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Abstract: This article provides a bivariate binary logit model and statistical inference procedures for
parameter estimation and hypothesis testing. The bivariate binary logit (BBL) model is an extension
of the binary logit model that has two correlated binary responses. The BBL model responses were
formed using a 2 × 2 contingency table, which follows a multinomial distribution. The maximum
likelihood and Berndt–Hall–Hall–Hausman (BHHH) methods were used to obtain the BBL model.
Hypothesis testing of the BBL model contains the simultaneous test and the partial test. The test
statistics of the simultaneous test and the partial test were determined using the maximum likelihood
ratio test method. The likelihood ratio statistics of the simultaneous test and the partial test were
approximately asymptotically chi-square distributed with 3p degrees of freedom. The BBL model
was applied to a real dataset, and the BBL model with the single covariate was better than the BBL
model with multiple covariates.

Keywords: logit model; bivariate binary responses; maximum likelihood; BHHH; maximum likeli-
hood ratio test

1. Introduction

The logit model is a model that is often used for modeling categorical data in various
research fields. Several studies have recently developed logit models for multiple correlated
responses. McCullagh and Nelder [1] introduced a multivariate logistic transform used
to construct logit models with two or more correlated responses. A multivariate logistic
transform, including the numerical optimization methods, has been proposed in [2–6].
Lipsitz, Laird, and Harrington [7] examined the maximum likelihood (ML) method for
binary data models, which connects the probability of success at each time point to a
set of covariates. Liang, Zeger, and Qaqish [8] discussed the regression modeling of the
marginal means of the responses using the generalized estimating equation approach,
wherein there are dependencies between responses. An alternating logit model for jointly
regressing the responses on covariates and modeling the dependencies among responses in
the framework of pairwise odds ratios was proposed by [9]. Cessie and Houwelingen [10]
modeled regression for correlated binary responses, in which the form of marginal response
probabilities is the logit link function. Lang and Agresti [11] considered the model-fitting
methods for analyzing the parameters simultaneously and parsimoniously. The ML estima-
tor properties of the kappa coefficient in the bivariate binary logistic model using the small
and moderate sized samples through Monte Carlo simulation were investigated by [12,13].
Molenberghs and Lesaffre [14] presented a simple generalized linear model formulation for
marginal and association modeling of multivariate categorical data. The specifications of
the association models in [15], in which the dependence ratios contrast with other models
for a multivariate binary response that is specified by odds ratios or correlation coefficients,
were employed by [16].

Studies have also proposed both the conditional and marginal models. A flexible
conditional model for a multivariate binary response vector with covariates was examined
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by [17]. Islam, Chowdhury, and Briollais [18] developed a new simple procedure to
construct the conditional and marginal models for the bivariate binary responses. The
marginal and conditional probabilities of the responses were expressed as functions of
covariates. El-Sayed, Islam, and Alzaid [19] provided the estimation and test procedures
for association measures in the correlated binary data. A generalized approach using both
the conditional and marginal models was demonstrated by [20,21]. The responses of the
model have a bivariate Bernoulli distribution. The ML and Newton–Raphson methods
were used to estimate the model’s parameters, whereas the likelihood ratio test method
was used to test the parameters’ significance. The properties of the ML estimators of the
regression parameters have also been investigated.

Other models have also been developed. Sinha, Laird, and Fitzmaurice [22] extended
the univariate logit model in [23] to the case of a logit model for multivariate-correlated
responses with missing covariates and observed auxiliary information. A robust model for
misclassified correlated binary responses was described by [24]. O’Brien and Dunson [25]
provided an exact Bayesian analysis of a marginal logistic model. The multivariate logistic
regression model in a framework of the geographically-weighted regression was proposed
by [26,27].

Corresponding to the previous studies, in this study we constructed a logit model,
namely, the bivariate binary logit (BBL) model, which has two correlated binary responses.
Following [1,2], the BBL model’s responses follow a multinomial distribution. Therefore,
the ML method can be used to estimate the BBL model’s parameters. The ML estimator
is not closed-form, and it needs an iterative procedure using a numerical optimization
method. We used the Berndt–Hall–Hall–Hausman (BHHH) iterative method [28]. How-
ever, the BHHH method has not been used in previous studies. On the other hand, the
BHHH method can be used as an alternative to the numerical optimization method when
the elements of the Hessian matrix are unavailable. Following [29], the maximum like-
lihood ratio test (MLRT) method was used to test the significance of parameters both
simultaneously and partially. The performance of the BBL model was evaluated using an
empirical study.

This article is organized as follows. In Section 2, we describe the BBL model specifically.
Section 3 investigates the estimation of the BBL model’s parameters using the ML and
BHHH methods. Hypothesis testing of the BBL model is discussed in Section 4. Section 5
demonstrates an application of the BBL model to real data. The conclusions are given in
Section 6.

2. Bivariate Binary Logit Model

Bivariate binary logit (BBL) models are one of the families of multivariate logit mod-
els and are used to model the relationships between two correlated binary responses
with one or more covariates. Let Y1 and Y2 be two bivariate binary responses and
y =

[
Y11 Y10 Y01 Y00

]T be a vector of responses. The elements of y have the proba-
bilities of γ11, γ10, γ01, and γ00, respectively, which are presented in Table 1.

Table 1. Probabilities for the responses.

Y1
Y2

Total
Y2=1 Y2=0

Y1 = 1 γ11 γ10 γ1
Y1 = 0 γ01 γ00 1− γ1
Total γ2 1− γ2 1
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According to Fathurahman, Purhadi, Sutikno, and Ratnasari [27], the BBL model
responses in Table 1 follow a multinomial distribution. Therefore, the joint probability
function of the responses can be defined as follows:

P(Y11 = y11, Y10 = y10, Y01 = y01, Y00 = y00) =
1

∏
q=0

1

∏
r=0

γ
yqr
qr , (1)

where 0 < γqr < 1; q, r = 0, 1; yqr = 0, 1; y00 = 1− y11 − y10 − y01; and γ00 = 1− γ11 −
γ10 − γ01. q and r are the values of the responses. yqr is the value of Yqr, which represents
the elements of the vector of responses. γqr = P(Y1 = q, Y2 = r) is the joint probability of
the responses. γ1 = P(Y1 = 1) and γ2 = P(Y2 = 1) are the marginal probabilities of Y1
and Y2, respectively.

