can be obtained as follows 

𝑝11(𝑥) = {
𝑎1−√𝑎1

2+𝑏1

2(𝜓1(𝑥)−1)
, 𝜓1(𝑥) ≠ 1   𝑝1(𝑥)𝑝2(𝑥), 𝜓1(𝑥) = 1   

where 𝑎1 = 1 + (𝜓1(𝑥) − 1)(𝑝1(𝑥) + 𝑝2(𝑥)), 𝑏1 = −4𝜓1(𝑥)(𝜓1(𝑥) − 1)𝑝1(𝑥)𝑝2(𝑥) with 𝑝1(𝑥) and 

𝑝2(𝑥) in Equations and. Furthermore, based on Table 2 and Equation, the joint probabilities of 𝑝10(𝑥), 

𝑝01(𝑥), and 𝑝00(𝑥) are obtained as follows 

𝑝10(𝑥) = 𝑝1(𝑥) − 𝑝11(𝑥),  

𝑝01(𝑥) = 𝑝2(𝑥) − 𝑝11(𝑥),  

𝑝00(𝑥) = 1 − 𝑝11(𝑥) − 𝑝10(𝑥) − 𝑝01(𝑥)  

            = 1 − 𝑝1(𝑥) − 𝑝2(𝑥) + 𝑝11(𝑥).  

3. Geographically weighted bivariate logistic regression 

The geographically weighted bivariate logistic regression (GWBLR) is developed of the BLR model 

which all of the regression parameters depend on the geographical location in the study area. The 

geographical location is expressed as a point coordinate in two-dimensional geographic space (longitude 

and latitude) [14].    

Let 𝑢𝑖 = (𝑢1𝑖, 𝑢2𝑖) denotes a vector of point coordinate for 𝑖𝑡ℎ location where the data is observed 

for 𝑖 = 1,2, … , 𝑛, with 𝑢1𝑖 is latitude and 𝑢2𝑖 is longitude, then from BLR model in Equations -, it can 

be developed to the new BLR model with all of the parameters depend on the geographical location 

which is called GWBLR model. Here, the parameters are assumed to be functions of the location on 

which the observations are obtained. Suppose, all of the parameters of the BLR model in Equations - 

depend on the geographical location, then GWBLR model at 𝑖𝑡ℎ location with coordinate 𝑢𝑖 has an 

expression as follows 

ℎ1(𝑥𝑖) = 𝑙𝑜𝑔𝑖𝑡 (𝜋1(𝑥𝑖)) = 𝛽1
𝑇(𝑢𝑖)𝑥𝑖, 𝑖 = 1,2, … , 𝑛  

ℎ2(𝑥𝑖) = 𝑙𝑜𝑔𝑖𝑡 (𝜋2(𝑥𝑖)) = 𝛽2
𝑇(𝑢𝑖)𝑥𝑖,  

ℎ3(𝑥𝑖) =𝑙𝑛 𝑙𝑛 𝜓2(𝑥𝑖)   = 𝛽3
𝑇(𝑢𝑖)𝑥𝑖,  

where 

 𝑥𝑖 = [1 𝑥1𝑖 𝑥2𝑖 ⋯ 𝑥𝑘𝑖]𝑇 is a vector of independent variables at 𝑖𝑡ℎ location, 

𝛽1
𝑇(𝑢𝑖) = [𝛽01(𝑢𝑖) 𝛽11(𝑢𝑖) 𝛽21(𝑢𝑖) ⋯ 𝛽𝑘1(𝑢𝑖)], 𝛽2

𝑇(𝑢𝑖) = [𝛽02(𝑢𝑖) 𝛽12(𝑢𝑖) 𝛽22(𝑢𝑖) ⋯ 𝛽𝑘2(𝑢𝑖)], 
and 𝛽3

𝑇(𝑢𝑖) = [𝛽03(𝑢𝑖) 𝛽13(𝑢𝑖) 𝛽23(𝑢𝑖) ⋯ 𝛽𝑘3(𝑢𝑖)] are the parameters at 𝑖𝑡ℎ location, 

 𝜋1(𝑥𝑖) is the marginal probability function of 𝑌1 at 𝑖𝑡ℎ location, 𝜋2(𝑥𝑖) is the marginal probability 

