PROSIDING

SEMINAR NASIONAL XVI

MASYARAKAT PENELITI KAYU INDONESIA (MAPEKI)

PEMANFAATAN SUMBERDAYA ALAM TERBARUKAN

Balikpapan, Kalimantan Timur 6 November 2013

Diselenggarakan Oleh :

Prosiding Seminar Nasional Masyarakat Peneliti Kayu Indonesia (Mapeki) XVI

Diselenggarakan oleh:

Masyarakat Peneliti Kayu Indonesia

bekerjasama dengan:

Konsorsium Perguruan Tinggi Swasta se-Kalimantan (KOPERTIS XI-B)
Asosiasi Perguruan Tinggi Swasta Indonesia (APTISI)
Pemerintah Propinsi Kalimantan Timur
Pemerintah Kota Balikpapan

Tim Editor:

Dr. Wiwin Suwinarti Dr. Irawan Wijaya Kusuma Dr. Erwin Dr. Ismail

Dibantu oleh Tim Teknis: Kiswanto, M.P. Nur Maulida Sari, S.Hut.

Disain Sampul dan Tata Letak: Kiswanto, M.P.

Diterbitkan oleh:

Masyarakat Peneliti Kayu Indonesia

UPT. Balai Penelitian dan Pengembangan Biomaterial Lembaga Ilmu Pengetahuan Indonesia (LIPI)
Jl. Raya Bogor KM.46 Cibinong Bogor 16911
Telp./Fak: 021-87914511 / 021-87914510

e-Mail : secretariat@mapeki.org Cetakan Pertama: November, 2014

ISSN 2407-2036

DAFTAR ISI

Halaman Judul	i
Kata Pengantar	ii
Daftar Isi	iii
Andianto (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Beberapa Kegiatan Mengidentifikasi Kayu dari Bea Cukai Tanjung Priok	
A. SIFAT DASAR KAYU	
Andianto (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Beberapa Kegiatan Mengidentifikasi Kayu dari Bea Cukai Tanjung Priok	1
Djarwanto (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Ketahanan Enam Jenis Kayu Terhadap Lima Jamur Pelapuk	9
Edi Sarwono (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Standar Deviasi dan Variabilitas Sifat Fisis Mekanis dari Tiga Jenis Kayu Andalan Peneduh Jalan sebagai Penduga dalam Kegunaan Kayunya	14
Harry Praptoyo (Fakultas Kehutanan UGM) Pengaruh Perbedaan Tempat Tumbuh Terhadap Variasi Sifat Anatomi Bambu Walung (<i>Gigantochloa atroviolaceae</i>) pada Kedudukan Aksial	21
Kasmudjo (Fakultas Kehutanan, UGM) Pengaruh Perbedaan Jenis dan Bagian Batang Bambu Terhadap Kualitas Bahan Mebel dan Kerajinan	35
Kurnia Wiji Prasetyo (UPT. Balitbang Biomaterial LIPI) Mengenal Struktur Anatomi dan Dimensi Berkas Pembuluh (Vascular Bundle) Gewang (<i>Corypha utan</i> Lamk.) dari Nusa Tenggara Timur	44
Renny Purnawati (Universitas Negeri Papua) Sifat Pemesinan dan Kualitas Finishing Kayu <i>Flindersia pimenteliana</i> F. Muell. Asal teluk Wondama Papua Barat	52
Sarah Augustina (IPB) Karakteristik Struktur Anatomi Kayu Tarik dan Kayu Opposite pada Kayu Balik Angin (<i>Alpitonia excelsa</i>)	64
Tibertius Agus Prayitno (Universitas Gadjah Mada) Sifat Finishing Kayu Jati Setelah Perlakuan Panas	75
B. BIOKOMPOSIT KAYU	
Andriati Amir Husin (Pusat Penelitian dan Pengembangan dan Permukiman) Pengaruh Suhu Terhadap Kekuatan Lentur Papan Partikel dengan Perekat Tanin Formaldehida	83
Rudi Hartono (Fakultas Pertanian, USU) Pengaruh Suhu dan Waktu Pengempaan Terhadap Ketahanan Rayap Papan Partikel dari Limbah Batang Kelapa Sawit dengan Perekat Isosianat	91

