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Abstract 
 

Nonparametric geographically weighted regression with truncated spline approach is a new method of statistical 

science. It is used to solve the problems of regression analysis of spatial data if the regression curve is unknown. This method is 

the development of nonparametric regression with truncated spline function approach to the analysis of spatial data. Spline 

truncated approach can be a solution for solving the modeling problem of spatial data analysis if the data pattern between the 

response and the predictor variables is unknown or regression curve is not known. This study focused on finding the estimators of 

the model nonparametric geographically weighted regression by maximum likelihood estimator (MLE) and then these estimators 

are investigated the unbiased property. The results showed nonparametric geographically weighted regression with truncated 

spline approach can be used in spatial data to solve problems regression curve that cannot be identified. 
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1. Introduction 

 

The development in science and technology has 

been rapid over the years, and the observation of the signs in 

nature led to unusual patterns, therefore it is difficult to 

predict the behavior of nature. In the past decade, the start and 

end of dry and rainy season in various geographical areas 

could easily be predicted, hence farmers were able to prepare 

when to harvest and plant rice; however in the recent years it 

has become difficult. Examples of events that shape the 

unusual and irregular patterns of nature are the issue of the 

percentage of poverty, underdevelopment, literacy rates, and 

 
ignorance that is growing and uneven development in each 

area along with other variables. 

For more than a century, geographers, economists, 

city planners, business strategy experts, regional scientists and 

other social scientists have tried to explain the "why" and 

"where" of implemented activities. This encourages the pro-

liferation of research on the influence of spatial effect which is 

able to explain the effect of events caused by their geographi-

cal influence. Some methods of spatial analysis that has been 

developed are geographically weighted regression or known 

as geographically weighted regression (GWR).  

GWR was first introduced by Fotheringham in 1967. 

The response variables in GWR model contains predictor 

variables that each regression coefficient depends on the loca-

tion where the data is observed. The development of re-

searches on GWR was as follows. A new model of GWR
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which is geographically weighted Poisson regression models 

was found (Nakaya et al., 2005). A model that incorporates 

regression model global and GWR, known as mixed geo-

graphically weighted regression models, was produced 

(Chang-Lin et al., 2006). Another GWR model known as spa-

tio-temporal (Demsar et al., 2008), was also developed in the 

field of spatially related time series. Furthermore, a research 

on geographically and temporally weighted regression model 

(Huang et al., 2010) and research on spatial panel data with 

geographically weighted regression panel method (Yu, 2010) 

were examined multivariate geographically Weighted regres-

sion (MGWR). This study discusses the estimation of the mo-

del using weighted maximum likelihood method (Harini et al., 

2010), geographically and temporally weighted likelihood 

regression model (Wrenn & Sam, 2014), and geographically 

weighted regression with spline approach (Sifriyani et al., 

2017). 

The methods which were developed in this study are 

still in the form of linear and assumed that the data pattern is 

known. In fact, when modeling the data the question is, it true 

that all relationships between predictor variables and the 

response variables form a known regression curve. In reality, 

of course not all the data pattern of relationships has a known 

regression curve so it is necessary to use nonparametric re-

gression analysis for solving this problem. A good model 

should be viewed from various aspects and put a proper mo-

deling issues in its portion. The difference between the envi-

ronmental characteristics and geographic location of observa-

tion, effects the observations to have different variations or 

there are different influences of predictor variables on the 

response variables for each observation location. How to solve 

when predictor variables have variable patterns which are not 

following a specific pattern on response variables and re-

gression curve is not known. In this case, the GWR models 

have not been able to solve this problem so the authors 

developed a nonparametric regression model that is GWR 

otherwise known as nonparametric geographically weighted 

regression. 

This paper is organized as follows; Section 1: Intro-

duction, Section 2: Model Nonparametric Geographically 

Weighted Regression Using Truncated Spline Approach, Sec-

tion 3: Result and Discussion and Section 4: Conclusion. 

 

 

2. Nonparametric Geographically Weighted Regression Models Using Truncated Spline Approach 
 

Nonparametric geographically weighted regression models with truncated spline approach are the development of 

nonparametric regression for spatial data where the parameter estimator is local to each observation location. Spline trun-cated 

approach used to solve the problems of spatial analysis regression curve is unknown. In the regression model assump-tions used 

are normally distributed error with zero mean and variance 𝜎2 𝑢𝑖 ,𝑣𝑖 at each location  𝑢𝑖 , 𝑣𝑖 . Location coor-dinates 𝑢𝑖 ,𝑣𝑖  is 

one of the important factors in determining the weighting used for estimating the parameters of the model. Given the data 
 𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑙𝑖 , 𝑦𝑖  and the relationship bet-ween  𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑙𝑖 ,   and 𝑦𝑖  assumed to follow a nonpara-metric regression model 

as follows: 

𝑦𝑖 = 𝑓 𝑥1𝑖 , 𝑥2𝑖 ,… , 𝑥𝑙𝑖 ,  + 휀𝑖 ,     𝑖 = 1,2, … ,𝑛                                                                               (1) 

 

with𝑦𝑖  as the response variable and 𝑓 𝑥1𝑖 , 𝑥2𝑖 ,… , 𝑥𝑙𝑖 ,   is a function of the unknown regression curve shape which is assumed to 

be additive. If 𝑓 𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑙𝑖 ,   is approached by a multivariable spline function, it can be written as follows: 
 