function of 𝑌2 at 𝑖𝑡ℎ location, and 𝜓2(𝑥𝑖) is the odds ratio that is shown an association between 𝑌1 and 
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𝑌2 at 𝑖𝑡ℎ location. The marginal probability function of response variables and the odds ratio at 𝑖𝑡ℎ 

location is defined by 

𝜋1(𝑥𝑖) = 𝜋1+(𝑥𝑖) =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽1

𝑇(𝑢𝑖)𝑥𝑖) 

1+𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽1
𝑇(𝑢𝑖)𝑥𝑖) 

,  

𝜋2(𝑥𝑖) = 𝜋+1(𝑥𝑖) =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽2

𝑇(𝑢𝑖)𝑥𝑖) 

1+𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽2
𝑇(𝑢𝑖)𝑥𝑖) 

,  

𝜓2(𝑥𝑖) =
𝜋11(𝑥𝑖)𝜋00(𝑥𝑖)

𝜋10(𝑥𝑖)𝜋01(𝑥𝑖)
.  

 Based on the joint probability function in Equation, the joint probability of 𝜋11(𝑥𝑖) in Equation  can 

be determined by 

𝜋11(𝑥𝑖) = {
𝑎2−√𝑎2

2+𝑏2

2(𝜓2(𝑥𝑖)−1)
, 𝜓2(𝑥𝑖) ≠ 1   𝜋1(𝑥𝑖)𝜋2(𝑥𝑖), 𝜓2(𝑥𝑖) = 1   

where 𝑎2 = 1 + (𝜓2(𝑥𝑖) − 1)(𝜋1(𝑥𝑖) + 𝜋2(𝑥𝑖)), 𝑏2 = −4𝜓2(𝑥𝑖)(𝜓2(𝑥𝑖) − 1)𝜋1(𝑥𝑖)𝜋2(𝑥𝑖) with 

𝜋1(𝑥𝑖), 𝜋2(𝑥𝑖), and 𝜓2(𝑥𝑖) in Equations -. The joint probabilities of 𝜋10(𝑥𝑖), 𝜋01(𝑥𝑖), and 𝜋00(𝑥𝑖) are 

obtained as follows 

𝜋10(𝑥𝑖) = 𝜋1(𝑥𝑖) − 𝜋11(𝑥𝑖),  

𝜋01(𝑥𝑖) = 𝜋2(𝑥𝑖) − 𝜋11(𝑥𝑖),  

 𝜋00(𝑥𝑖) = 1 − 𝜋1(𝑥𝑖) − 𝜋2(𝑥𝑖) + 𝜋11(𝑥𝑖).  

4. Hypothesis testing of the GWBLR model parameters 

Hypothesis testing consists of three kinds of tests. The first test is a parameter similarity test between 

GWBLR and BLR. The second test is a simultaneous test of GWBLR parameters. The last test is a 

partial test of GWBLR parameters. 

4.1. Parameter similarity test between GWBLR and BLR 

The aim of this test is used to obtain a significant difference between GWBLR model and BLR model. 

Parameter similarity test is also called the goodness of fit test [15]. The null hypothesis (𝐻0) and the 

alternative hypothesis (𝐻1) are as follows 

𝐻0: 𝛽𝑟𝑠(𝑢𝑖) = 𝛽𝑟𝑠,   𝑟 = 1, 2, … , 𝑘; 𝑠 = 1, 2, 3;  𝑖 = 1, 2, … , 𝑛,  
𝐻1: at least one of 𝛽𝑟𝑠(𝑢𝑖) ≠ 𝛽𝑟𝑠.  

where 𝑟 is the index of the covariate,  𝑘 is the number of covariates, 𝑠 is the index of parameters, 𝑖 is the 

index of research sample (the study area), and 𝑛 is the number of the study area. 