Wahyu Dwianto (UPT. Balitbang Biomaterial LIPI) Perbedaan Metode Pengkondisian Papan Semen Sabut Kelapa (<i>Cocos nucifera</i> L.) Terhadap Sifat Fisik dan Mekaniknya	. 97
IB Gede Putra (Balai Pengembangan Teknologi Perumahan Tradisional Denpasar, PU) Sifat Fisik dan Mekanik Bambu Laminasi Sistem Bilah Lengkung dan Penambahan Air Suling sebagai Optimasi Polimer Isocyanate	. 103
C. BIODEGRADASI DAN PENINGKATAN KUALITAS KAYU	
Soekmana Wedatama (Winward Asia) Peningkatan Kualitas Kayu Karet dengan Compregnasi Menggunakan Urea Formaldehida	. 113
Ganis Lukmandaru (Fakultas Kehutanan UGM) Pengawetan Kayu Mahoni secara Tekanan dengan Deltametrin Terhadap Serangan Rayap Kayu Kering	. 117
D. REKAYASA KAYU	
Achmad Basuki (Universitas Sebelas Maret, Surakarta) Pemrograman Komputer Perancangan Struktur Rangka Kuda-Kuda Berbahan Dasar Laminated Veener Lumber (LVL) Kayu Sengon	. 127
Ismail Budiman (UPT. Balitbang Biomaterial LIPI) Pengaruh Penggunaan Pemlastis Terhadap Sifat Mekanik Mortar dengan Bahan Pengisi Arang Sekam Padi dan Arang Bagas Tebu	. 133
Johannes Adhijoso Tjondro (Dept. Teknik Sipil, Universitas Katolik Parahyangan) Momen Rotasi Hubungan Balok – Kolom dengan Pelat Buhul Plywood	. 140
WS Witarso (Pusat Penelitian dan Pengembangan Pemukiman – Kemen PU) Pemanfaatan Kayu Galam (<i>Melaleuca cajuputi</i>) sebagai Lantai Yuster untuk Rumah Sederhana Sehat	. 149
Firna Novari (Politeknik Pertanian Negeri Samarinda) Pemanfaatan Kayu Pelawan (<i>Tristaniopsis spp.</i>) Sebagai Bahan Baku Pembuatan Briket Arang untuk Konsumsi Rumah Tangga	. 157
E. BIOENERGI DAN KIMIA HASIL HUTAN	
Titis Budi Widowati (Fakultas Kehutanan, UGM) Pemanfaatan Bagian Cabang dan Pucuk Cabang <i>Dalbergia latifolia</i> sebagai Pewarna Alami Kain Batik	. 160
Didi Tarmadi (UPT Balitbang Biomaterial LIPI) Pengaruh Ekstrak Haluar (<i>Litsea timoriana</i>) Terhadap Mortalitas Larva Nyamuk Aedes aegypti dan Culex quinquefasciatus	. 167
Eka Novriyanti (Balai Penelitian Teknologi Serat Tanaman Hutan) Karakteristik Kertas Karton Gelombang dari Kayu Alternatif	. 173

