Show simple item record

dc.contributor.authorKartika, Rudi
dc.date.accessioned2023-04-09T06:32:49Z
dc.date.available2023-04-09T06:32:49Z
dc.date.issued2022
dc.identifier.citation1. N. Nurhasni, Z. Salimin. and I. Nurfitriyani, Jurnal Valensi 3, 41-47 (2013). 2. A. Pratiwi, B. Yusuf, and R. Gunawan, Jurnal Kimia Mulawarman 13, (2015). 3. E. Supriyantini and N. Soenardjo, Jurnal Kelautan Tropis 18, 98–106 (2015). 4. I. Hananingtyas, Biotropic The Journal of Tropical Biology 1, (2017). 5. I. G. N. R. Aryawan, E.Sahara, and E.Suprihatin, Jurnal Kimia 11, 56-63 (2017). 6. N. D. Ratnasari, A. D. Moelyaningrum, and E. Ellyke, Sanitasi: Jurnal Kesehatan Lingkungan 9, 56-62 (2017). 7. C. A. Saputri, Jurnal Kimia (Journal Of Chemistry) 14, (2020). 8. L. Kurniasari, Momentum 6, 5 – 8 (2010). 9. A. Setiawan. F. Basyiruddin, and D. Dermawan, Jurnal Presipitasi: Media Komunikasi Dan Pengembangan Teknik Lingkungan 16, (2019). 10. Riyanto, “Validasi & Verifikasi Metode Uji Sesuai dengan ISO/IEC 17025 Laboratorium Pengujian dan Kalibrasi.,” (Depublish, Yogyakarta, 2014)11. A. Plasz, “Cleaning Validation using HPLC for Analysis,” in Handbook of Pharmaceutical Analysis by HPLC. 1st Ed, edited by S. Ahuja and M. W. Dong, ( Elsevier, Inc UK, 2005), pp. 401-412. 12. K. Vijayaraghavan and Y. S. Yun, Biotechnology Advances 25, 266-291 (2008). 13. N. K. Dewi, “Metallothionein,” ( Universitas Negeri Semarang, Semarang, 2017). 14. P. A. Binz, J. H. R. Kagi, “Metallothione: molecular evolution classification,” in Metallothionein IV, edited by C. D. Klaassen (Springer Basel AG,1999), pp. 7–13. 15. B. L. Martins, C. C. V. Cruz, A. S. Luna, and C. A. Henriques, Biochemical Engineering Journal 27, 310-314 (2006). 16. A. Rahmawati, Jurnal Penelitian Biologi 1, 132-145 (2006). 17. R. Han, H. Li, Y. Li, J. Zhang, H. Xiao, J. Shi - Journal of hazardous materials, Journal of Hazardous Materials 137, 1569-1576 (2006).en_US
dc.identifier.urihttp://repository.unmul.ac.id/handle/123456789/51033
dc.description.abstractCu(II) waste pollution in the environment is commonly found in the electroplating industry. Cu(II) waste in the electroplating process has a high concentration of potential to pollute the environment, therefore it is necessary to use a method to overcome environmental pollution with an easy process. This study used the metal ion absorption process by Pseudomonas sp. bacteria which aims to determine the ability of Pseudomonas sp. bacteria to absorb Cu(II) based on variations in the optimum concentration and time required for bacteria in the Cu(II) ion biosorption process. The study used a visible spectrophotometer with a maximum wavelength of Cu(II) standard solution of 660 nm. The results of the test, Pseudomonas sp. bacteria were able to absorb Cu(II) at concentrations (3; 5; 7; 9; and 11) ppm with a percentage (%) of (84,447; 72,023; 66,614; 62,052 and 50,761) , respectively. the concentration of Cu(II) is quite significant.en_US
dc.titleAdsoprtion of Cu(II) Ion in Aqueous Solution by Pseudomonas sp. Biosorbenten_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record