𝑦𝑖 =  𝑓𝑝  (𝑥𝑝𝑖 )

𝑙

𝑝=1

+ 휀𝑖  

 

Given 𝑓𝑝  (𝑥𝑝𝑖 ) = 𝑓 then 𝑓approximated by a truncated spline functions for each location  𝑢𝑖 , 𝑣𝑖 , defined as follows: 
 

= 𝛽0 𝑢𝑖 , 𝑣𝑖 +   𝛽𝑝𝑘  𝑢𝑖 , 𝑣𝑖 𝑥𝑝𝑖
𝑘

𝑚

𝑘=1

𝑙

𝑝=1

+   𝛿𝑝𝑚 +ℎ 𝑢𝑖 ,𝑣𝑖  𝑥𝑝𝑖 − 𝐾𝑝ℎ +

𝑚
𝑟

ℎ=1

𝑙

𝑝=1

                     (2) 

 

and truncated function 
 

 𝑥𝑝𝑖 − 𝐾𝑝ℎ +

𝑚
=  

 𝑥𝑝𝑖 − 𝐾𝑝ℎ ,𝑥𝑝𝑖 ≥ 𝐾𝑝ℎ

0, 𝑥𝑝𝑖 < 𝐾𝑝ℎ

  

 

Mathematically the relationship between the response variable 𝑦𝑖  and the predictor variables  𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑙𝑖 ,   on the 𝑖-
th location for nonparametric geographically weighted regression models with truncated spline approach, can be expressed as 

follows: 

𝑦𝑖 = 𝛽0 𝑢𝑖 , 𝑣𝑖 +   𝛽𝑝𝑘  𝑢𝑖 , 𝑣𝑖 𝑥𝑝𝑖
𝑘

𝑚

𝑘=1

𝑙

𝑝=1

+   𝛿𝑝𝑚 +ℎ 𝑢𝑖 ,𝑣𝑖  𝑥𝑝𝑖 − 𝐾𝑝ℎ +

𝑚
𝑟

ℎ=1

𝑙

𝑝=1

+ 휀𝑖          3  

 

Equation (3) is a nonparametric geographically weighted regression models with truncated spline approach 𝑚-order 

with 𝑛 number of areas. The components in Equation (3) are described as follows: 𝑦𝑖 is respon variable to locations all 𝑖where𝑖 =

1,2,… ,𝑛. 𝑥𝑝𝑖 is predictor variables on the 𝑝- that 𝑖 area with 𝑝 = 1,2,… , 𝑙. 𝐾𝑝ℎis point knots on the ℎ-th at the components of 

predictor variables 𝑝 with ℎ = 1,2, … , 𝑟. 𝛽𝑝𝑘  𝑢𝑖 ,𝑣𝑖 is parameter regression on the 𝑘- that the predictor variables 𝑝 and the 𝑖-th area. 
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𝛿𝑝𝑚 +ℎ 𝑢𝑖 , 𝑣𝑖 is parameter regression of the function truncated, this parameter is a parameter to 𝑙 + ℎ, at which point knots ℎ-th 

and predictor variables 𝑝. Equation (3) can be expressed by: 

 

𝐘 = 𝑓 + 𝛆 = 𝐗β  𝑢𝑖 , 𝑣𝑖 + 𝐏 δ  𝑢𝑖 , 𝑣𝑖 + 𝛆                                                                   (4) 
 

with 

 

𝒀 =  

𝑦1

𝑦2

⋮
𝑦𝑛

 ,𝜺 =  

휀1

휀2

⋮
휀𝑛

  

 

 
 

 
 

and the predictor variables defined by the matrix 

 

 
 

 
 

3. Results and Discussion 
 

3.1 Estimation model 
 

In nonparametric geographically weighted regression models with truncated spline approach, the assumptions used are 

error i-th observation of identical, independent and normally distributed with zero mean and variance 𝜎2 𝑢𝑖 , 𝑣𝑖 , where the 

parameter β  𝑢𝑖 ,𝑣𝑖 , δ  𝑢𝑖 , 𝑣𝑖 and 𝜎2 𝑢𝑖 , 𝑣𝑖  to are unknown. This shows that every geographical location has different parameter 

values. If the parameter value is constant at any geographical location, the nonparametric geographically weighted regression 

models with truncated spline approach is the same as usual nonparametric regression model. That means that each geographical 

location has the same model. 

 

Theorem 1. 

 

If the regression model (3) with an error 휀𝑖  normally distributed with zero mean and variance 𝜎2 𝑢𝑖 , 𝑣𝑖  was given 

Maximum Likelihood Estimator (MLE) is used to obtain estimator β   𝑢𝑖 ,𝑣𝑖 , δ   𝑢𝑖 , 𝑣𝑖  and 𝑓   as follows. 