Gunawan Pasaribu (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Pemurnian Minyak Nilam (<i>Pogostemon cablin</i>) dengan Senyawa Pengkelat	77
Muliyana Arifudin (Fakultas Kehutanan, Universitas Negeri Papua) Analisis UV-Vis dan FT-IR Kulit Kayu <i>Eucalyptus globulus</i> Labill (Blue Gum) dan <i>Pinus radiata</i> D.Don (Monterey Pine) Pasca Pemanasan Microwave	86
Saptadi Darmawan (IPB) Sintesis dan Karakteristik Polimer Elektrolit Selulosa Asetat dari Biomassa	93
Totok K Waluyo (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Rendemen dan Kadar Santalol Ekstrak Kayu Cendana dengan Berbagai Pelarut Organik	204
Enih Rosamah (Fakultas Kehutanan, UNMUL) Stabilitas Warna Biji Tumbuhan Annato (Bixa orellana) Sebagai Bahan Pewarna Alami	<mark>)na</mark>
Otabilitas Warria biji Turiburian Armato (bixa orchana) oebagai banan Tewarria Alami	.00
Gusmailina (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Perbaikan Kualitas Minyak Nilam (<i>Pogostemon cablin</i>) dengan Adsorben	<u>?</u> 15
F. KAJIAN KEHUTANAN LAINNYA	
S. Yuni Indriyanti (Balai Besar Dipterokarpa) Biaya Tidak Resmi dalam Pengusahaan Kayu Hutan Alam Asal Kalimantan Timur	28
Deris Endang Sarifudin (IPB) Kajian Struktur Anatomi dan Sifat Fisik Kayu Balik Angin <i>(Alphitonia excelsa):</i> A Lesser Known Species from Kalimantan	237
Djamal Sanusi (Fakultas Kehutanan UNHAS) Analisis Kadar Karbon Pohon Sengon (<i>Paraserianthes falcataria</i>) yang Tumbuh di Hutan Rakyat 2-	<u>?</u> 45
E. Manuhuwa (Fakultas Pertanian Universitas Universitas Pattimura) Produksi Madu, Propolis Dan Roti Lebah Tanpa Sengat , (<i>Trigona spp</i>) Dalam Sarang Bambu	251
Lasino (Puslitbang Permukiman – Kemen PU) Penelitian Pemanfaatan Abu Sekam Padi sebagai Bahan Substitusi untuk Beton Tahan Api	260
M Fajri (Balai Besar Dipterokarpa) Analisis Vegetasi dan Asosiasi Jenis pada Habitat Shorea macrophylla di Hutan Tane' Olen Desa Setulang, Kabupaten Malianu, Kalimantan Timur	?72
Sahwalita (Balai Penelitian Kehutanan Palembang) Pengaruh pemakaian Mulsa Terhadap Pertumbuhan Sungkai (<i>Peronema canescens</i> Jack)	278
Sihati Suprapti (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Produktivitas Jamur <i>Pleurotus</i> spp. pada Kompos Serbuk Gergaji Kayu <i>Hevea brasiliensis</i> Muell. Arg. 20	284
Triyono Sudarmadji (Fakultas Kehutanan UNMUL) Observasi Potensi Tanah pada Lahan Revegetasi Pasca Tambang Batubara PT.Multi Tambangjaya Utama (MTU) di Barito Selatan, Kalimantan Tengah	290