Let x =
[

1 X1 X2 · · · Xp
]T be the vector of covariates, which is (p + 1)-

dimensional. Then the BBL model is expressed as follows:

τ1(x) = logit[γ1(x)] = log
[

γ1(x)
1−γ1(x)

]
= xTθ1,

τ2(x) = logit[γ2(x)] = log
[

γ2(x)
1−γ2(x)

]
= xTθ2,

τ3(x) = log[ψ(x)] = log
[

γ11(x)γ00(x)
γ10(x)γ01(x)

]
= xTθ3,

(2)

where θ1, θ2, and θ3 are vectors of parameters, γ1(x) and γ2(x) are marginal probabilities
of responses, and ψ(x) is the odds ratio of responses depending on covariates, which shows
that the responses are correlated.

The vectors of parameters are symbolized by

θ1 =
[

θ01 θ11 θ21 · · · θp1
]T ,

θ2 =
[

θ02 θ12 θ22 · · · θp2
]T ,

θ3 =
[

θ03 θ13 θ23 · · · θp3
]T .

(3)

The marginal probabilities of responses are defined as follows:

P(Y1 = 1|x) = γ1(x) =
exp(xTθ1)

1+exp(xTθ1)
,

P(Y2 = 1|x) = γ2(x) =
exp(xTθ2)

1+exp(xTθ2)
.

(4)

The joint probability of γ11(x) in Equation (2) is defined by

P(Y1 = 1, Y2 = 1|x) = γ11(x) =

{
1
2 (ψ(x)− 1)−1

(
a−
√

a2 + b
)

, ψ(x) 6= 1
γ1(x)γ2(x), ψ(x) 6= 1

, (5)

where a = 1 + (γ1(x) + γ2(x))(ψ(x)− 1) and b = 4ψ(x)(1− ψ(x))γ1(x)γ2(x). If ψ(x) = 1,
then the responses are independent [30].

Based on Table 1 and Equation (5), the probabilities of γ10(x), γ01(x), and γ00(x) in
Equation (2) are as follows:

γ10(x) = γ1(x)− γ11(x),

γ01(x) = γ2(x)− γ11(x),

γ00(x) = 1− γ11(x)− γ10(x)− γ01(x) = 1− γ1(x)− γ2(x) + γ11(x).

(6)

3. Estimation of the BBL Model

The estimation of the BBL model’s parameters is one of the main results of this study.
The BBL model in Equation (2) has 3(p + 1) parameters, where (p + 1) parameters show
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the dependencies among responses, and 2(p + 1) parameters describe the relationships
between responses and covariates. The BBL model’s parameters are denoted by θ and
expressed as

θ =
[

θT
1 θT

2 θT
3
]T , (7)

where θT
1 , θT

2 , and θT
3 are given by Equation (3).

To obtain the parameters estimator of the BBL model in Equation (7), the ML method
was employed. Based on the ML method, the estimator of θ̂ is the value of θ, maximized by
the likelihood function and the log-likelihood function. The ML estimator can be obtained
by determining the first partial derivatives of the log-likelihood function, then equating
them to zero.

Based on Equation (2), the likelihood equation contains the interdependence equations,
which have a non-explicit form. Therefore, the ML estimator of the BBL model’s parameters
was not obtained analytically. The ML estimator was approximated by the likelihood
equation’s roots, which were obtained via an iterative process using the BHHH method.
Determining the ML estimator of the BBL model’s parameters using the BHHH method
needs the gradient vector and the Hessian matrix. In the following, we present Lemmas 1
and 2 for the gradient vector and Hessian matrix, respectively.

Lemma 1. Let yi =
[

Y1i Y2i
]T

=
[

Y11i Y10i Y01i Y00i
]T , i = 1, 2, . . . , n be a random

vector sample that is mutually independent and identical with a multinomial distribution denoted by
yi ∼ MULT(1; γ11(xi), γ10(xi), γ01(xi), γ00(xi)), where γ11(xi), γ10(xi), γ01(xi), and γ00(xi)
are probabilities of the random variables of Y11i, Y10i, Y01i, and Y00i that contain the parameter θ. If
the likelihood function of the BBL model is denoted by L(θ), where θ is as in Equation (7), then the
gradient vector is

g(θ) =
[ [

∂`(θ)
∂θ1

]T [
∂`(θ)
∂θ2

]T [
∂`(θ)
∂θ3

]T
]T

, (8)

where

∂`(θ)
∂θ1

=
n
∑

i=1

1
∆1i

xi

[
y11i

(
γ01i
γ2i

)
+ y10i

(
γ00i

1−γ2i

)
− y01i

(
γ11i
γ2i

)
− y00i

(
γ10i

1−γ2i

)]
,

∂`(θ)
∂θ2

=
n
∑

i=1

1
∆1i

xi

[
y11i

(
γ10i
γ1i

)
− y10i

(
γ11i
γ1i

)
+ y01i

(
γ00i

1−γ1i

)
− y00i

(
γ01i

1−γ1i

)]
,

∂`(θ)
∂θ3

=
n
∑

i=1
∆2ixi

[
y11i
γ11i
− y10i

γ10i
− y01i

γ01i
+ y00i

γ00i

]
,

∆1i =
γ11iγ10iγ01iγ00i

γ1i(1−γ1i)γ2i(1−γ2i)∆2i
,

∆2i =
(

1
γ11i

+ 1
γ10i

+ 1
γ01i

+ 1
γ00i

)−1
.

