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Abstract. Poisson regression is commonly used in modeling count data. An essential assumption of the Poisson 
regression model is that the mean of the response variable is equal to the variance, namely equidispersion. Many fields of 
research were the data overdispersed, which is the variance greater than its mean. Therefore, the Poisson regression 
model is not suitable to model it. The negative binomial regression (NBR) model is a solution of the Poisson regression 
model when the response variable is an overdispersion count data. This study aims to build an NBR model and apply it to 
model the dengue hemorrhagic fever (DHF) cases in East Kalimantan Province, Indonesia, in 2019. The maximum 
likelihood estimation and Fisher scoring methods were used to estimate the NBR model parameters, whereas the 
significant test containing the overall and individual tests was done using the likelihood ratio and Wald test statistics. 
Based on data analysis, the mean and variance values of the DHF data in East Kalimantan Province were 672 and 
386113, respectively, and it shows that the DHF cases in East Kalimantan Province, Indonesia, in 2019 were an 
overdispersed count data. The factors that affected the DHF cases in East Kalimantan Province, Indonesia, in 2019 based 
on the NBR model were the total area, the area altitude, population density, and the health workers. 

INTRODUCTION 

Count data is one type of statistical data that shows the number of events over a particular time and can only be 
positive so that the conventional method can be used in the modeling with Poisson regression. Some assumptions 
must be met when using Poisson regression. The mean and variance must be equal, namely equidispersion [1]. In 
the case of count data, this assumption is often not met because many data in various research fields that are the 
variance is greater than the mean, called overdispersion. An invalid model can underestimate standard errors and 
misleading inference for regression parameters [2]. Therefore, an approach is needed to overcome the problem of 
overdispersion in Poisson regression. Several studies that can be used to accommodate overdispersion in Poisson 
regression have been proposed. The negative binomial regression (NBR) model was proposed [3,4,5]. The NBR 
model was constructed with a mixed Poisson and gamma distribution. Meanwhile, the random-effects regression 
models for handling overdispersion due to latent heterogeneity were founded [6,7].  

Furthermore, the dengue hemorrhagic fever (DHF) cases sufferers is a count data that tends to be overdispersion. 
DHF is a major public health problem in Indonesia, and the DHF mortality rate is continually increasing from year 
to year. DHF often appears as an extraordinary event (KLB) with a relatively high mortality rate. The Aedes 
Aegypti mosquito vector transmits DHF through bites. The most common places for these mosquitoes are humid, 
high rainfall, puddles of water inside and outside the house. Another factor that causes dengue fever is population 
density and unhealthy community behavior [8].  

According to [9], the DHF cases in Indonesia in 2019 were 138,127. This number increased compared to 2018 of 
65,602 cases. Deaths due to DHF in 2019 also increased compared to 2018, which was 467 to 919 deaths. Illness 
and death can be described using the incidence rate (IR) indicator per 100,000 population and the case fatality rate 
(CFR) as a percentage. The IR of DHF in Indonesia in 2019 was 51.48 per 100,000 population. It describes an 
increase compared to the previous two years. Of all provinces in Indonesia, in 2019, East Kalimantan Province ranks 



second for the highest IR, with an IR of 180.66. This IR value also exceeds Indonesian IR. It shows that the DHF 
cases in East Kalimantan Province are high compared to other provinces in 2019. 

The purpose of this study is to examine the theory and application of the NBR model. A study of theory 
discusses the estimation and testing of parameter hypotheses. The maximum likelihood estimation (MLE) and Fisher 
scoring methods estimate the NBR model parameters. Hypothesis testing using the likelihood ratio test (LRT) and 
Wald test methods. The applied study is modeling the factors that influence the DHF cases in East Kalimantan 
Province, Indonesia, in 2019. 

MATERIALS AND METHODS 

Data Sources and Research Variables 

The data used in this study is secondary data obtained from the Central Bureau of Statistics [10]. The research 
variables used in this study are presented in Table 1. 