 

β   𝑢𝑖 , 𝑣𝑖 = 𝐀 𝐊 𝐘  

δ   𝑢𝑖 , 𝑣𝑖 =  𝐁 𝐊 𝐘  

 𝑓   = 𝐗β   𝑢𝑖 , 𝑣𝑖 + 𝐏 δ   𝑢𝑖 , 𝑣𝑖 = 𝐂 𝐊 𝐘  

 

with 

 

𝐀 𝐊 = 𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 −𝟏 𝐗𝐓 − 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  
𝐁 𝐊 = 𝐑  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏 𝐏𝐓 − 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 −𝟏𝐗𝐓 𝐖 ui , vi  
𝐂 𝐊 = 𝐗 𝐀 𝐊 + 𝐏𝐁 𝐊  
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Proof: 

 

Regression model given in Equation (3), Having obtained the joint density function of 𝑦1, 𝑦2, … , 𝑦𝑛  then to estimate the 

nonparametric geographically weighted regression models with truncated spline approach on location ke- 𝑗, given the likelihood 

function on the location ke- 𝑗 is as following: 

 

𝐿  β  𝑢𝑗 , 𝑣𝑗   ,δ  𝑢𝑗 , 𝑣𝑗  ,𝜎2 𝑢𝑗 , 𝑣𝑗   𝑌 = 2𝜋 −
𝑛

2  𝜎2 𝑢𝑗 , 𝑣𝑗   
−

𝑛

2
 

 

exp  −
1

2𝜎2 𝑢𝑗 ,𝑣𝑗  
  𝑦𝑗 −  𝛽0 𝑢𝑗 ,𝑣𝑗  +   𝛽𝑝𝑘  𝑢𝑗 ,𝑣𝑗   𝑥𝑝𝑖

𝑘

𝑚

𝑘=1

𝑙

𝑝=1

+   𝛿𝑝𝑚 +ℎ 𝑢𝑗 ,𝑣𝑗   𝑥𝑝𝑖 − 𝐾𝑝ℎ +

𝑚
𝑟

ℎ=1

𝑙

𝑝=1

  

2
𝑛

𝑖=1

                          (5) 

 

In this research to gain estimator parameter β  𝑢𝑗 , 𝑣𝑗   ,δ  𝑢𝑗 ,𝑣𝑗  , 𝜎2 𝑢𝑗 , 𝑣𝑗   of nonparametric geographically weighted 

regression models with truncated spline approach, it takes a geographic weighting. Data at each location of the observations are 

weighted depending on the size of influence between the observation locations. The closer the distance between observation 

locations, the greater is the influence of an observation location. Suppose the weighting for the location 𝑖 and location 𝑗is 𝑤𝑖 𝑗  , 

then to get the parameter estimator β  𝑢𝑗 , 𝑣𝑗   ,δ  𝑢𝑗 , 𝑣𝑗  ,𝜎2 𝑢𝑗 , 𝑣𝑗   first providing j ke- weighting on the following observations: 

 

𝑤𝑖 𝑗  𝑦𝑖 = 𝑤𝑖 𝑗   𝛽0 𝑢𝑗 ,𝑣𝑗  +   𝛽𝑝𝑘  𝑢𝑗 , 𝑣𝑗   𝑥𝑝𝑖
𝑘

𝑚

𝑘=1

𝑙

𝑝=1

+   𝛿𝑝𝑚 +ℎ 𝑢𝑗 , 𝑣𝑗   𝑥𝑝𝑖 − 𝐾𝑝ℎ +

𝑚
𝑟

ℎ=1

𝑙

𝑝=1

+ 휀𝑖  

 

휀𝑖
∗ = 𝑤𝑖 𝑗   𝑢𝑗 , 𝑣𝑗  휀𝑖 , 휀𝑖

∗will follow a normal distribution with mean zero and variance𝜎2 𝑢𝑗 , 𝑣𝑗  and 휀𝑖
∗~𝑁  0,𝜎2 𝑢𝑗 , 𝑣𝑗   . The 

weighted likelihood function is 

 

𝐿  β  𝑢𝑗 , 𝑣𝑗   ,δ  𝑢𝑗 , 𝑣𝑗  ,𝜎2 𝑢𝑗 , 𝑣𝑗   𝑌 = 2𝜋 −
𝑛

2  𝜎2 𝑢𝑗 , 𝑣𝑗   
−

𝑛

2
 

 

exp  −
1

2𝜎2 𝑢𝑗 ,𝑣𝑗  
 𝑤𝑖 𝑗   𝑢𝑗 ,𝑣𝑗   𝑦𝑗 −  𝛽0 𝑢𝑗 ,𝑣𝑗  +   𝛽𝑝𝑘  𝑢𝑗 ,𝑣𝑗   𝑥𝑝𝑖

𝑘

𝑚

𝑘=1

𝑙

𝑝=1

+   𝛿𝑝𝑚 +ℎ 𝑢𝑗 ,𝑣𝑗   𝑥𝑝𝑖 − 𝐾𝑝ℎ +

𝑚
𝑟

ℎ=1

𝑙

𝑝=1

  

2
𝑛

𝑖=1

  

 

then performed the operation to facilitate the natural logarithm mathematical operations in order to obtain ln 𝐿 equation as 

follows: 
 

ln 𝐿  β  𝑢𝑗 , 𝑣𝑗   ,δ  𝑢𝑗 , 𝑣𝑗  , 𝜎2 𝑢𝑗 , 𝑣𝑗   𝑌 = −
𝑛

2
ln 2𝜋 −

𝑛

2
ln  𝜎2 𝑢𝑗 , 𝑣𝑗   −

1

2𝜎2 𝑢𝑗 , 𝑣𝑗  
𝚿                                   (6) 

 

with 
 

𝚿 =  𝑤𝑖 𝑗  

𝑛

𝑖=1

 𝑦𝑗 −  𝛽0 𝑢𝑗 , 𝑣𝑗  +   𝛽𝑝𝑘  𝑢𝑗 , 𝑣𝑗   𝑥𝑝𝑖
𝑘

𝑚

𝑘=1

𝑙

𝑝=1

+   𝛿𝑝𝑚 +ℎ 𝑢𝑗 , 𝑣𝑗   𝑥𝑝𝑖 − 𝐾𝑝ℎ +

𝑚
𝑟

ℎ=1

𝑙

𝑝=1

  