Proof of Lemma 1. Suppose that (Y1i, Y2i) = (Y11i, Y10i, Y01i, Y00i) is a vector of the ran-
dom sample that is independently and identically multinomial distributed; then the joint
probability is defined by

f (yi|θ) = P(Y11i = y11i, Y10i = y10i, Y01i = y01i, Y00i = y00i)

= γ
y11i
11i (xi)γ

y10i
10i (xi)γ

y01i
01i (xi)γ

y00i
00i (xi).

(9)
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As in Equation (9), the likelihood function is as follows:

L(θ|y)=
n

∏
i=1

f (yi|θ)

=
n

∏
i=1

P(Y11i = y11i, Y10i = y10i, Y01i = y01i, Y00i = y00i)

=
n

∏
i=1

γ
y11i
11i (xi)γ

y10i
10i (xi)γ

y01i
01i (xi)γ

y00i
00i (xi).

(10)

For simplicity, let γ
yqr
qr (xi) = γ

yqri
qri for q, r = 0, 1; then the likelihood function in Equation (10)

can be rewritten as

L(θ) =
n

∏
i=1

(
γ

y11i
11i γ

y10i
10i γ

y01i
01i γ

y00i
00i

)
. (11)

To obtain the log-likelihood function of the BBL model, both sides of the likelihood function
in Equation (11) were transformed by the natural logarithm, which gives

`(θ)= logL(θ)

=
n

∑
i=1

(y11i log γ11i + y10i log γ10i + y01i log γ01i + y00i log γ00i).
(12)

The log-likelihood function in Equation (12) is that the vector of θ has 3(p + 1)− di-
mensions. Following the definition in Greene [31], the gradient vector of the log-likelihood
function in Equation (12) is

g(θ) =
[ [

∂`(θ)
∂θ1

]T [
∂`(θ)
∂θ2

]T [
∂`(θ)
∂θ3

]T
]T

, (13)

where the vector of θ is given by Equation (7).
Regarding the BBL model in Equation (2), we define the vector of τ, which is denoted

by τ =
[

τ1 τ2 τ3
]T , where τ1 = τ1(x), τ2 = τ2(x), and τ3 = τ3(x). The vector of the

joint probability of y is defined by γ =
[

γ11 γ10 γ01 γ00
]T . Furthermore, the deriva-

tive of τ with respect to γ is denoted by ∂τ/∂γ. To get a symmetrical matrix of ∂τ/∂γ,

suppose τ0 = log γ.. with γ.. =
1
∑

q=0

1
∑

r=0
γqr; then the vector of τ is τ =

[
τ0 τ1 τ2 τ3

]T .

Thus, the matrix of ∂τ/∂γ is

∂τ

∂γ
=


1 1 1 1
1

γ1
1

γ1
− 1

1−γ1
− 1

1−γ1
1

γ2
− 1

1−γ2
1

γ2
− 1

1−γ2
1

γ11
− 1

γ10
− 1

γ01
1

γ00

. (14)

The inverse matrix of ∂τ/∂γ in Equation (14) is as follows:

∂τ

∂γ

−1
=


γ11

γ11γ01
γ2∆1

γ11γ10
γ1∆1

∆2

γ10
γ10γ00

(1−γ2)∆1
− γ11γ10

γ1∆1
−∆2

γ01 − γ11γ01
γ2∆1

γ01γ00
(1−γ1)∆1

−∆2

γ00 − γ10γ00
(1−γ2)∆1

γ01γ00
(1−γ1)∆1

∆2

, (15)

where
∆1 =

γ11γ10γ01γ00

γ1(1− γ1)γ2(1− γ2)∆2
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and

∆2 =

(
1

γ11
+

1
γ10

+
1

γ01
+

1
γ00

)−1
.

The gradient vector of the log-likelihood function in Equation (12) can be written as

g(θ) =
∂`(θ)

∂θ
. (16)

In relation to Equations (13)–(15) and the chain rule of derivatives, the elements of the
gradient vector in Equation (16) can be obtained as follows:

∂`(θ)

∂θ1
=

n

∑
i=1

(
y11i
γ11i

(
∂γ11i
∂θ1

)
+

y10i
γ10i

(
∂γ10i
∂θ1

)
+

y01i
γ01i

(
∂γ01i
∂θ1

)
+

y00i
γ00i

(
∂γ00i
∂θ1

))
=

n

∑
i=1

1
∆1i

xi

(
y11i

(
γ01i
γ2i

)
+ y10i

(
γ00i

1− γ2i

)
− y01i

(
γ11i
γ2i

)
− y00i

(
γ10i

1− γ2i

))
;

(17)

∂`(θ)

∂θ2
=

n

∑
i=1

(
y11i
γ11i

(
∂γ11i
∂θ2

)
+

y10i
γ10i

(
∂γ10i
∂θ2

)
+

y01i
γ01i

(
∂γ01i
∂θ2

)
+

y00i
γ00i

(
∂γ00i
∂θ2

))
=

n

∑
i=1

1
∆1i

xi

(
y11i

(
γ10i
γ1i

)
− y10i

(
γ11i
γ1i

)
+ y01i

(
γ00i

1− γ1i

)
− y00i

(
γ01i

1− γ1i

))
;

(18)

∂`(θ)

∂θ3
=

n

∑
i=1

(
y11i
γ11i

(
∂γ11i
∂θ3

)
+

y10i
γ10i

(
∂γ10i
∂θ3

)
+

y01i
γ01i

(
∂γ01i
∂θ3

)
+

y00i
γ00i

(
∂γ00i
∂θ3

))
=

n

∑
i=1

∆2ixi

(
y11i
γ11i
− y10i

γ10i
− y01i

γ01i
+

y00i
γ00i

)
,

(19)

where ∆1i and ∆2i, for i = 1, 2, . . . , n, given in Equation (15). �

Lemma 2. If the log-likelihood function of the BBL model is `(θ) and the vector of θ is the BBL
model’s parameters, then the Hessian matrix of `(θ) is

H(θ) = − 1
n

[
gT(θ)g(θ)

]
, (20)

where n is the sample size.