The test statistic for hypotheses in Equation can be determined by using the Vuong test method. The 

part of this method can be determined by using the likelihood ratio test (LRT) procedure [15].  Suppose 

the parameters set under 𝐻0 is 𝜔 = {𝛽𝑟𝑠, 𝑟 = 0, 1, 2, … , 𝑘; 𝑠 = 1, 2, 3}. Thus, to determine the likelihood 

function under 𝐻0  

𝐿(𝜔) = ∏ [𝑝11𝑖
𝑦11𝑖(𝑥𝑖)𝑝10𝑖

𝑦10𝑖(𝑥𝑖)𝑝01𝑖
𝑦01𝑖(𝑥𝑖)𝑝00𝑖

𝑦00𝑖(𝑥𝑖)]𝑛
𝑖=1 .  

Let 𝑝𝑔ℎ𝑖(𝑥𝑖) = 𝑝𝑔ℎ𝑖, for 𝑔, ℎ = 0,1 and 𝑖 = 1, 2, … , 𝑛. The likelihood function in Equation  can be 

rewritten as 

𝐿(𝜔) = ∏ [𝑝11𝑖
𝑦11𝑖𝑝10𝑖

𝑦10𝑖𝑝01𝑖
𝑦01𝑖𝑝00𝑖

𝑦00𝑖]𝑛
𝑖=1 .  

Based on Equation  to determine maximum log-likelihood function under 𝐻0  

𝑙𝑛 𝑙𝑛 𝐿(𝜔̂)  = ∑ (𝑦11𝑖 𝑙𝑛 𝑙𝑛 𝑝̂11𝑖  + 𝑦10𝑖 𝑙𝑛 𝑙𝑛 𝑝̂10𝑖  + 𝑦01𝑖 𝑙𝑛 𝑙𝑛 𝑝̂01𝑖  + 𝑦00𝑖
𝑛
𝑖=1

𝑙𝑛 𝑙𝑛 𝑝̂00𝑖 ),  

where 𝑝̂11𝑖, 𝑝̂10𝑖, 𝑝̂01𝑖, and 𝑝̂00𝑖 for 𝑖 = 1, 2, … , 𝑛 are formulated as follows 

𝑝̂11𝑖 = {
𝑎3 − √𝑎3

2 + 𝑏3

2(𝜓̂3 − 1)
, 𝜓̂3 ≠ 1   𝑝̂1𝑖𝑝̂2𝑖, 𝜓̂3 = 1  

where 𝑎3 = 1 + (𝜓̂3 − 1)(𝑝̂1𝑖 + 𝑝̂2𝑖), 𝑏3 = −4𝜓̂3(𝜓̂3 − 1)𝑝̂1𝑖𝑝̂2𝑖, 𝑝̂1𝑖 =
𝑒𝛽̂1

𝑇𝑥𝑖

(1+𝑒𝛽̂1
𝑇𝑥𝑖

), 

𝑝̂2𝑖 =
𝑒𝛽̂2

𝑇𝑥𝑖

(1+𝑒𝛽̂2
𝑇𝑥𝑖

), and 𝜓̂3 =
𝑝11𝑖𝑝00𝑖

𝑝10𝑖𝑝01𝑖
, with 𝛽̂1

𝑇 = [1 𝛽̂01 𝛽̂11 𝛽̂21 ⋯ 𝛽̂𝑘1]  
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and 𝛽̂1
𝑇 = [1 𝛽̂01 𝛽̂11 𝛽̂21 ⋯ 𝛽̂𝑘1]. Thus, 𝛽̂1

𝑇 and 𝛽̂2
𝑇 are maximum likelihood estimators (MLEs) for 𝛽1 

and 𝛽2. 