2

 

 

=  𝐘 − 𝐗 β  𝑢𝑗 , 𝑣𝑗  − 𝐏δ  𝑢𝑗 ,𝑣𝑗   
𝑇
𝐖 𝑢𝑗 , 𝑣𝑗   𝐘 − 𝐗 β  𝑢𝑗 , 𝑣𝑗  − 𝐏δ  𝑢𝑗 , 𝑣𝑗    

 

Estimation parameter β  𝑢𝑗 , 𝑣𝑗   ,δ  𝑢𝑗 , 𝑣𝑗   and 𝜎2 𝑢𝑗 , 𝑣𝑗   obtained by maximizing ln L shape Equation (6). Estimator 

β  𝑢𝑗 , 𝑣𝑗   will be obtained based on the following derivatives: 

 

∂𝚿

∂β  𝑢𝑗 , 𝑣𝑗  
=

𝜕   𝐘 − 𝐗 β  𝑢𝑗 , 𝑣𝑗  − 𝐏δ  𝑢𝑗 , 𝑣𝑗   
T
𝐖 𝑢𝑗 ,𝑣𝑗   𝐘 − 𝐗 β  𝑢𝑗 , 𝑣𝑗  − 𝐏δ  𝑢𝑗 , 𝑣𝑗    

∂β  𝑢𝑗 , 𝑣𝑗  
 

 

=
𝜕  −2  β  𝑢𝑗 ,𝑣𝑗   

𝐓
𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 +2  β  𝑢𝑗 , 𝑣𝑗   

𝐓
𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 , 𝑣𝑗  +  β  𝑢𝑗 ,𝑣𝑗   

𝐓
𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 ,𝑣𝑗   

∂β  𝑢𝑗 , 𝑣𝑗  
 

−2 𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 + 2 𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 ,𝑣𝑗  + 2 𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 , 𝑣𝑗  = 0 
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 𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 −  𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 , 𝑣𝑗  −  𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 ,𝑣𝑗  = 0 

𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 , 𝑣𝑗  =  𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 − 𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 , 𝑣𝑗   

β  𝑢𝑗 , 𝑣𝑗  =  𝐗𝐓𝐖 𝑢𝑗 ,𝑣𝑗  𝐗  
−𝟏

 𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 −  𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗  
−𝟏

𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 , 𝑣𝑗   

 

So that the parameter estimator β   𝑢𝑗 , 𝑣𝑗   is 

 

β   𝑢𝑗 , 𝑣𝑗  =  𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗  
−𝟏

 𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 −  𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗  
−𝟏

𝐗𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 ,𝑣𝑗                               (7) 

 

because there are n observations location, then using Equation (7) obtained estimator β   𝑢𝑖 , 𝑣𝑖  is 

 

β   𝑢𝑖 ,𝑣𝑖 =  𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏   𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐘 − 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏δ   𝑢𝑖 , 𝑣𝑖                                                        (8) 

 

Furthermore, to obtain estimator δ   𝑢𝑗 , 𝑣𝑗  , can be obtained by maximizing the form ln L Equation (6) and conducted operations 

against the derivative δ  𝑢𝑗 , 𝑣𝑗  . 

 

∂𝚿

∂δ  𝑢𝑗 , 𝑣𝑗  
=

𝜕   𝐘 − 𝐗 β  𝑢𝑗 , 𝑣𝑗  − 𝐏δ  𝑢𝑗 , 𝑣𝑗   
T
𝐖 𝑢𝑗 ,𝑣𝑗   𝐘 − 𝐗 β  𝑢𝑗 , 𝑣𝑗  − 𝐏δ  𝑢𝑗 ,𝑣𝑗    

∂δ  𝑢𝑗 , 𝑣𝑗  
 

 

=
𝜕  −2  δ  𝑢𝑗 , 𝑣𝑗   

𝐓
𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 +2  δ  𝑢𝑗 ,𝑣𝑗   

𝐓
𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 , 𝑣𝑗  +  δ  𝑢𝑗 , 𝑣𝑗   

𝐓
𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 , 𝑣𝑗   

∂δ  𝑢𝑗 , 𝑣𝑗  
 

 

−2 𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 + 2𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 , 𝑣𝑗  + 2𝐏𝐓𝐖 𝑢𝑗 ,𝑣𝑗  𝐏δ  𝑢𝑗 , 𝑣𝑗  = 0 
 

𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏δ  𝑢𝑗 , 𝑣𝑗  = 𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 −  𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 , 𝑣𝑗   
 

δ  𝑢𝑗 , 𝑣𝑗  =  𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏 
−𝟏

𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐘 −  𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏 
−𝟏

𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐗 β  𝑢𝑗 , 𝑣𝑗   

 

So that the parameter estimator δ   𝑢𝑗 , 𝑣𝑗   is 

 

δ   𝑢𝑗 ,𝑣𝑗  =  𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏 
−𝟏

𝐏𝐓𝐖 𝑢𝑗 ,𝑣𝑗  𝐘 −  𝐏𝐓𝐖 𝑢𝑗 , 𝑣𝑗  𝐏 
−𝟏

𝐏𝐓𝐖 𝑢𝑗 ,𝑣𝑗  𝐗 β  𝑢𝑗 , 𝑣𝑗                                (9) 