Proof of Lemma 2. The BBL model’s parameters (θ) and the log-likelihood function (`(θ))
were given in Equations (7) and (12), respectively. Based on Lemma 1, the gradient vector
of the log-likelihood function `(θ) is g(θ). According to Greene [31], the Hessian matrix
can be obtained by the Berndt–Hall–Hall–Hausman (BHHH) method. On the other hand,
the Hessian matrix depends on the gradient vector [31], which is shown below:

E[g(θ)] = 0,Var[g(θ)] = E
[
gT(θ)g(θ)

]
. (21)

Meanwhile, the gradient vector and the Hessian matrix associated with the information
matrix and can be expressed by

I(θ) = −H(θ),Var[g(θ)] = nI(θ). (22)

The information matrix in Equation (22) is also referred to as the Fisher information
matrix [32]. Based on Equations (21) and (22), the Hessian matrix is

H(θ) = − 1
n

[
gT(θ)g(θ)

]
. (23)
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Regarding Lemmas 1 and 2, an iteration process can be carried out using the BHHH
method. Following [33], the BHHH algorithm in this study is as follows:

• Determine the initial value for θ̂(0) =
[

θ̂
T(0)
1 θ̂

T(0)
2 θ̂

T(0)
3

]T
.

• Determine the tolerance value (ε) for the BHHH iteration process stopping.
• Start the BHHH iteration process using the formula:

θ̂(t+1) = θ̂(t) −H−1
(

θ̂(t)
)

g
(

θ̂(t)
)

, t = 0, 1, 2, . . . , T. (24)

• The iteration stops at the T-th iteration if the condition of convergence is satisfied,
which is θ̂(T+1) − θ̂(T) ≤ ε. The estimator values of the parameters are obtained in the
last iteration.

Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC)
determine the best model in this study. The AIC and BIC values can be obtained by

AIC = −2`
(
θ̂
)
+ (p + 1), (25)

BIC = −2`
(
θ̂
)
+ log(n)(p + 1), (26)

where `
(
θ̂
)

is the log-likelihood value of the parameter’s estimate, p is the number of
covariates, and n is the sample size. The best model is the BBL model, which has the
smallest values of AIC and BIC. �

4. Hypothesis Testing of the BBL Model

Hypothesis testing of the BBL model contains the simultaneous test and the partial
test. The simultaneous test and the partial test obtain the significance of the BBL model’s
parameters jointly and individually, respectively. The simultaneous test and the partial test
in this study were done using the maximum likelihood ratio test (MLRT) method.

The hypotheses of the simultaneous test are as follows:

H0 : θ1h = θ2h = · · · = θph = 0, h = 1, 2, 3

H1 : at least one of θgh 6= 0, g = 1, 2, . . . , p.
(27)

In the following we present a lemma used to determine the likelihood ratio (LR) statistic,
the distribution of the LR statistic, and the rejection region of the simultaneous test.

Lemma 3. If θ is the BBL model’s parameter and θ̂ is the ML estimator of θ, then:

a) The LR statistic of the simultaneous test is G2
1 = 2

(
L
(
θ̂
)
− L

(
θ̂∗
))

, where θ̂∗ is the ML
estimator of the parameter space under the null hypothesis and θ̂ is the ML estimator of the
parameter space under the population.

b) The distribution of the LR statistic follows an asymptotic chi-square distribution, which is

G2
1 = 2

(
L
(
θ̂
)
− L

(
θ̂∗
)) d→ χ2

v1
, n→ ∞ .

c) The rejection region at the significance level of α is G2
1 > χ2

(α,v1)
.

Proof of Lemma 3. (a) The first step to obtain the statistical test of the hypothesis in
Equation (27) is to define the parameter space under the null hypothesis, denoted by
Ω01 = {θ01, θ02, θ03}. Furthermore, we determine the likelihood function formulated by

L(Ω01) =
n

∏
i=1

(
(γ∗11i)

y11i (γ∗10i)
y10i (γ∗01i)

y01i (γ∗00i)
y00i
)
. (28)
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Let θ̂∗ =
[

θ̂01 θ̂02 θ̂03
]T be the ML estimator that maximizes the likelihood function of

L(Ω01). The ML estimator of θ∗ can be obtained by using Lemmas 1 and 2. Therefore, the
maximum likelihood function of L(Ω01) is

L
(

Ω̂01
)
=

n

∏
i=1

(
(γ̂∗11i)

y11i (γ̂∗10i)
y10i (γ̂∗01i)

y01i (γ̂∗00i)
y00i
)
. (29)

where:

γ̂∗11i =

{
1
2 (ψ1i − 1)−1

(
a1i −

√
a2

1i + b1i

)
, ψ1i 6= 1

γ̂∗1iγ̂
∗
2i, ψ1i 6= 1

a1i = 1 +
(
γ̂∗1i + γ̂∗2i

)
(ψ1i − 1)

b1i = 4ψ1i(1− ψ1i)γ̂
∗
1iγ̂
∗
2i

ψ1i = γ̂∗11iγ̂
∗
00i/

(
γ̂∗10iγ̂

∗
01i
)

γ̂∗1i = exp
(
θ̂01
)
/
(
1 + exp

(
θ̂01
))

γ̂∗2i = exp
(
θ̂02
)
/
(
1 + exp

(
θ̂02
))

;

γ̂∗10i = γ̂∗1i − γ̂∗11i;

γ̂∗01i = γ̂∗2i − γ̂∗11i;

γ̂∗00i = 1− γ̂∗1i − γ̂∗2i + γ̂∗11i.

The parameters under the population are Ω11 =
{

θgh, g = 0, 1, . . . , p; h = 1, 2, 3
}

, and the
likelihood function is

L(Ω11) =
n

∏
i=1

(
γ

y11i
11i γ

y10i
10i γ

y01i
01i γ

y00i
00i

)
. (30)

Suppose the ML estimator that maximizes the likelihood function of L(Ω11) is θ̂ =[
θ̂T

1 θ̂T
2 θ̂T

3
]T . However, the ML estimator of θ was obtained using Lemmas 1 and 2.