 
TABLE 1. Research variables 

Symbols Variables Variable Types 

𝑌 The DHF cases Discrete 
𝑋  The total area Numeric 
𝑋  The area altitude Numeric 
𝑋  Population density Numeric 
𝑋  The health workers Discrete 

Poisson Regression 

Poisson regression is included in the generalized linear models [11]. The Poisson regression model can be used 
to model events that have a small probability of occurrence with occurrence depending on a certain time interval 
[12]. The response of the Poisson regression model is the count data which is assumed to follow the Poisson 
distribution with the probability mass function defined as follows [1]: 

𝑃(𝑦; 𝜇) =
𝑒 𝜇

𝑦!
, 𝑦 = 0,1,2, … ;  𝜇 > 0 (1) 

where 𝜇 is the mean of the number of events in a certain interval. The mean and variance of the Poisson distribution 
based on Equation (1) are expressed by 𝐸(𝑌) = 𝑉𝑎𝑟(𝑌) = 𝜇. 

According to [11], the relationship function for Poisson regression is stated as follows: 
 𝜂 = log(𝜇 ) = 𝒙 𝜽, 𝑖 = 1,2, … , 𝑛  (2) 

where 𝜂  is the link function at 𝑖-th observation, 𝜇  is the mean of response variable at 𝑖-th observation,                
𝒙 = [1 𝑥 𝑥 ⋯ 𝑥 ] is the vector of the explanatory variables at 𝑖-th observation, 𝜽 =
[𝜃0 𝜃1 𝜃2 ⋯ 𝜃𝑘]  is the vector of parameters, and 𝑛 is the sample size. 

Based on Equation (2), the form of the Poisson regression model is  
𝑦 = 𝜇 + 𝜀 = exp(𝒙 𝜽) + 𝜀 , 𝑖 = 1,2, … , 𝑛 (3) 

where 𝜇 , 𝒙 , 𝜽, and 𝑛 as in Equation (2), 𝑦  is the response variable at 𝑖-th observation, and 𝜀  is the error at 𝑖-th 
observation. 

Overdispersion 

[11] state that the count data contains overdispersion if the variance is greater than the mean, namely 𝑉𝑎𝑟(𝑌) >
𝐸(𝑌). Overdispersion occurs due to unobserved sources of variability in the data or the influence of other variables 
that result in the probability of an event occurring depending on previous events. Overdispersion can lead to 
underestimating the standard error, resulting in underestimated parameters and the significance of the explanatory 
variable effect being overestimated. Overdispersion in Poisson regression can be detected by the deviance divided 
by the degrees of freedom. If the value is greater than one, it is said that there is overdispersion in the data [1]. 



Negative Binomial Regression 

Negative binomial regression (NBR) is one solution to overcome the overdispersion problem based on the 
Poisson-gamma mixture model [1, 13]. According to [14], the negative binomial distribution that accommodates 
overdispersion has a density function as follows:  

𝑃 𝑦 ;𝜇 , 𝜁 =
Γ(𝑦 + 𝜁 )

Γ(𝜁 )Γ(𝑦 + 1)

𝜁

𝜁 + 𝜇

𝜇

𝜁 + 𝜇
, 𝑖 = 1,2, … , 𝑛; 𝑦 = 0,1,2, … ;  𝜁 ≥ 0, (4) 

where Γ(∙) is the gamma function, and 𝜁 is the dispersion parameter. The mean and variance of the negative 
binomial distribution are expressed by 𝐸(𝑦 |𝑥 ) = 𝜇  and 𝑉𝑎𝑟(𝑦 |𝑥 ) = 𝜇 + 𝜁𝜇 , respectively.  