𝑝̂10𝑖 = 𝑝̂1𝑖 − 𝑝̂11𝑖. 

𝑝̂01𝑖 = 𝑝̂2𝑖 − 𝑝̂11𝑖. 

𝑝̂00𝑖 = 1 − 𝑝̂1𝑖 − 𝑝̂2𝑖 + 𝑝̂11𝑖. 

Furthermore, to obtain parameters set under population is 

𝛺 = {𝛽𝑟𝑠(𝑢𝑖), 𝑟 = 0, 1, 2, … , 𝑘; 𝑠 = 1, 2, 3; 𝑖 = 1, 2, … , 𝑛}.  

Thus, the likelihood function and maximum log-likelihood function under population are given by 

𝐿(𝛺) = ∏ [𝜋11𝑖
𝑦11𝑖𝜋10𝑖

𝑦10𝑖𝜋01𝑖
𝑦01𝑖𝜋00𝑖

𝑦00𝑖]𝑛
𝑖=1 ,  

𝑙𝑛 𝑙𝑛 𝐿(𝛺̂)  = ∑ (𝑦11𝑖 𝑙𝑛 𝑙𝑛 𝑝̂11𝑖  + 𝑦10𝑖 𝑙𝑛 𝑙𝑛 𝑝̂10𝑖  + 𝑦01𝑖 𝑙𝑛 𝑙𝑛 𝑝̂01𝑖  + 𝑦00𝑖
𝑛
𝑖=1

𝑙𝑛 𝑙𝑛 𝑝̂00𝑖 ),   

where 𝜋̂11𝑖, 𝜋̂10𝑖, 𝜋̂01𝑖, and 𝜋̂00𝑖 for 𝑖 = 1, 2, … , 𝑛 are formulated as follows 

𝜋̂11𝑖 = {
𝑎4 − √𝑎4

2 + 𝑏4

2(𝜓̂4 − 1)
, 𝜓̂4 ≠ 1   𝜋̂1𝑖𝜋̂2𝑖, 𝜓̂4 = 1  

where 𝑎4 = 1 + (𝜓̂4 − 1)(𝜋̂1𝑖 + 𝜋̂2𝑖), 𝑏4 = −4𝜓̂4(𝜓̂4 − 1)𝜋̂1𝑖𝜋̂2𝑖, 𝜋̂1𝑖 =
𝑒𝛽̂1

𝑇(𝑢𝑖)𝑥𝑖

[1+𝑒𝛽̂1
𝑇(𝑢𝑖)𝑥𝑖]

, 

𝜋̂2𝑖 =
𝑒𝛽̂2

𝑇(𝑢𝑖)𝑥𝑖

[1+𝑒𝛽̂2
𝑇(𝑢𝑖)𝑥𝑖]

, 𝛽̂1
𝑇(𝑢𝑖) = [1 𝛽̂01(𝑢𝑖) 𝛽̂11(𝑢𝑖) 𝛽̂21(𝑢𝑖) ⋯ 𝛽̂𝑘1(𝑢𝑖)],  

𝛽̂2
𝑇(𝑢𝑖) = [1 𝛽̂02(𝑢𝑖) 𝛽̂12(𝑢𝑖) 𝛽̂22(𝑢𝑖) ⋯ 𝛽̂𝑘2(𝑢𝑖)], and 𝜓̂4 =

𝜋̂11𝑖𝜋̂00𝑖

𝜋̂10𝑖𝜋̂01𝑖
 with 𝛽̂1

𝑇(𝑢𝑖) and 𝛽̂2
𝑇(𝑢𝑖) are 

maximum likelihood estimators (MLEs) for 𝛽1(𝑢𝑖) and 𝛽2(𝑢𝑖). 

𝜋̂10𝑖 = 𝜋̂1𝑖 − 𝜋̂11𝑖. 