Therefore, the maximum likelihood function of L(Ω11) is

L
(

Ω̂11
)
=

n

∏
i=1

(
γ̂

y11i
11i γ̂

y10i
10i γ̂

y01i
01i γ̂

y00i
00i

)
. (31)

where:

γ̂11i =

{
1
2 (ψ2i − 1)−1

(
a2i −

√
a2

2i + b2i

)
, ψ2i 6= 1

γ̂1iγ̂2i, ψ2i 6= 1
,

with a2i = 1 + (γ̂1i + γ̂2i)(ψ2i − 1), b2i = 4ψ2i(1− ψ2i)γ̂1iγ̂2i, ψ2i = γ̂11iγ̂00i/(γ̂10iγ̂01i),
γ̂1i = exp

(
xT

i θ̂1
)
/
(
1 + exp

(
xT

i θ̂1
))

, γ̂2i = exp
(
xT

i θ̂2
)
/
(
1 + exp

(
xT

i θ̂2
))

; γ̂10i = γ̂1i − γ̂11i;
γ̂01i = γ̂2i − γ̂11i; and γ̂00i = 1− γ̂1i − γ̂2i + γ̂11i.

The likelihood ratio (LR) statistic of the hypothesis in Equation (27) is

Λ =
L
(

Ω̂01
)

L
(

Ω̂11
) . (32)

With regard to Equations (29) and (31), the LR statistic in Equation (32) can be written as

Λ =
∏n

i=1

((
γ̂∗11i

)y11i
(
γ̂∗10i

)y10i
(
γ̂∗01i

)y01i
(
γ̂∗00i

)y00i
)

∏n
i=1

(
γ̂

y11i
11i γ̂

y10i
10i γ̂

y01i
01i γ̂

y00i
00i

) . (33)
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However, the form of the LR statistic in Equation (33) is complicated, and we cannot
do the calculation analytically. Therefore, to simplify the calculation, the LR statistic is
transformed in a form equivalent to

Λ−2 =

[
L
(

Ω̂01
)

L
(

Ω̂11
)]−2

=

[
L
(

Ω̂11
)

L
(

Ω̂01
)]2

. (34)

The LR statistic in Equation (34) is also transformed using the natural logarithm. Thus, the
formula of the LR statistic is

G2
1 = −2 log Λ = −2 log

[
L
(

Ω̂01
)

L
(

Ω̂11
)] = 2

(
L
(
θ̂
)
− L

(
θ̂∗
))

, (35)

where L
(
θ̂
)
= log L

(
Ω̂11

)
and L

(
θ̂∗
)
= log L

(
Ω̂01

)
.

(b) Suppose the ML estimator under the population is partitioned by

θ̂ =
[

θ̂T
11 θ̂T

12
]T ,

where θ̂11 =
[

θ̂1h θ̂2h · · · θ̂ph

]T
, h = 1, 2, 3, and θ̂12 =

[
θ̂01 θ̂02 θ̂03

]T .
The ML estimator and the known parameter in the null hypothesis are partitioned by

θ̂∗ =
[

θ∗T01 θ̂∗T02
]T ,

where θ∗01(3p×1) =
[

0 0 · · · 0
]T and θ̂∗02 =

[
θ̂001 θ̂002 θ̂003

]T , with the true pa-

rameter partitioned as θ∗ =
[

θ∗T01 θT
12
]T .

The hypothesis in Equation (27) can be rewritten as

H0 : θ11 = θ∗01H1 : θ11 6= θ∗01. (36)

The LR statistic in Equation (35) can be specified by

G2
1 = 2

(
L
(
θ̂
)
− L

(
θ̂∗
))

= 2
(

L
(
θ̂
)
− L(θ∗)

)
− 2
(

L
(
θ̂∗
)
− L(θ∗)

)
. (37)

The function of L(θ∗) is approximated using Taylor’s second-order expansion around θ̂;
we have

L(θ∗) ≈ L
(
θ̂
)
+ g
(
θ̂
)(

θ∗ − θ̂
)
− 1

2
(
θ∗ − θ̂

)TI
(
θ̂
)(

θ∗ − θ̂
)
,

where
g
(
θ̂
)
= ∂L(θ)

∂θ

∣∣∣
θ=θ̂

,

I
(
θ̂
)
= − ∂2L(θ)

∂θ∂θT

∣∣∣
θ=θ̂

.

Since g
(
θ̂
)
= 0, we have

2
(

L
(
θ̂
)
− L(θ∗)

)
≈
(
θ̂− θ∗

)TI
(
θ̂
)(

θ̂− θ∗
)
. (38)

Analogously, in the previous step, the function of L(θ∗) was approximated using Taylor’s
second-order expansion around θ̂∗, which is

L(θ∗) ≈ L
(
θ̂∗
)
+ g
(
θ̂
)(

θ∗ − θ̂∗
)
− 1

2
(
θ∗ − θ̂∗

)TI
(
θ̂
)(

θ∗ − θ̂∗
)
,

or it can be written as

2
(

L
(
θ̂∗
)
− L(θ∗)

)
≈
(
θ̂∗ − θ∗

)TI
(
θ̂
)(

θ̂∗ − θ∗
)
. (39)
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Following Equations (38) and (39), the LR statistic in Equation (37) can be rewritten as

G2
1 ≈

(
θ̂− θ∗

)TI
(
θ̂
)(

θ̂− θ∗
)
−
(
θ̂∗ − θ∗

)TI
(
θ̂
)(

θ̂∗ − θ∗
)
. (40)

Suppose the forms of the partition of the Fisher information matrix and its inverse are
as follows.