The NBR model can be written as  
𝜂 = log(𝜇 ) = log[exp(𝒙 𝜽)] = 𝜃 + 𝜃 𝑥 + 𝜃 𝑥 + ⋯ + 𝜃 𝑥 = 𝒙 𝜽, 𝑖 = 1,2, … , 𝑛 (5) 

where 𝜂 , 𝜇 , 𝒙 , 𝜽, and 𝑛 as in Equation (2). 
The NBR model can be obtained by estimating the model parameters using the MLE method. The initial step of 

parameter estimation using the MLE method is to form the likelihood and log-likelihood functions as follows: 

ℒ(𝜽, 𝜁) =
Γ(𝑦 + 1 𝜁⁄ )

Γ(1 𝜁⁄ )Γ(𝑦 + 1)

1

1 + 𝜁𝜇

⁄ 𝜁𝜇

1 + 𝜁𝜇
. (6) 

Since 
( ⁄ )

( ⁄ ) ( )
= ∏ (𝑗 + 1 𝜁⁄ ), the likelihood function in Equation (6) can be written as  

ℒ(𝜽, 𝜁) = 𝑗 𝜁⁄
1

(𝑦 !)

1

1 + 𝜁𝜇

⁄ 𝜁𝜇

1 + 𝜁𝜇
. (7) 

ℓ(𝜽, 𝜁) = log[ℒ(𝜽, 𝜁)] = log(𝑗 + 1 𝜁⁄ ) − log(𝑦 !) + 𝑦 log(𝜁𝜇 ) − (𝑦 + 1 𝜁⁄ ) log(1 + 𝜁𝜇 ) . (8) 

Furthermore, maximizing the log-likelihood function in Equation (8) by determining the first-order partial 
derivatives of the log-likelihood function, then equating them to zero: 

𝜕ℓ(𝜽, 𝜁)

𝜕𝜃
= 𝑦 − (𝑦 + 1 𝜁⁄ )

𝜁𝜇

1 + 𝜁𝜇
=

𝑦 − 𝜇

1 + 𝜁𝜇
= 0. 

(9) 
𝜕ℓ(𝜽, 𝜁)

𝜕𝜃
= 𝑦 𝑥 − (𝑦 + 1 𝜁⁄ )

𝜁𝜇 𝑥

1 + 𝜁𝜇
=

𝜇

1 + 𝜁𝜇

(𝑦 − 𝜇 )𝑥

𝜇
= 0. 

𝜕ℓ(𝜽, 𝜁)

𝜕𝜁
= −𝜁

1

(𝑗 + 𝜁 )
+ 𝜁 log(1 + 𝜁𝜇 ) −

𝑦 − 𝜇

𝜁(1 + 𝜁𝜇 )
= 0. 

The second-order partial derivative of the log-likelihood function based on Equation (9) is as below. 

𝜕 ℓ(𝜽, 𝜁)

𝜕𝜃
= −

(1 + 𝜁𝑦 )𝜇

(1 + 𝜁𝑦 )
 

(10) 

𝜕 ℓ(𝜽, 𝜁)

𝜕𝜃 𝜕𝜃
= −

(1 + 𝜁𝑦 )𝑥 𝜇

(1 + 𝜁𝑦 )
, 𝑟 ≤ 𝑘 

𝜕 ℓ(𝜽, 𝜁)

𝜕𝜃 𝜕𝜃
= −

𝑥 𝑥 𝜇 (1 + 𝜁𝑦 )

(1 + 𝜁𝜇 )
, 𝑙 ≤ 𝑘 

𝜕 ℓ(𝜽, 𝜁)

𝜕𝜁
= 𝜁

(2𝑗 + 𝜁 )

(𝑗 + 𝜁 )
− 2𝜁 log(1 + 𝜁𝜇 ) −

𝜁 𝜇

(1 + 𝜁𝜇 )
−

(𝑦 − 𝜇 )(1 + 2𝜁𝜇 )

(𝜁 + 𝜁 𝜇 )
, 

 where 𝑘, 𝑙, and 𝑟 are the number of parameters. 
The maximum likelihood estimator of the NBR model parameters in Equation (9) has an implicit form. 

Therefore, we need the numerical approach. The Fisher scoring method was used [15]. The Fisher scoring algorithm 
for obtaining the maximum likelihood estimator is as follows: 



1. Determine the initial value for 𝜽 and 𝜁, namely 𝜽( ) = 𝜃
( )

𝜃
( )

𝜃
( )

⋯ 𝜃
( )  and 𝜁( ). 