 

because there are n observations location, then using Equation (9) obtained estimator δ   𝑢𝑖 , 𝑣𝑖  is 

 

δ   𝑢𝑖 , 𝑣𝑖 =  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 − 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗 β   𝑢𝑖 ,𝑣𝑖                                   (10) 

 

Estimator β   𝑢𝑖 , 𝑣𝑖  in Equation (8) still contains estimator δ   𝑢𝑖 ,𝑣𝑖 . Similarly estimator δ   𝑢𝑖 , 𝑣𝑖  in Equation (10) 

still contains estimator β   𝑢𝑖 ,𝑣𝑖 . In order to obtain the form of independent estimator it is necessary to substitution technique. To 

obtain the estimator β   𝑢𝑖 , 𝑣𝑖  free of δ   𝑢𝑖 , 𝑣𝑖  the substitution of the Equation (8) to the Equation (10) as follows: 

 

δ   𝑢𝑖 , 𝑣𝑖 =  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 −  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 β   𝑢𝑖 ,𝑣𝑖 . 

=  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 + 

−  𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗   𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐘 +  

  − 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏δ   𝑢𝑖 , 𝑣𝑖    

=  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 + 

− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐘  + 

+ 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗   𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏δ  𝑢𝑖 , 𝑣𝑖  . 
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Part containing estimator δ   𝑢𝑖 , 𝑣𝑖  grouped in a segment as follows: 

 

δ   𝑢𝑖 , 𝑣𝑖 −  𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏δ  𝑢𝑖 , 𝑣𝑖 = 

 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 + 

− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐘 . 

 

With a bit of elaboration of the following equation: 

 

 I −  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 δ   𝑢𝑖 ,𝑣𝑖 = 

 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 + 

− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐘 . 

 

Part that does not load estimator δ   𝑢𝑖 , 𝑣𝑖  moved to the right 

 

δ   𝑢𝑖 , 𝑣𝑖 =  I −  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏 −1 

  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 +  

− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓  𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐘  . (11) 

 

If defined 

 

𝐑 =  I −  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 −1 (12) 

 

By replacing the existing components in Equation (11) with R defined on similarities (12), Equation (11) can be written as 

follows: 

 

δ   𝑢𝑖 ,𝑣𝑖 = 𝐑  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖  𝑢𝑖 , 𝑣𝑖 𝐘 + 

− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖  𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐘  . 

 

Then the estimator obtained δ   ui , vi  
 

δ   𝑢𝑖 , 𝑣𝑖 = 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 + 

−𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐘  

= 𝐑  𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏 𝐏𝐓 − 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐘  

= 𝐁 𝐊 𝐘  

 

Thus obtained estimator δ   𝑢𝑖 , 𝑣𝑖  is 

 

δ   𝑢𝑖 , 𝑣𝑖 = 𝐁 𝐊 𝐘                                                                                             (13) 

 

With hat matrix 𝐁 𝐊  is 
 

𝐁 𝐊 = 𝐑  𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏 𝐏𝐓 − 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  

 

Next to gain estimator β   𝑢𝑖 , 𝑣𝑖  free of δ   𝑢𝑖 , 𝑣𝑖  the substitution of the Equation (10) to the Equation (8). The obtained estimator 

β   𝑢𝑖 , 𝑣𝑖  is 

 

β   𝑢𝑖 , 𝑣𝑖 = 𝐒 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏  𝐗𝐓 − 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐘  

= 𝐀 𝐊 𝐘  

 

Based on the description above estimator β   𝑢𝑖 ,𝑣𝑖  can be written as follows: 
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β   𝑢𝑖 ,𝑣𝑖 = 𝐀 𝐊 𝐘                                                                                             (14) 

With the hat matrix 𝐀 𝐊  is 

 

𝐀 𝐊 = 𝐒 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏  𝐗𝐓 − 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  
 

Next to determine the estimator function of nonparametric geographically weighted regression with truncated spline approach in 

Equation (2), can be substituted β   𝑢𝑖 ,𝑣𝑖  and δ   𝑢𝑖 , 𝑣𝑖  value in the following equation: 

 

𝑓   = 𝐗β   𝑢𝑖 , 𝑣𝑖 + 𝐏 δ   𝑢𝑖 , 𝑣𝑖  

= 𝐗  𝐀 𝐊 𝐘 + 𝐏𝐁 𝐊 𝐘  

=  𝐗  𝐀 𝐊 + 𝐏𝐁 𝐊  𝐘  

= 𝐂 𝐊 𝐘  

 

The matrix 𝐂 𝐊 = 𝐗 𝐀 𝐊 + 𝐏𝐁 𝐊  is a hat matrix containing knots point K for nonparametric geographically weighted 

regression models with truncated spline approach. 
 

3.2 Unbiased Estimator β   ui , vi , δ 
  ui , vi  and f   

 

Unbiased estimator β   𝑢𝑖 , 𝑣𝑖  is given in lemma 1 as follows: 

 

Lemma 1. 

 

If β   𝑢𝑖 ,𝑣𝑖  is a estimator of nonparametric geographically weighted regression with truncated spline approach that 

follows the Equation (3), then β   𝑢𝑖 , 𝑣𝑖  is an unbiased estimator for β  𝑢𝑖 ,𝑣𝑖 . 