𝜋̂01𝑖 = 𝜋̂2𝑖 − 𝜋̂11𝑖. 

𝜋̂00𝑖 = 1 − 𝜋̂1𝑖 − 𝜋̂2𝑖 + 𝜋̂11𝑖. 

The test statistic for testing hypotheses in Equation  can be obtained by  

 𝑉 =
√𝑛(

1

𝑛
∑ 𝑚𝑖

𝑛
𝑖=1 )

√√𝑛(
1

𝑛
∑ (𝑚𝑖−𝑚)2𝑛

𝑖=1 )

  

where 𝑚𝑖 =𝑙𝑛 𝑙𝑛 𝐿(𝛺̂)  −𝑙𝑛 𝑙𝑛 𝐿(𝜔̂) , 𝑚 =
1

𝑛
∑ 𝑚𝑖

𝑛
𝑖=1 , and 𝑛 is sample size. The 𝑙𝑛 𝑙𝑛 𝐿(𝜔̂)  and 

𝑙𝑛 𝑙𝑛 𝐿(𝛺̂)  are obtained in Equations and.    

The Vuong statistic in Equation was asymptotically standard normal distributed. Therefore, reject 

𝐻0 if |𝑉| > 𝑍1−𝛼/2, where the critical value 𝑍1−𝛼/2 is 1 − 𝛼/2 quantile from a standard normal 

distribution.  

4.2. Simultaneous test 

This test is used to determine the simultaneous significance of the regression parameters. Consider the 

hypotheses 

𝐻0: 𝛽1𝑠(𝑢𝑖) = 𝛽2𝑠(𝑢𝑖) = ⋯ = 𝛽𝑘𝑠(𝑢𝑖) = 0, 𝑠 = 1,2,3;  𝑖 = 1,2, … , 𝑛 
𝐻1: at least one of the 𝛽𝑟𝑠(𝑢𝑖) ≠ 0, 𝑟 = 1,2, … , 𝑘.  

The test statistic for hypotheses in Equation can be determined by using the LRT method [15]. 

Suppose the parameters set under 𝐻0 is 𝜔∗ = {𝛽01(𝑢𝑖), 𝛽02(𝑢𝑖), 𝛽03(𝑢𝑖), 𝑖 = 1, 2, … , 𝑛}. Thus, to 

determine the likelihood function under 𝐻0  

𝐿(𝜔∗) = ∏ [(𝜋11𝑖
∗ (𝑥𝑖))

𝑦11𝑖
(𝜋10𝑖

∗ (𝑥𝑖))
𝑦10𝑖

(𝜋01𝑖
∗ (𝑥𝑖))

𝑦01𝑖
(𝜋00𝑖

∗ (𝑥𝑖))
𝑦00𝑖

]𝑛
𝑖=1 .   

Let 𝜋𝑔ℎ𝑖
∗ (𝑥𝑖) = 𝜋𝑔ℎ𝑖

∗ , for 𝑔, ℎ = 0,1 and 𝑖 = 1, 2, … , 𝑛. The likelihood function in Equation  can be 

rewritten as 

𝐿(𝜔∗) = ∏ [(𝜋11𝑖
∗ )𝑦11𝑖(𝜋10𝑖

∗ )𝑦10𝑖(𝜋01𝑖
∗ )𝑦01𝑖(𝜋00𝑖

∗ )𝑦00𝑖]𝑛
𝑖=1 .  

