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Abstract 

Geographically weighted truncated spline nonparametric regression is 
a new method of statistical science. It is used to solve the problems of 
regression analysis of spatial data whose regression curve is unknown. 
This method is the development of nonparametric regression with 
truncated spline function approach to the analysis of spatial data. 
Truncated spline approach can be a solution for the problem of 
modeling spatial data analysis. The data patterns between the response 
variable and the predictor variable are unknown or regression curve       
is not known. This study is focused on finding estimator of truncated 
spline nonparametric regression in geographically weighted regression 
models with weighted maximum likelihood estimator (MLE) method. 
The characteristic of the unbiased estimator is also investigated. The 
results show that the nonparametric regression with truncated spline 
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function approach can be used to solve the problems of regression 
curve that cannot be identified in the spatial data and the results of the 
model find the unbiased estimator of the parameter. 

Introduction 

The truncated spline nonparametric regression in geographically 
weighted regression model is the development of nonparametric regression 
that is calculated on the spatial factor. The method of geographically 
weighted regression is only able to overcome the problems of the spatial 
regression analysis whose regression curve is known and linear, but if the 
regression curve cannot be identified, then we need an approach of the 
nonparametric regression that will lead the data to find their own form of 
estimation and curve regression without affected by the subjectivity of the 
researcher. The approximation ability of a truncated spline which is a highly 
segmented and continuous absolute polynomial model provides a high 
flexibility to adapt more effectively to the local characteristics of the data. 
Spline truncated approach can be a tool to solve the problem of modeling 
spatial data analysis where the data patterns between the response variable 
and the predictor variable are unknown or regression curve is not known. 
Geographic weighting in the spatial data analysis is an important aspect in 
determining the different parameters at each point of observation location. 

The GWR methods continue to be developed by the experts. Nakaya et 
al. [12] found a new model in the GWR known as geographically weighted 
Poisson regression model. Then Mei et al. [10] produced a new model that 
combined two methods: global and GWR regression model, the new method 
is mixed geographically weighted regression model. GWR models were        
also developed in the field of spatially related time series, known as       
spatio-temporal, spatio-temporal data exploration analyzed using GWR and 
geovisual analyticity. The work was conducted by Demšar et al. [3]. Spatio-
temporal study was also developed by Huang et al. [7] in geographically        
and temporally weighted regression model. Furthermore, Yu [18] worked      
on spatial panel data, and established the methods of geographically 
weighted panel regression. Recently, Wrenn and Sam [17] found a model 
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geographically and temporally weighted likelihood regression. The study 
using semiparametric regression in the GWR model conducted by Holan et 
al. [8] produced a new method which is semiparametric geographically 
weighted response curves where the approach function used was bivariate 
penalized spline regression. Subsequently Ribeiro et al. [15] conducted 
research in the semiparametric regression field, named semiparametric 
Poisson geographically weighted regression. Work on GWR and site-specific 
by using kernel was performed by Paez et al. [13, 14]. This study was about 
estimation and inference geographically weighted regression models with a 
specific location with the help of the kernel bandwidths. 

Spline approach can be used as a tool to solve the problem of modeling a 
nonparametric analysis of spatial data. Spline truncated was developed by 
Budiantara [2]. Then Jiawei et al. [9] conducted work using spline truncated 
B-spline wavelet on the interval (BSWI) and Giannelli et al. [6] used a 
truncated spline with B-spline method. Truncated spline approach has been 
reviewed by Samsodin and Budiantara [16], Merdekawati and Budiantara 
[11] and Bintariningrum and Budiantara [1]. The statistical inference was 
used to reduce the estimator from the models, to investigate the properties of 
estimator, the shape of the distribution of the test statistic on the model           
and to find the method for selecting the optimal knots points for the model. 
Based on the description above, it encourages the researchers to examine      
the truncated spline nonparametric regression in geographically weighted 
regression models. 

Truncated Spline Nonparametric Regression in Geographically 
Weighted Regression Models 

Nonparametric regression model (Eubank [4]) in general can be 
presented in the following equation: 
 ( ) nixfy iii ...,,2,1, =ε+=  (1) 

with ( )ixf  as a regression curve that is approached with the truncated spline 

function (Budiantara [2]) of order m and point knots rKKK ...,,, 21  are 

given by the equation: 
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where ,kβ  hm+β  are real constants with ;...,,2,1,0 mk =  rh ...,,2,1=  

and truncated function (Budiantara [2]) as: 
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When equation (2) is substituted in equation (1), we obtain the equation of 
truncated spline nonparametric regression (Budiantara [2]) as follows: 
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with iy  as the response variable and ix  the predictor variable. If truncated 

spline nonparametric regression has more than one predictor variable, for 
example given ,px  where lp ...,,2,1= , then we have 

( ) ( )( )∑ ∑ ∑ ∑
= = = =

++ ε+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−β+β=ε+=

l

p

l

p
i

m

k

r

h

m
hpihmp

k
pipkipipi Kxxxfy

1 1 0 1
 

so that the truncated spline nonparametric regression for more than one 
predictor variable is: 
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with truncated spline function of order m at the knot points ....,,, 21 rKKK  

The functional relationship between the response variable and the 
predictor variable of each regression coefficient depends on the location of 
forming a pattern of nonparametric relationships. Therefore, to resolve the 
problems, the solution that we want to develop is an approach of the 
truncated spline in the model geographically weighted regression. 