 

Proof: 

 

After the obtained estimator β  𝑢𝑖 ,𝑣𝑖 , then shown an unbiased nature of the estimator β  𝑢𝑖 ,𝑣𝑖  in the following 

manner: 

 

E  β   𝑢𝑖 , 𝑣𝑖  = E 𝐀 𝐊 𝐘  . 

= E 𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏  𝐗𝐓 − 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐘  . 

=  𝐒 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 +  

  −𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖  E 𝐘  .                                      (15) 

 

Furthermore E 𝐘   is substituted into the Equation (25), in order to obtain the following equation: 

 

E  β   𝑢𝑖 , 𝑣𝑖  =  𝐒 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 +  

  −𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖   

 𝐗 β  𝑢𝑖 ,𝑣𝑖 + 𝐏 δ  𝑢𝑖 , 𝑣𝑖  . 

 

With a bit of mathematical elaboration and there are some components of the matrix is equal to 1, was obtained 

 

E  β   𝑢𝑖 , 𝑣𝑖  = 𝐒 β  𝑢𝑖 , 𝑣𝑖 + 𝐒 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖  𝐗 β  𝑢𝑖 ,𝑣𝑖 + 

−𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 δ  𝑢𝑖 , 𝑣𝑖 . 

 

Furthermore, the elaboration of mathematical is obtained: 

 

E  β   𝑢𝑖 , 𝑣𝑖  = 𝐒 β  𝑢𝑖 , 𝑣𝑖 + 
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−𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖  𝐗 β  𝑢𝑖 ,𝑣𝑖 . 

=  I −  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖  𝐗 𝐒β  𝑢𝑖 ,𝑣𝑖 . 

 

Furthermore substitutable matrix S, is obtained: 

 

E  β   𝑢𝑖 , 𝑣𝑖  =  I −  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  

 I −  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖  𝐗 −1β  𝑢𝑖 , 𝑣𝑖 . 
 

Thus obtained 
 

E  β   𝑢𝑖 , 𝑣𝑖  = β  𝑢𝑖 ,𝑣𝑖  
 

From the results obtained have proved β   𝑢𝑖 ,𝑣𝑖  is an unbiased estimator β  𝑢𝑖 ,𝑣𝑖 ∎ 

 

The unbiased estimator δ   𝑢𝑖 ,𝑣𝑖 and estimator 𝑓  is given in lemma 2 and lemma 3, Proof of lemma 2 and lemma 3 in 

Appendix. 

 

Lemma 2. 
 

If δ   𝑢𝑖 , 𝑣𝑖  is estimator of nonparametric geographically weighted regression models with truncated spline approach 

that follows the Equation (3), then δ   𝑢𝑖 , 𝑣𝑖  is an unbiased estimator for δ  𝑢𝑖 , 𝑣𝑖 . 

 

Lemma 3. 
 

If 𝑓   is the estimator function of nonparametric geographically weighted regression models with truncated spline 

approach that follows the Equation (3), then 𝑓   is an unbiased estimator for 𝑓 . 
 

4. Discussion 
 

Analysis of the data on the crude birth rate with five predictor variables i.e. the percentage of family head education 

(x1: completed / not completed for the primary school), the percentage of working status of family head (x2: having work / no 

work), the percentage of family head who married at 15-19 years old (x3), the number of rough marriages (x4) and the number of 

migrant (x5). Selection of the optimum knot points of the nonparametric regression methods and nonparametric geographically 

weighted regression methods with truncated spline approach is respectively given in Table 1 and Table 2. 

Estimation using the Nonparametric Regression Geographically Weighted Regression with Truncated Spline Approach 

is as follows: 

 

    𝑦 =  29.5 − 0.59𝑥1 + 5.71 𝑥1 − 1.93 + − 134 𝑥1 − 3.13 + + 133 𝑥1 − 3.23 + 

                                        −7.57𝑥2 + 9.59 𝑥2 − 2.15 + − 16.9 𝑥2 − 3.56 + + 14.4 𝑥2 − 3.66 + + 

                −48.9𝑥3 + 140 𝑥3 − 0.12 + − 940 𝑥3 − 0.20 + + 856 𝑥3 − 0.21 + + 

     −1.33𝑥4 + 1.68 𝑥4 − 2.46 + − 11.3 𝑥4 − 5.13 + − 12.3 𝑥4 − 5.34 + + 

+0.136𝑥5 − 0.273 𝑥5 − 31.63 + + 6.59 𝑥5 − 47 + − 6.78 𝑥5 − 48.18 + 

 

Nonparametric Geographically Weighted Regression with Truncated Spline Approach with 3 knot points that has 

97.3% of R2. This may explain the crude birth rate of 97.3%. 

 
Table 1.     Optimum knot point of nonparametric regression method with truncated  

              spline approach. 
 

Number of knots 

points 
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 GCV 

       

3 

1.93 1.18 6.47 2.46 31.63 

1.86 3.13 0.07 0.35 5.13 47 

3.23 3.67 0.23 5.34 48.18 
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Table 2.     Optimum knot point of nonparametric regression geographically weighted 

regression with truncated spline approach. 
 