Tubagus Angga Anugrah Syahbana (Balai Penelitian Kehutanan, Palembang) Pengaruh Tinggi Pemangkasan Terhadap Kemampuan Bertunas Tanaman Sungkai (Peronema canescens Jack) pada Kebun Perbanyakan	. 307
Yosafat Aji Pranata (Fakultas Teknik Universitas Kristen Maranatha) Analisis Kegagalan Bangunan Kayu Akibat Beban Gempa	. 312
Yoyo Suhaya (Sekolah Ilmu dan Teknologi Hayati, ITB) Model Pertumbuhan Kayu Surian (<i>Toona sinensis</i> Roem) di Jawa Barat	. 320
Yelin Adalina (Puslitbang Konservasi dan Rehabilitasi) Pemodelan Spasial Areal Produksi Madu di Kabupaten Bogor Bagian Barat	. 326
Kiswanto (Fakultas Kehutanan UNMUL) Efektivitas Pemupukan Terhadap Riap Diameter Samanea saman	343
POSTER	
Firna Novari (Politeknik Pertanian Negeri Samarinda) Analisis Fitokimia dan Aktivitas Antioksidan Ekstrak Etanol Daun Sembung (<i>Blumea balsamifera</i> (L)DC.) dari Kabupaten Kutai Barat Kalimantan Timur	. 350
Ganis Lukmandaru (Fakultas Kehutanan UGM) Sifat Kimia Bambu Hitam (<i>Gighantochloa</i> sp) pada Perbedaan Ketinggian Tempat Tumbuh dan Areal Aksial	. 353
MI Iskandar (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Pengaruh Kadar Perekat Terhadap Sifat-Sifat Papan Partikel	. 360
MI Iskandar (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Pengaruh Jumlah Lapisan Dan Macam Sambungan Terhadap Sifat-Sifat Venir Lamina	. 372
MI Iskandar (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Pengaruh Lama Penumpukan Bahan Baku Kayu Terhadap Sifat-Sifat Papan Partikel	. 381
Mohammad Gopar (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Pemanfaatan Komposit Serat Alam Untuk Media Tanam Vertikal	. 391
Mohammad Gopar (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Pengaruh Penggunaan Polivinil Asetat (PVAC) dan Komposisi Agregat (Hebel dan Cangkang Kelapa Sawit) Terhadap Sifat Mekanik Mortar Lantai Gerbong Kereta Api	. 396
Achmad Supriadi (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Dari Kayu Borneo ke Kayu Rakyat: Dampak Terhadap Perdagangan Kayu dan Kemungkinan Kualitas Konstruksi	. 401
Totok K. Waluyo (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Hubungan antara Suhu, Kelembaban, Lama Pangeringan Kemenyan secara Tradisional oleh Masyarakat di Tapanuli, Sumatera Utara	. 407
Saefudin (Puslit Biologi- LIPI) Potensi Zingiberaceae di Hutan Pinus (<i>Pinus merkusii</i> Jungh.&de Vriese) BKPH Majenang, Banyumas Barat	. 414

Sona Suhartana (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Pemanenan Kayu Ramah Lingkungan di Hutan Tanaman Lahan Kering di Sumatera, Kalimantan dan Jawa Barat	422
Wida Banar Kusumaningrum (UPT. Balitbang Biomaterial LIPI) Studi Penambahan Aditif Pada Biopellet Dari Limbah Biomassa Industri Pertanian	427
Yuniawati (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Peningkatan Produktivitas Muat Bongkar dan Pengangkutan Kayu <i>Acacia mangium</i> Melalui Teknik yang Ramah Lingkungan	437
Yusdiansyah (Politeknik Pertanian Negeri Samarinda) Kajian Sifat Fisik, Mekanika dan Anatomi Kayu Mangium (<i>Acacia mangium</i>) di Areal Reklamasi Tambang Batubara	445
R Esa Pangersa Gusti (Puslitbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan) Karakteristik Alkesa (<i>Pouteria campechiana</i> (Kunth) Baehni) dan Potensi Pemanfaatannya	452

Stabilitas Warna Biji Tumbuhan Annatto (*Bixa orellana* L.) Sebagai Bahan Pewarna alami

Enih Rosamah¹⁾, Rico Ramadan²⁾ dan Irawan Wijaya Kusuma ³⁾

1), 3) Fakultas Kehutanan Universitas Mulawarman

²⁾ Fakultas Matematika dan Ilmu Pengetahuan Alam

Email: enihros@yahoo.com

Abstrak

Kesumba keling atau *Bixa orellana* L. menjadi tanaman wajib tanam di pulau Jawa dan telah diekspor ke negara-negara Eropa dalam bentuk biji atau *Annatto Seed Engros* (Pande, 2009). Tanaman *B.orellana* L. (annatto) merupakan jenis tanaman penghasil bahan pewarna alami yang menghasilkan warna dasar merah.