I
(
θ̂
)
(3p+3)×(3p+3) =

[
I11(3p×3p) I12(1×(3p+3))
I21((3p+3)×1) I22(3×3)

]
,

and [
I
(
θ̂
)]−1

(3p+3)×(3p+3) =

[
I11(3p×3p) I12(1×(3p+3))
I21((3p+3)×1) I22(3×3)

]
.

Following the concept of the conditional distribution, given as θ11 = θ∗01, θ̂11, and θ̂12,
we have

θ̂∗02 = θ̂12 − I21I−1
11
(
θ̂11 − θ∗01

)
. (41)

Simplifying the form of Equation (41) using a simple manipulation of the partitioned matrix
of the Fisher information gets

θ̂∗02 = θ̂12 + I−1
22 I21

(
θ̂11 − θ∗01

)
. (42)

Since
(
θ̂∗ − θ∗

)
=
(
0, θ̂∗02 − θ12

)
and θ∗02 − θ12 = θ̂12 − θ12 + I−1

22 I21
(
θ̂11 − θ∗01

)
, we have(

θ̂∗ − θ∗
)TI
(
θ̂
)(

θ̂∗ − θ∗
)
=
(
θ̂∗02 − θ12

)TI22
(
θ̂∗02 − θ12

)
=

[
θ̂11 − θ∗01
θ̂12 − θ12

]T[
I12I−1

22 I21 I12
I21 I22

][
θ̂11 − θ∗01
θ̂12 − θ12

]
The LR statistic in Equation (40) can be formulated as

G2
1 ≈

(
θ̂11 − θ∗01

)T
(

I11 − I12I−1
22 I21

)(
θ̂11 − θ∗01

)
=
(
θ̂11 − θ∗01

)TI−1
11
(
θ̂11 − θ∗01

)
. (43)

When considering the normality properties for ML under the regularity conditions [31],
the distribution of the partitioned matrix is[

θ̂11 − θ∗01
θ̂12 − θ12

]
d→ N

(
0, [I(θ)]−1 ≡

[
I11 I12
I21 I22

])
, n→ ∞.

Therefore, the LR statistic is obtained as follows:(
θ̂11 − θ11

) d→ N(0, I11), n→ ∞,

[I11]
−1/2(θ̂11 − θ11

) d→ N(0, Iv1), n→ ∞,

G2
1 =

(
θ̂11 − θ∗01

)TI−1
11
(
θ̂11 − θ∗01

) d→ χ2
v1

, n→ ∞.

(44)

The LR statistic in Equation (44) has an asymptotic chi-square distribution with v1 degrees
of freedom. v1 is the difference of the parameter sets under the population and the
null hypothesis.

(c) Determining the rejection region or the critical region of the null hypothesis in
Equation (27) requires the MLRT method, where the null hypothesis is rejected when
Λ < c, 0 < c ≤ 1, and where Λ is given in Equation (32) and c is a constant. Let α be the
significance level for 0 < α < 1, and 0 < cα ≤ 1 be a constant; the cα value depends on
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the significance level of α and satisfies PθεΩ01(Λ < cα) = α. Based on the definition of the
significance level of α, we have

α = PθεΩ01(Λ < cα)
= P(−2 log Λ > −2 log cα)
= P

(
2
[
L
(
θ̂
)
− L

(
θ̂∗
)]

> c
)

= P
(
G2

1 > c
)
,

(45)

where G2
1 is the LR statistic, which has an asymptotic chi-square distribution with v1 degrees

of freedom. The value of the constant c in Equation (45) is χ2
(α,v1)

and
∫ ∞

c f (w)dw = α,

where f (w) = w(v1/2)−1e−w/2/
(

Γ(v1/2)2v1/2
)

is the probability density function of the
chi-square distribution with v1 degrees of freedom. Therefore, the rejection region at the
significance level of α is G2

1 > χ2
(α,v1)

.

The last one is a partial test. This test aims to obtain covariates that have a significant
effect on the responses individually. The procedures of the partial test in this study follow
the simultaneous test. The hypothesis of the partial test is

H0 : θ11 = θ12 = θ13 = 0,

H1 : at least one of θ1h 6= 0, h = 1, 2, 3.
(46)

The parameter set under the null hypothesis for each covariate is Ω02 = {θ01, θ02, θ03}.
The parameter set under the population for each covariate is Ω12 = {θ01, θ11, θ02, θ12, θ03, θ13}.
Analogously, in the proof of Theorem 1, the LR statistic for the hypothesis in Equation (46) is

G2
2 =

(
θ̂11 − θ∗01

)TI−1
11
(
θ̂11 − θ∗01

) d→ χ2
v2

, n→ ∞. (47)

The LR statistic in Equation (47) has an asymptotic chi-square distribution with v2
degrees of freedom. The rejection region at the significance level α is G2

2 > χ2
(α,v2)

. �

5. Application

The BBL model was applied to model the factors influencing the status of the hu-
man development index (HDI) and public health development index (PHDI) of regen-
cies/municipalities in Kalimantan, Indonesia, in 2018. The HDI is an index measured from
four components of the essential dimensions of human development: life expectancy, the
average length of schooling, expected length of schooling, and adjusted per-capita income.
Life expectancy represents an indicator of health, the average length of schooling and the
expected length of schooling represent educational indicators, and adjusted per capita
income represents an economic indicator [34]. The PHDI is an index that measures the
health of the regencies/municipalities and provinces in the Republic of Indonesia [35].

The HDI status data and covariates’ data were collected from the National Bureau
of Statistics of the Republic of Indonesia, whereas the PHDI data were collected from the
Republic of Indonesia’s Ministry of Health. The variables in this study consist of two
responses and five covariates. The responses are the HDI status and the PHDI status of
regencies/municipalities, denoted by Y1 and Y2. The covariates are the economic growth
(X1), the net enrollment rate of the junior high school (X2), the percentage of people that
have the minimum level of education in junior high school (X3), the number of doctors
per 1000 people (X4), and the number of public health centers (X5). The regencies and
municipalities’ HDI status has four categories: low HDI, medium HDI, high HDI, and very
high HDI [34]. Regencies/municipalities in Kalimantan, Indonesia, in 2018, had HDI in
the medium and high categories. Therefore, the HDI status (Y1) has two categories: the
medium HDI coded by 0 and the high HDI coded by 1.