Based on Equation  to determine maximum log-likelihood function under 𝐻0  

𝑙𝑛 𝑙𝑛 𝐿(𝜔̂∗)  = ∑ (𝑦11𝑖 𝑙𝑛 𝑙𝑛 𝜋̂11𝑖
∗  + 𝑦10𝑖 𝑙𝑛 𝑙𝑛 𝜋̂11𝑖

∗  + 𝑦01𝑖 𝑙𝑛 𝑙𝑛 𝜋̂11𝑖
∗  + 𝑦00𝑖

𝑛
𝑖=1

𝑙𝑛 𝑙𝑛 𝜋̂11𝑖
∗  ),  

where 𝜋̂11𝑖
∗ , 𝜋̂10𝑖

∗ , 𝜋̂01𝑖
∗ , and 𝜋̂00𝑖

∗  for 𝑖 = 1, 2, … , 𝑛 are formulated as follows 
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𝜋̂11𝑖
∗ = {

𝑎5 − √𝑎5
2 + 𝑏5

2(𝜓̂5 − 1)
, 𝜓̂5 ≠ 1   𝜋̂1𝑖

∗ 𝜋̂2𝑖
∗ , 𝜓̂5 = 1  

where 𝑎5 = 1 + (𝜓̂5 − 1)(𝜋̂1𝑖
∗ + 𝜋̂2𝑖

∗ ), 𝑏5 = −4𝜓̂5(𝜓̂5 − 1)𝜋̂1𝑖
∗ 𝜋̂2𝑖

∗ , 𝜋̂1𝑖
∗ =

𝑒𝛽̂01(𝑢𝑖)𝑥𝑖

[1+𝑒𝛽̂01(𝑢𝑖)𝑥𝑖]
, 

𝜋̂2𝑖
∗ =

𝑒𝛽̂02(𝑢𝑖)𝑥𝑖

[1+𝑒𝛽̂02(𝑢𝑖)𝑥𝑖]
, and 𝜓̂5 =

𝜋̂11𝑖
∗ 𝜋̂00𝑖

∗

𝜋̂10𝑖
∗ 𝜋̂01𝑖

∗  with 𝛽̂01(𝑢𝑖) and 𝛽̂02(𝑢𝑖) are maximum likelihood estimators 

(MLEs) for 𝛽01(𝑢𝑖) and 𝛽02(𝑢𝑖). 

𝜋̂10𝑖
∗ = 𝜋̂1𝑖

∗ − 𝜋̂11𝑖
∗ . 

𝜋̂01𝑖
∗ = 𝜋̂2𝑖

∗ − 𝜋̂11𝑖
∗ . 

𝜋̂00𝑖
∗ = 1 − 𝜋̂1𝑖

∗ − 𝜋̂2𝑖
∗ + 𝜋̂11𝑖

∗ . 

Furthermore, to obtain parameters set under population. The parameters set underpopulation are similar 

to the parameter similarity test in Section 4.1. Therefore, the likelihood function and maximum log-

likelihood function underpopulation are obtained by Equations and. 

The test statistic for hypotheses in Equation  is given by 

𝐺2 = −2[𝑙𝑛 𝑙𝑛 𝐿(𝜔̂∗)  −𝑙𝑛 𝑙𝑛 𝐿(𝛺̂) ],  

where 𝐿(𝛺̂) and 𝐿(𝜔̂∗) are obtained in Equations and the test statistic in Equation  can be rewritten as 

follows 

𝐺2 = 2[∑ (𝑦11𝑖 𝑙𝑛 𝑙𝑛 𝜋̂11𝑖  + 𝑦10𝑖 𝑙𝑛 𝑙𝑛 𝜋̂10𝑖  + 𝑦01𝑖 𝑙𝑛 𝑙𝑛 𝜋̂01𝑖  + 𝑦00𝑖 𝑙𝑛 𝑙𝑛 𝜋̂00𝑖 ) +𝑛
𝑖=1   

           − ∑ (𝑦11𝑖 𝑙𝑛 𝑙𝑛 𝜋̂11𝑖
∗  + 𝑦10𝑖 𝑙𝑛 𝑙𝑛 𝜋̂10𝑖

∗  + 𝑦01𝑖 𝑙𝑛 𝑙𝑛 𝜋̂01𝑖
∗  + 𝑦00𝑖 𝑙𝑛 𝑙𝑛 𝜋̂00𝑖

∗  )]𝑛
𝑖=1 . 