Penelitian ini bertujuan untuk mengkaji potensi pewarna alami dari biji tumbuhan annatto (*Bixa orellana* L.) dengan menguji karakteristik stabilitas zat warna yang dimiliki sebagai dasar pengembangan produk herbal pewarna alami. Uji stabilitas warna dilakukan dengan variasi faktor yaitu suhu ekstraksi, pH, oksidator, sinar matahari, penyinaran lampu, dan penyimpanan. Karakteristik zat warna dari ekstrak biji buah *B. orellana* L pada suhu 90°C menunjukkan intensitas warna tertinggi dengan absorbansi maksimal, dimana banyak senyawa warna yang terekstrak yang diindikasikan dengan tingginya nilai absorbansinya. Selain dipengaruh suhu, kestabilan zat warna juga dipengaruhi oleh faktor penyinaran matahari, sinar lampu, oksidator, pH dan penyimpanan.

Kata kunci: absorbansi, Bixa, stabilitas warna.

I. Pendahuluan

Tumbuhan annatto (*B. orellana* L.) juga termasuk tumbuhan obat karena tumbuhan ini memiliki kandungan senyawa kimia yang secara farmakologis dapat digunakan sebagai peluruh kencing (diuretik) dan menetralkan racun. Penggunaan kandungan bahan aktif ini bisa berasal dari seluruh bagian tumbuhan. Selain sebagai bahan obat tumbuhan annatto (*B. orellana* L.) juga digunakan sebagai pewarna alami (Harbelubun *dkk*, 2005).

Kemajuan teknologi dan ilmu pengetahuan ternyata tidak mampu menghilangkan peranan alam. Hal ini yang mendorong perlunya pemanfaatan sumber daya alam yang ada untuk dikembangkan dari segi pemanfaatan pewarna alami yang berasal dari tumbuhan sekaligus mampu digunakan sebagai antioksidan bagi tubuh manusia. Suatu langkah masyarakat untuk kembali ke alam mendorong peningkatan pemakaian bahan alam sebagai obat dan juga pewarna pada makanan.

Pemanfaatan pewarna alami pada saat ini sangat penting untuk mengurangi pemakaian pewarna sintetis yang sangat berbahaya bagi tubuh (Hanum, 2000). Selain itu bukan hanya pewarna alami tetapi juga pemanfaatan hal lain yang terkadung dalam tanaman pewarna alami seperti zat antioksidan yang terkandung didalammya mampu memberikan efek ganda pemanfaatan tanaman tersebut.

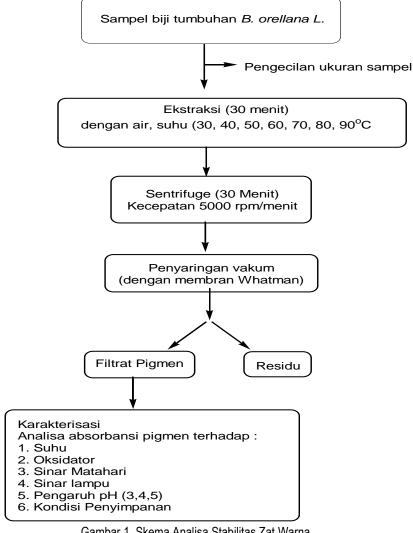
Penelitian tentang bahan pewarna alami serta antioksidan dari tumbuhan *B.orellana* L. masih terbatas di Kalimantan Timur, sementara penggunaan pewarna alami serta kebutuhan antioksidan dari alam terus meningkat setiap tahunnya. Oleh karena itu dipandang sangat penting untuk meneliti tumbuhan *B.orellana* L guna mengetahui senyawa yang terkandung didalam tanaman tersebut melalui serangkaian metode meliputi ekstraksi, fraksinasi serta untuk meneliti kandungan fenol total dan besarnya aktivitas antioksidan dari ekstrak dari bagian tumbuhan *B. orellana* L dan juga diteliti mengenai potensi pewarna alami dengan menguji karakteristik stabilitas zat warna yang dimiliki.