Number of knots 

points 
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 GCV 

       

3 

1.93 2.15 0.12 2.46 31.63 

1.38 3.13 3.56 0.20 5.13 47.00 

3.23 3.66 0.21 5.34 48.18 
       

 
5. Conclusions 
 

Estimation of nonparametric geographically weighted regression using truncated spline approach was successfully 

formulated. It was found that: 

1. Nonparametric geographically weighted regression models using truncated spline approach is 𝐘 = 𝑓 + 𝛆   with 

𝑓 = 𝐗β  𝑢𝑖 , 𝑣𝑖 + 𝐏 δ  𝑢𝑖 , 𝑣𝑖 , obtained estimator β   𝑢𝑖 ,𝑣𝑖 = 𝐀 𝐊 𝐘 with matrix hat 𝐀 𝐊  is 

 

                          𝐀 𝐊 = 𝐒 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏  𝐗𝐓 − 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 . 
 

and estimator δ   𝑢𝑖 , 𝑣𝑖 = 𝐁 𝐊 𝐘  with matrix hat 𝐁 𝐊  is 

  

         𝐁 𝐊 = 𝐑  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏 𝐏𝐓 − 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 . 
 

Regression curve Estimator is 𝑓   = 𝐗β   𝑢𝑖 ,𝑣𝑖 + 𝐏 δ   𝑢𝑖 , 𝑣𝑖 = 𝐂 𝐊 𝐘 . with matrix hat𝐂 𝐊 = 𝐗 𝐀 𝐊 + 𝐏𝐁 𝐊 is a matrix that 

has a point knots 𝐊.  

2. Result of estimators β   𝑢𝑖 , 𝑣𝑖 , δ 
  𝑢𝑖 , 𝑣𝑖 and 𝑓   from nonparametric geographically weighted regression models 

using truncated spline approach has been shown as unbiased estimator. 

3. Application of nonparametric geographically weighted regression models with truncated spline approach of the 

crude birth rate data in 38 areas in eastern Java, have resulted GCV values smaller than when using a 

nonparametric regression method. It concluded that using the nonparametric geographically weighted regression 

models with truncated spline approach to model the effect of the crude birth rate was better and more appropriately 

than the nonparametric regression models with truncated spline approach. 
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Appendix 

 
Proof of Lemma 2. 

 

After the obtained estimator δ  𝑢𝑖 , 𝑣𝑖 , then shown an unbiased nature of the estimator δ  𝑢𝑖 , 𝑣𝑖  in the following manner: 

 

E  δ   𝑢𝑖 , 𝑣𝑖  = E 𝐁 𝐊 𝐘  . 

= E 𝐑  𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏 𝐏𝐓 − 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐘  . 

= E 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐘 +  
   −𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐘  . 

=  𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏T𝐖 𝑢𝑖 , 𝑣𝑖 +   

   −𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  E 𝐘  .                                                 (16) 

Furthermore E 𝐘   is substituted into the Equation (16), in order to obtain the following equation: 

E  δ   𝑢𝑖 , 𝑣𝑖  =  𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 +  

   −𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖   

   𝐗 β  𝑢𝑖 ,𝑣𝑖 + 𝐏 δ  𝑢𝑖 , 𝑣𝑖  . 

E  δ   𝑢𝑖 , 𝑣𝑖  = 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 β  𝑢𝑖 ,𝑣𝑖 + 

+𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 β  𝑢𝑖 ,𝑣𝑖 + 

−𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 δ  𝑢𝑖 , 𝑣𝑖 .            (17) 

 

There are several components of the matrix is equal to 1 so that the Equation (17) can be simplified as follows: 

 

E  δ   𝑢𝑖 , 𝑣𝑖  = 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 β  𝑢𝑖 ,𝑣𝑖 + 𝐑δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 β  𝑢𝑖 ,𝑣𝑖 + 

−𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 δ  𝑢𝑖 , 𝑣𝑖 . 
 

With a bit of mathematical elaboration: 

 

E  δ   𝑢𝑖 , 𝑣𝑖  = 𝐑δ  𝑢𝑖 ,𝑣𝑖 + 

−𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 δ  𝑢𝑖 , 𝑣𝑖 . 
 

Tribe containing δ  𝑢𝑖 , 𝑣𝑖  are grouped on the right, so that the Equation (27) can be simplified as follows: 

 

E  δ   𝑢𝑖 , 𝑣𝑖  =  I− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 𝐑 δ  𝑢𝑖 , 𝑣𝑖 . 

 

Substitutable matrix 𝐑 obtained 

 

E  δ   𝑢𝑖 , 𝑣𝑖  =  I− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 × 

 I− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −1δ  𝑢𝑖 , 𝑣𝑖 . 

Thus obtained 

E  δ   𝑢𝑖 , 𝑣𝑖  = δ  𝑢𝑖 , 𝑣𝑖  
 

From the above results proved that δ   𝑢𝑖 , 𝑣𝑖  is an unbiased estimator δ  𝑢𝑖 ,𝑣𝑖 ∎ 
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Proof of Lemma 3. 

 

Having obtained estimator 𝑓   models will further shown no bias nature of the estimator 𝑓  in the following way: 

E  𝑓    = E  𝐗β   𝑢𝑖 , 𝑣𝑖 + 𝐏δ   𝑢𝑖 , 𝑣𝑖   

  = E 𝐗 𝐀 𝐊 𝐘 + 𝐏𝐁 𝐊 𝐘   

  = 𝐗 𝐀 𝐊 E 𝐘  + 𝐏𝐁 𝐊 E 𝐘   

To prove the nature of unbias in the estimator 𝑓  , first completed component 𝐗 𝐀 𝐊 E 𝐘  . 

 

𝐗 𝐀 𝐊 E 𝐘  = 𝐗 𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏  𝐗𝐓 − 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐄 𝐘  . 