Meanwhile, the Ministry of Health of the Republic of Indonesia classifies regencies/
municipalities’ health status based on the PHDI into two categories. Regencies/municipalities
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with a low PHDI have health problems, and vice versa [36]. Therefore, the PHDI status
(Y2) has two categories: the regencies/municipalities with low PHDI values are coded by
0, and the regencies/municipalities with high PHDI values are coded by 1. This study’s
observation unit is the regency/municipality. Five provinces in Kalimantan, Indonesia
were used (2018 data), including 47 regencies and nine municipalities. Therefore, the
sample size is 56.

The descriptive statistics of the responses HDI status (Y1) and PHDI status (Y2),
consisting of observed frequencies, are presented in Table 2.

Table 2. The observed frequencies of the responses.

Y1
Y2

Total
Y2=1 Y2=0

Y1 = 1 20 3 23
Y1 = 0 6 27 33
Total 26 30 56

Table 2 shows that 20 regencies/municipalities had high HDI and PHDI, and six
regencies/municipalities had high HDI and low PHDI. We also see that three regen-
cies/municipalities had medium HDI and high PHDI. Finally, 27 regencies/municipalities
had medium HDI and low PHDI. The HDI status (Y1) and PHDI status (Y2) of regen-
cies/municipalities are displayed in Figure 1.
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Figure 1. The proportions of the responses with certain HDI status (Y1 ) and PHDI status (Y2). nY00

is the number of regencies/municipalities that had medium HDI and low PHDI; nY01 is the number
of regencies/municipalities that had medium HDI and high PHDI; nY10 is the number of regen-
cies/municipalities that had high HDI and low PHDI; nY11 is the number of regencies/municipalities
that had high HDI and PHDI.

The descriptive statistics of the responses show that the majority of regencies/municipalities
in Kalimantan, Indonesia, in 2018, had medium HDI and low PHDI. The descriptive statis-
tics of the covariates are summarized in Table 3.
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Table 3. The summary of descriptive statistics for the covariates.

Covariates Minimum Maximum Mean Standard Deviation

X1 −4.10 7.99 5.08 1.83
X2 68.37 98.82 81.19 8.14
X3 35.58 81.37 54.25 11.05
X4 1.00 46.40 10.23 9.47
X5 5.00 33.00 17.57 6.93

The HDI status (Y1) and PHDI status (Y2) are correlated. Based on the observed
frequencies in Table 2, the odds ratio (OR) value of HDI status (Y1) and PHDI status (Y2)
was 30 with a 95% confidence interval of 6.6826 ≤ OR ≤ 134.6783. This result indicates
that the responses are highly positively correlated. Meanwhile, we also employed the
dependence test of the responses HDI status (Y1) and PHDI status (Y2), provided in Table 4.

Table 4. Statistical test values of the dependence test of responses.

Statistical Tests χ2 df p-Value

Pearson 25.7750 1 3.8370 × 10−7

Pearson with Yates’ continuity correction 23.0840 1 1.5510 × 10−6

Likelihood ratio 28.2420 1 1.0708 × 10−7

Three statistical tests demonstrated a dependence test of HDI status (Y1) and PHDI
status (Y2). The result in Table 4 shows that all of the statistical test values had greater than
the chi-square table value (i.e., χ2

(0.05,1) = 3.8415) and p-values less than the significance
level value (i.e., α = 0.05). Therefore, the conclusion was to reject the null hypothesis (H0),
and the HDI status (Y1) and PHDI status (Y2) are dependencies. Based on the OR value
and the dependence test, the HDI status (Y1) and PHDI status (Y2) are appropriate for the
BBL model.

The variance inflation factor detected the multicollinearity of the covariates. The
variance inflation factor values of all covariates in Table 5 are less than ten, which indicates
that the covariates are independent of each other (i.e., no multicollinearity). Therefore, all
covariates can be used in the BBL model.

Table 5. Variance inflation factor (VIF) values of the covariates.

Covariates VIF

X1 1.0404
X2 1.4948
X3 2.3002
X4 2.5617
X5 1.5165

The estimation of the BBL model’s parameters using the ML and BHHH methods was
employed. Table 6 provides the bias values and the numbers of BHHH iterations of the
parameter estimation process for the BBL model with the single and multiple covariates.
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Table 6. The bias values and the numbers of BHHH iterations for the BBL model with single and
multiple covariates.

Covariates Bias Iteration

X1 6.2266 × 10−5 1000
X2 1.9227 × 10−8 * 23
X3 2.0283 × 10−8 * 25
X4 3.8014 × 10−6 * 9
X5 5.6987 × 10−5 1000

X2X3X4 8.5186 × 10−8 * 146

* Convergent at tolerance limit value (i.e., ε = 1 × 10−5).

The BBL model with the single covariate of economic growth (X1) and public health
centers (X5) in Table 6 was not convergent. Therefore, both covariates, economic growth
(X1) and public health centers (X5), were not used in the BBL model. Based on Table
6, the BBL model for modeling the factors that affect the HDI status and PHDI status of
regencies/municipalities in Kalimantan, Indonesia, in 2018 was obtained.

Table 7 displays the ML estimates of the BBL model with multiple covariates (i.e., X2,
X3, X4), giving the parameter estimates, the LR statistic of the simultaneous test (G2

1), the
degrees of freedom (df), and the p-value.

Table 7. Parameter estimates and the statistical test value of the simultaneous test for the BBL model
with the multiple covariates.