2. Determine the tolerance value, symbolized by 𝛿 for the iteration process stopping. 
3. Start the iteration process using the Fisher scoring formula: 

𝜽( ) = 𝜽( ) + 𝑰 𝜽( ) 𝒈 𝜽( ) , 𝑢 = 0,1,2, … , 𝑚. (11) 
where 𝒈(𝜽) is the gradient vector, which has the elements in Equations (9). 𝑰(𝜽) is the information matrix and 
defined as 

𝑰(𝜽) = 𝐸 −
𝜕 ℓ(𝜽, 𝜁)

𝜕𝜃 𝜕𝜃
=

𝑥 𝑥 𝜇

1 + 𝜁𝜇
, 

where the 𝜕 ℓ(𝜽, 𝜁) 𝜕𝜃 𝜕𝜃⁄  displays in Equation (10). 
4. The iteration stops at the 𝑚-th iteration if the condition of convergence is satisfied, which is 𝜽( ) − 𝜽( ) ≤

𝛿, where 𝛿 is the smallest positive value. The estimator values of the parameters are obtained in the last iteration.    
Furthermore, hypothesis testing on the NBR model parameters was employed to get the explanatory variables 

influencing the response variable. Hypothesis testing contains an overall test and the individual test. The overall test 
is used to jointly obtain the significant effect of the explanatory variables on the response variable. Meanwhile, the 
individual test is used to get the individually significant effect of the explanatory variables on the response variable. 

The test used for the overall test is the LRT method with the following hypothesis:  
𝐻 ∶  𝜃 = 𝜃 = ⋯ = 𝜃 = 0 
𝐻 ∶  at least one of 𝜃 ≠ 0, 𝑟 = 1,2, … , 𝑘. 
The test statistic used for this test is Wilk's lambda statistic which is defined as follows: 

𝐺 = 2 𝑦 log
𝑦

�̂�
− 𝑦 +

1

𝜁
log

1 + 𝜁𝑦

1 + 𝜁�̂�
. (12) 

The test statistic in Equation (12) is an asymptotic chi-square distribution [16]. Therefore, the critical region of 
the test is the null hypothesis is rejected when Wilk’s lambda statistic value is greater than the 𝜒( , ) value (i.e., 

𝐺 > 𝜒( , )), where 𝛼 is a significance level, and 𝑣 is the degrees of freedom. The 𝜒( , ) value is obtained from the 
chi-square distribution table, which is 𝑣 = 𝑘 − 2. On the other hand, the null hypothesis is rejected when the 𝑝-
value is less than 𝛼.   

The following hypothesis test is an individual test using the Wald test procedure. The hypothesis is  
𝐻 ∶ 𝜃 = 0 
𝐻 ∶ 𝜃 ≠ 0, 𝑟 = 1,2, … , 𝑘. 
The test statistic is Wald statistic, which is formulated by  

𝐺 =
𝜃

𝑆𝐸 𝜃
, (13) 

where 𝑆𝐸 𝜃 = 𝑉𝑎𝑟 𝜃   is the standard error of 𝜃 . 𝑉𝑎𝑟 𝜃   is the diagonal element of 𝑰 𝜽( ) , and 𝑰(𝜽) 

is derived in Equation (11). The Wald statistic in Equation (13) has an asymptotic standard normal distribution [16]. 
Thus, the null hypothesis is rejected when the Wald statistic value falls into the rejection region, namely, |𝐺 | >
𝑍 ⁄ . The 𝑍 ⁄  value can be obtained from the table of standard normal distribution. If using the 𝑝-value, then the 
null hypothesis is rejected when the 𝑝-value is less than 𝛼.  

RESULTS AND DISCUSSION 

The descriptive statistics of the research variable includes the response variable and the explanatory variables, 
are given in Table 2. 