                      =  𝐗 𝐒  𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  + 

                             −𝐗 𝐒  𝐗𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖  E 𝐘  . 

 

Furthermore substitutable value of E (Y) is obtained: 

 

𝐗 𝐀 𝐊 E 𝐘  =  𝐗 𝐒  𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  + 

   −𝐗 𝐒  𝐗𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖   

            𝐗 β  𝑢𝑖 ,𝑣𝑖 + 𝐏 δ  𝑢𝑖 , 𝑣𝑖  . 

 

Based on the operating results of mathematics is obtained: 

 

𝐗 𝐀 𝐊 E 𝐘  =  𝐗 𝐒  𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖 + 

  +𝐗 𝐒  𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 + 

  −𝐗 𝐒  𝐗𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗β  𝑢𝑖 ,𝑣𝑖 + 

  −𝐗 𝐒  𝐗𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 . 
 

There matrix components 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 = 1 and  𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 = 1 thus obtained 

 

𝐗 𝐀 𝐊 E 𝐘  =    𝐗 𝐒 β  𝑢𝑖 ,𝑣𝑖 + 𝐗 𝐒  𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐗 𝐒  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖 + 

−𝐗 𝐒  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏δ  𝑢𝑖 ,𝑣𝑖 . 
 

With matrix mathematics operations obtained: 

 

𝐗 𝐀 𝐊 E 𝐘  = 𝐗 𝐒 β  𝑢𝑖 ,𝑣𝑖 + 

−𝐗 𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖 + 

+𝐗 𝐒  𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐗 𝐒  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏δ  𝑢𝑖 , 𝑣𝑖 . 
 

The equation is simplified as follows: 

 

𝐗 𝐀 𝐊 E 𝐘  =  𝐗 𝐒 β  𝑢𝑖 ,𝑣𝑖 + 

−𝐗 𝐒 𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖 . 
 

Thus obtained  𝐗 𝐀 𝐊 E 𝐘   : 

 

𝐗 𝐀 𝐊 E 𝐘  =  I −  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗 𝐒 β  𝑢𝑖 ,𝑣𝑖 . 

 

Substitutable matrix S obtained 

𝐗 𝐀 𝐊 E 𝐘  =  I −  𝐗𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗  

 I −  𝐗𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐗  −𝟏𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 −1β  𝑢𝑖 , 𝑣𝑖 . 
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Thus obtained 

𝐗 𝐀 𝐊 E 𝐘  = 𝐗 β  𝑢𝑖 ,𝑣𝑖                                                                                   (18) 

Having obtained the value of the component 𝐗 𝐀 𝐊 E 𝐘  , then resolved component 𝐏𝐁 𝐊 E 𝐘   as follows: 

𝐏𝐁 𝐊 E 𝐘  = 

 = 𝐏𝐑 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏 𝐏𝐓 − 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 E 𝐘  . 

 = 𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 + 

  −𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 E 𝐘  . 

Furthermore substitutable value of E 𝐘   is obtained: 

 

𝐏𝐁 𝐊 E 𝐘  =     𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 + 

−𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  

 𝐗β  𝑢𝑖 ,𝑣𝑖 + 𝐏δ  𝑢𝑖 ,𝑣𝑖  . 

Based on the operating results of mathematics is obtained: 

 

𝐏𝐁 𝐊 E 𝐘  =  𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖 + 

+ 𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖  

−𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 . 
 

There matrix components 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 = 1 and  𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 = 1 thus obtained: 

 

𝐏𝐁 𝐊 E 𝐘  =  𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖 +  𝐏 𝐑δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗β  𝑢𝑖 , 𝑣𝑖  
−𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 ,𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 . 

The equation is simplified as follows: 

 

𝐏𝐁 𝐊 E 𝐘  = 𝐏 𝐑δ  𝑢𝑖 , 𝑣𝑖 + 

−𝐏 𝐑 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖 𝐏δ  𝑢𝑖 , 𝑣𝑖 . 

Thus obtained 𝐗 𝐀 𝐊 E 𝐘  : 

 

𝐏𝐁 𝐊 E 𝐘  =  I− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏 𝐑δ  𝑢𝑖 , 𝑣𝑖 . 

 

Substitutable matrix 𝐑 obtained: 

 

𝐏𝐁 𝐊 E 𝐘  =  I− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  𝐏  

  I− 𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐏 −𝟏𝐏𝐓𝐖 𝑢𝑖 , 𝑣𝑖 𝐗 𝐗𝐓 𝐖 𝑢𝑖 ,𝑣𝑖  𝐗  −𝟏 𝐗𝐓 𝐖 𝑢𝑖 , 𝑣𝑖  
−1δ  𝑢𝑖 , 𝑣𝑖 . 

 

Thus obtained 

𝐏𝐁 𝐊 E 𝐘  = 𝐏δ  𝑢𝑖 , 𝑣𝑖                                                                                    (19) 

 

Based on the Equation (18) and Equation (19) then the result of the expectation 𝑓   is 

 

E  𝑓    = 𝐗 𝐀 𝐊 𝐄 𝐘  + 𝐏𝐁 𝐊 𝐄 𝐘   

  = 𝐗 β  𝑢𝑖 ,𝑣𝑖 + 𝐏δ  𝑢𝑖 , 𝑣𝑖  

  = 𝑓  
 

So it proved not biased nature of the model estimator 𝑓  ∎ 

 

 