Parameter Estimation G2
1 df p-Value

θ01 −0.0034

99.7390 9 1.7685 × 10−21

θ11 −0.1916
θ21 0.0449
θ31 0.0013
θ02 −0.0016
θ12 −0.1403
θ22 0.0395
θ32 0.0011
θ03 −0.0023
θ13 −0.1440
θ23 −0.1071
θ33 0.0002

The LR statistic value in Table 7 is 99.739, and the p-value is 1.7685 × 10−21 (p < 0.001).
Meanwhile, the chi-square table’s value with nine degrees of freedom and a 5% significance
level was 16.919. The LR statistic value is greater than the chi-square table’s value, and the
p-value is less than the 5% significance level. Therefore, the null hypothesis was rejected,
and we conclude that the net enrollment rate of the junior high school, the percentage of
people that have the minimum level of education in junior high school, and the number of
doctors per 1000 people were jointly significantly affecting the HDI status and the PHDI
status of regencies/municipalities in Kalimantan, Indonesia, in 2018. The BBL model for
the HDI status and the PHDI status of regencies/municipalities can be written as follows:

τ̂1(x) = −0.0034− 0.1916X2 + 0.0449X3 + 0.0013X4,

τ̂2(x) = −0.0016− 0.1403X2 + 0.0395X3 + 0.0011X4,

τ̂3(x) = −0.0023− 0.1440X2 − 0.1071X3 + 0.0002X4.

The partial test using the MLRT method was used to obtain the covariates that indi-
vidually affect the HDI status and the PHDI status of regencies/municipalities. Table 8
describes the BBL model with the single covariate, which covers the parameter estimates,
the LR statistic value (G2

2), the degrees of freedom (df), and the p-value.
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Table 8. Parameter estimates and the LR statistic value of the partial test for the BBL model with the
single covariate.

Covariate Parameter Estimation G2
2 df p-Value

X2

θ01 −0.0010

90.2309 3 1.9542 × 10−19

θ11 −0.0446
θ02 −0.0026
θ12 −0.2251
θ03 0.0008
θ13 0.0931

X3

θ01 −0.0104

111.4570 3 5.3304 × 10−24

θ11 −0.1630
θ02 −0.0079
θ12 −0.2145
θ03 0.0004
θ13 0.0483

X4

θ01 −15.3744

174.2092 3 1.5700 × 10−37

θ11 12.5080
θ02 −17.0178
θ12 9.3722
θ03 4.2464
θ13 4.1612

The LR statistic’s value of the estimated parameter for each covariate (the net enroll-
ment rate of the junior high school, the percentage of people that have the minimum level
of education in junior high school, and the number of doctors per 1000 people; Table 8) was
greater than the chi-square table’s value; the chi-square table’s value with three degrees of
freedom and 5% significance level was 7.8147. Meanwhile, the p-value of each covariate
was less than the 5% significance level. Therefore, we concluded that the net enrollment
rate of the junior high school, the percentage of people that have the minimum level of
education in junior high school, and the number of doctors per 1000 people individually
significantly influenced the HDI status and the PHDI status of regencies/municipalities in
Kalimantan, Indonesia, in 2018.

The BBL model with a single covariate (e.g., X4) for the HDI status and the PHDI
status of regencies/municipalities can be expressed as follows:

τ̂1(x) = −15.3744 + 12.5080X4,

τ̂2(x) = −17.0178 + 9.3722X4,

τ̂3(x) = 4.2464 + 4.1612X4.

The AIC and BIC methods in Equations (25) and (26) were used for the evaluation of
the BBL model’s performance. The AIC and BIC values of the BBL models are shown in
Table 9.

Table 9. The AIC and BIC values of the BBL model are the single and multiple covariates.

Covariates AIC BIC

X2 512.9107 525.0628
X3 546.2378 558.3899
X4 546.1944 558.3465

X2X3X4 552.6286 576.9328

The BBL model with the single covariate in Table 9 has the smallest AIC and BIC values
compared to the BBL model with the multiple covariates. Therefore, the BBL model with the
single covariate is the best model for modeling the relationships between the responses (i.e.,
the HDI status and the PHDI status) and the covariates (i.e., the net enrollment rate of the
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junior high school, the percentage of people that have the minimum level of education in
junior high school, and the number of doctors per 1000 people) of regencies/municipalities
in Kalimantan, Indonesia, in 2018. Furthermore, the net enrollment rate of the junior high
school, the percentage of people that have the minimum level of education in junior high
school, and the number of doctors per 1000 people individually significantly affected the
HDI status and the PHDI status of regencies/municipalities in Kalimantan, Indonesia,
in 2018.

However, some recommendations and future research from this work are possible.
Firstly, the logit models in this research are limited to two responses. The BBL model,
with more than two responses, should be considered for future research. Secondly, other
numerical optimization methods that improve the performance of the BBL model should
also be considered for future research.

6. Conclusions

The BBL model is the development of the binary logit model. It was constructed
using the multinomial distribution. The ML method was applied to get the BBL model’s
parameter estimator. The ML estimator of the BBL model’s parameters does not have a
closed-form, and it needs an iterative numerical procedure. The BHHH iterative method
was used. Hypothesis testing of the BBL model includes the simultaneous test and the
partial test. The simultaneous and partial tests were done by using the MLRT method. The
LR statistics of the simultaneous test and the partial test were asymptotically chi-square
distributed. The BBL model was applied to model the factors affecting the HDI status
and the PHDI status of regencies/municipalities in Kalimantan, Indonesia, in 2018. The
BBL model with the single covariate performed better than the BBL model with multiple
covariates. The factors significantly affecting the HDI status and the PHDI status of
regencies/municipalities in Kalimantan, Indonesia, in 2018, were the net enrollment rate of
junior high schools, the percentage of people who have the minimum level of education in
junior high school, and the number of doctors per 1000 people.
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AIC Akaike’s information criterion
BHHH Berndt–Hall–Hall–Hausman
BIC Bayesian information criterion
HDI Human development index
LR Likelihood ratio
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ML Maximum likelihood
MLRT Maximum likelihood ratio test
MULT Multinomial distribution
PHDI Public health development index
VIF Variance inflation factor
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