TABLE 2. The descriptive statistics of the research variables 

Variables Minimum Maximum Mean Standard Deviation 

𝑌 66 1838 672 621 
𝑋  163.1 31051.7 12734.7 11494.05 
𝑋  5.98 174.63 54.1 65.04 
𝑋  1.36 1297.74 379.65 579.07 
𝑋  287 2960 1381 903 



 
Based on Table 2, the highest DHF cases were in Balikpapan City, whereas the lowest was in Mahakam Ulu 

Regency. The largest area was in Kutai Timur Regency, and the smallest was Bontang City. The highest area was 
Mahakam Ulu Regency, and the smallest was Kutai Timur Regency. The most density of population was in 
Balikpapan City, and the sparsely was Mahakam Ulu Regency. Most health workers in Samarinda City and a few 
were in Mahakam Ulu Regency. Meanwhile, the mean and variance values of the DHF cases in Table 2 are not 
equal, which was the variance of the DHF cases greater than its mean. Consequently, the DHF cases in East 
Kalimantan Province were overdispersed count data, and the NBR can model it.  

They were, furthermore, detecting the multicollinearity of the explanatory variables using the variance inflation 
factor (VIF) values. The VIF values of all explanatory variables in Table 3 are less than ten, which indicates no 
multicollinearity. Therefore, all explanatory variables can be used in the NBR model. 

 

TABLE 3. VIF values of the explanatory variables 

Explanatory Variables VIF 

𝑋  2.8981 
𝑋  1.3499 
𝑋  5.1523 
𝑋  2.9927 

 
Table 4 below presents the estimation and hypothesis testing results of the NBR model parameters used to model 

the factors influencing the DHF cases in East Kalimantan Province.  
 

TABLE 4. Parameter estimates and the test statistic values of the overall test and the individual test 

Parameter Estimation Standard Error 𝑮  𝒑-Value 

𝜃  4.988 0.2849 17.541 < 0.0001 
𝜃  2.757 × 10-5 1.285 × 10-5 2.145 0.03197 
𝜃     -6.791 × 10-3 1.587 × 10-3 -4.278 < 0.0001 
𝜃  9.609 × 10-4 3.390 × 10-4 2.835 0.00458 
𝜃  5.240 × 10-4 1.643 × 10-4 3.190 0.00142 

𝜁 = 15,6363 
𝐺  = 27.7541, 𝑝-value = 9.4031 × 10-7 (< 0.0001)         
𝛼 = 0.05 
𝑣 = 2 
𝜒( , ) = 5.9915 
𝑍 ⁄  = 1.96 

 
Wilk's lambda statistic (𝐺 ) value of the overall test in Table 4 exceeded the 𝜒( , ) value. The 𝑝-value was less 

than 𝛼. The results indicated that the total area, the area altitude, population density, and the health workers were 
jointly significantly affecting the DHF cases in East Kalimantan Province. Meanwhile, the individual test was used 
to obtain the explanatory variables that significantly affect the DHF cases in East Kalimantan Province. Based on 
Table 4, all values of the Wald statistic exceeded the 𝑍 ⁄  value, and also, all of the 𝑝-values were less than 𝛼. 
Therefore, the conclusion was that the total area, the area altitude, population density, and the health workers 
significantly affected the DHF cases in East Kalimantan Province.  

CONCLUSION 

Poisson regression is a popular choice in modeling count data. One of the essential assume in Poisson regression 
is equidispersion, where the mean of response is equal to the variance. Many data counts in various research fields 
are overdispersed, which is the response variable variance greater than its mean. Therefore, Poisson regression 
cannot be used to model it. Overdispersion response data can be modeled with NBR. The NBR model was obtained 
using the MLE and Fisher scoring methods. Hypothesis testing of the NBR model contains the overall test and the 
individual test. The overall test was employed by Wilk's lambda statistic, whereas the Wald statistic was used for the 



individual test. The NBR model was applied to the DHF cases in East Kalimantan, Indonesia, in 2019. The mean 
and variance of DHF cases have the values of 672 and 386,113, respectively, and it shows that the DHF cases were 
an overdispersion count data. Therefore, the NBR model was suitable to model. Based on the NBR model analysis, 
the factors significantly influencing the DHF cases in East Kalimantan Province, Indonesia, in 2019 were the total 
area, the area altitude, population density, and the health workers.  
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