Geographically weighted regression model (Fotheringham et al. [5]) of 
the relationship between the response variable Y and the predictor variables 

lxxx ...,,, 21  at the location i is: 



Geographically Weighted Regression with Spline Approach 1187 

( ) ( ) ( ) ( ) .,,,, 22110 iliiiliiiiiiiii xvuxvuxvuvuy ε+β++β+β+β=  

In this study, the first thing to do is to substitute the truncated spline 
function with one variable x in the model of geographically weighted 
regression which provides the following: 

 ( ) ( ) ( )∑ ∑= = ++ ε+−β+β=
m
k

r
h i

m
hiiihm

k
iiiki Kxvuxvuy

0 1
,,,  (5) 

where ( )ii vu ,  are coordinates of the geographical location on the ith 

location, variable response iy  on the ith location, ix  is the predictor variable 

on the ith location, hK  is the point of knots and error iε  is in normal 

distribution, independent with mean zero and variance kβσ ,2  and hm+β  are 

real constants. 

Estimation Model 

The assumption of truncated spline nonparametric regression in GWR 

model is normal distributed error with zero mean and variance .2σ  The 

approach used parameter estimators ( )ii vu ,β  and ( )ii vu ,2σ  with maximum 

likelihood weighting estimator. 

On the jth location of observation, jy  is normal distributed with mean 

and variance as follows: 
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The first step is to establish the likelihood function as follows: 
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described in the form 
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After obtaining the joint density function of nYYY ...,,, 21 , we estimate 

the model, given the geographical weighting on the jth location represented 
by ( ).jiw  So the likelihood function for the jth location can be found as 

follows: 
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( ) =jiw  the value of weighting on the ith location to the jth location. 
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The form of the weighted likelihood function then performed the 
operation to facilitate the natural logarithm mathematical operations in order 
to obtain the parameter estimator as: 
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Parameter estimators ( )jj vu ,β  and ( )jj vu ,2σ  are obtained by 

maximizing Lln  shape in equation (7) and the next stage of the process of 
differential against each parameter ( ):, jj vuβ  
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Lemma 1. If ( )jj vu ,B  is a matrix of parameter ( )jj vu ,β  of the spline 

nonparametric regression model with geographic weighting following 

equation (5), then the parameter estimator ( )jj vu ,B̂  on the jth location is 
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is the estimator ( )jj vu ,β  on the ith location. It can be seen that ( )ii vu ,B̂  is 

a matrix of parameter estimator on the jth location, that is: 
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Lemma 2. If ( )jj vu ,ˆ 2σ  is a parameter estimator ( )jj vu ,2σ  of the 

spline nonparametric regression model with geographic weighting following 

equation (5), then ( )jj vu ,ˆ 2σ  is a parameter estimator on the jth location 

given by 
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differential equation (7) as follows: 
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Parameter estimator is given by 
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n
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The estimator is calculated based on the characteristic of the locality of 
spatial data models is expressed as: 
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Lemma 3. If ( )jj vu ,β̂  is a parameter estimator of spline nonparametric 

regression model with a geographic weighting following equation (5), then 

( )jj vu ,β̂  is an unbiased estimator for ( )., jj vuβ  

Proof. After obtaining a parameter estimator ( ),, jj vuβ  the unbiased 

characteristic of the estimator ( )jj vu ,β  can be described as: 
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The above result proves that ( )jj vu ,β̂  is an unbiased estimator of 

( )., jj vuβ   



Geographically Weighted Regression with Spline Approach 1193 

In the model estimator for each observation at the ith location can be 
obtained in the following way: 
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T
iii

T
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Equation (9) can be re-written in the form: 
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The error vector estimator is 

 ( ) .ˆ YSIYYe −=−=  (10) 

To find an unbiased estimator for ,2σ  it is necessary to look for the 
estimator value of sum square error (SSE) of the model, which is obtained by 
squaring equation (10), as follows: 

( )( ) ( )( ) ( ) ( )YSISIYYSIYSIee T −−=−−== TTTSSE  (11) 

with 
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and error variance as: 

 ( ) [ ( )( ) ( )( ) ] Ieeeee 2σ=−−= TEEEVar . (12) 
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Based on equation (12), equation (11) can be described as follows: 

( )( ) ( )( ) ( ) ( ) .eSISIeeeeeee −−=−−== TTTT EESSE  

Because ( ) ( )SISI −− T  is a symmetric matrix and ( ),,~ 2Iσ0ε N  the 

value estimator SSE is: 
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Unbiased estimator is given by 

(( ) ( ))
.ˆ 2

SISI −−
=σ Ttr

SSE  

Conclusion 

In this paper, we described that the nonparametric regression with 
truncated spline approach in the GWR models can be a solution for 
relationship predictor variables and the response variables that have a spatial 
aspect explaining the relationship between the two which is nonlinear 
identified as nonparametric. Results of the model parameter estimation are 
proved unbiased. 

The shape and distribution of the test statistic models in truncated spline 
GWR model and application model in empirical data can be considered for 
future study. 
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