  
The likelihood ratio (LR) statistic is also referred to as the Wilk’s lambda statistic [16].  The LR 

statistic in Equation has an asymptotic chi-squared distribution with 𝑣 degree of freedom, where 𝑣 is the 

difference between the effective number of parameters in GWBLR model without independent variables 

(the reduced model) and GWBLR model with independent variables (the full model). Therefore, reject 

𝐻0 when 𝐺2 > 𝜒(𝑣,1−𝛼)
2 , where 𝜒(𝑣,1−𝛼)

2  is the 1 − 𝛼 quantile from a chi-square distribution (𝜒2) with 

𝑣 degree of freedom.  

4.3. Partial test 

The last test on hypothesis testing of the GWBLR model parameters is a partial test. This test is used to 

determine the significance of each parameter in the regression model. The form of hypotheses can be 

expressed as 

𝐻0: 𝛽𝑟𝑠(𝑢𝑖) = 0, 𝑟 = 1, 2, … , 𝑘; 𝑠 = 1, 2, 3;  𝑖 = 1, 2, … , 𝑛, 
𝐻1: 𝛽𝑟𝑠(𝑢𝑖) ≠ 0.  

The test statistic for hypotheses in Equation is done by using the Wald test method. The basic idea 

of this method is following properties of the MLEs, particularly asymptotically normally distributed. 

Therefore, the Wald statistic is formulated by 

𝑊 =
𝛽̂𝑟𝑠(𝑢𝑖)

√𝑉𝑎𝑟̂(𝛽̂𝑟𝑠(𝑢𝑖))

~𝑁(0,1),  

where 𝑉𝑎𝑟̂(𝛽̂𝑟𝑠(𝑢𝑖)) is the diagonal elements of the matrix [𝐼(𝛽(𝑢𝑖))]−1 and 𝐼(𝛽(𝑢𝑖)) is a Fisher 

information matrix [17]. The [𝐼(𝛽(𝑢𝑖))]−1 the matrix can be determined by  

[𝐼(𝛽(𝑢𝑖))]−1 = (−𝐸 [
𝜕2𝑙𝑛𝑙𝑛 𝐿(𝛽(𝑢𝑖)) 

𝜕2𝛽(𝑢𝑖)
])

−1

=

(𝐸 [(
𝜕𝑙𝑛𝑙𝑛 𝐿(𝛽(𝑢𝑖)) 

𝜕𝛽(𝑢𝑖)
) (

𝜕𝑙𝑛𝑙𝑛 𝐿(𝛽(𝑢𝑖)) 

𝜕𝛽(𝑢𝑖)
)

𝑇

])
−1

. 

The Wald statistic in Equation was asymptotically standard normal distributed [17]. Thus, reject 𝐻0 if 

|𝑊| > 𝑍1−𝛼/2, where the critical value 𝑍1−𝛼/2 is 1 − 𝛼/2 quantile from a standard normal distribution. 
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5. Conclusion 

GWBLR model is a local form of BLR which all of the regression parameters depend on the 

geographical location. Hypothesis testing on the GWBLR model is based on the GWR method, that is, 

hypothesis testing is done locally, dependent on the spatial weighting function in the study area. There 

are three kinds of hypothesis tests. The first test is a parameter similarity test by using the Vuong test 

method. The test is used to determine a significant difference between GWBLR and BLR. The Vuong 

test statistic was asymptotically standard normal distributed. The second test is a simultaneous test using 

the LRT method. The simultaneous test is used to determine the simultaneous significance of the 

regression parameters. The LR statistic has an asymptotic chi-squared distribution with the degree of 

freedom is the difference between the effective number of parameters in the reduced model and the full 

model. The last test is a partial test using the Wald test method and it was applied to determine the 

significance of each parameter in the regression model. The Wald test statistic was asymptotically 

standard normal distributed. 
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