Penelitian ini bertujuan untuk mengetahui potensi yang terkandung dalam tumbuhan annatto (*Bixa orellana* L) sebagai tumbuhan obat dan pewarna alami. Mengetahui karakteristik uji stabilitas warna yang terkandung dalam tumbuhan annatto (*B. orellana* L) untuk dapat digunakan sebagai pewarna alami.

Hasil penelitian ini diharapkan dapat memberikan informasi fundamental bagi masyarakat bahwa tumbuhan annatto (*B. orellana* L) merupakan tanaman yang juga dapat digunakan sebagai pewarna alami dan sebagai tumbuhan berpotensi tumbuhan obat.

Dalam spektrum yang lebih luas tumbuhan annatto (*B. orellana* L) dapat dikembangkan dan digunakan sebagai tumbuhan yang berpotensi sebagai pewarna tekstil serta pengembangan herbal alami.

II. Bahan dan Metode


Bahan

Bahan yang digunakan dalam penelitian ini adalah tumbuhan B.orellana L. bagian biji yang diperoleh dari daerah Marang Kayu, Palaran serta Lempake Samarinda, Kalimantan Timur.

Metode Penelitian

Pengujian Stabilitas Warna (Samsudin & Khoiruddin, 2007)

Sampel biji diekstraksi dengan menggunakan pelarut air pada suhu yang berbeda-beda (30, 40, 50, 60, 70, 80, 90°C). Kemudian hasil ekstraksi disentrifuge selama 30 menit dengan kecepatan 5000 rpm. Setelah itu dilakukan penyaringan dengan vakum menggunakan kertas saring Whatman, sehingga didapatkan filtrat pigmen yang kemudian diuji absorbansinya dengan spektrofotometer dengan panjang gelombang (λ) 510 - 550 nm. Uji stabilitas warna dilakukan terhadap pengaruh oksidasi, sinar matahari, sinar lampu, pengaruh pH, kondisi penyimpanan. Selengkapnya disajikan pada Gambar 1 dibawah ini:

Gambar 1. Skema Analisa Stabilitas Zat Warna

1. Pengaruh Sinar Matahari

Sebanyak 10 ml dari larutan filtrat pigmen dimasukkan dalam tabung reaksi kemudian dijemur dibawah sinar matahari interval 3 jam sekali dilakukan pengukuran absorbansi pada panjang gelombang 510 – 550 nm.

2. Pengaruh Sinar Lampu

Sebanyak 10 ml dari larutan filtrat pigmen dimasukkan kedalam tabung reaksi kemudian disinari oleh lampu dengan kekuatan 20 watt selama 48 jam dan setiap 12 jam sekali, dilakukan pengamatan terhadap absorbansinya pada panjang gelombang 510 - 550 nm.

3. Pengaruh pH

Stabilitas filtrat pigmen dibuat dalam 3 tingkatan keasaman (pH: 3, 4, 5). Filtrat pigmen sebanyak 2 ml dilarutkan dalam 100 ml buffer asam sitrat sesuai dengan variasi pH. Kemudian dilakukan pengukuran absorbansi pada panjang gelombang 510 – 550 nm.

4. Pengaruh Oksidator

Sebanyak 10 ml larutan filtrat pigmen masing-masing dimasukkan ke dalam tabung reaksi dan ditambahkan oksidator H_2O_2 sebanyak 1 ml kemudian setiap 3 jam sekali dilakukan pengukuran absorbansi pada panjang gelombang 510 - 550 nm.

5. Pengaruh Kondisi Penyimpanan

Filtrat pigmen disimpan pada suhu dingin (15°C). Setelah 2 hari dilakukan pengenceran yaitu pigmen cair dilarutkan sebanyak 2 ml dalam 100 ml air kemudian diukur absorbansinya pada panjang gelombang 510 – 550 nm.

III. Hasil dan Pembahasan

Pengujian stabilitas warna ini dilakukan pada biji tumbuhan *Bixa orellana* L. Biji dari tumbuhan ini diyakini memiliki zat warna. Perlakuan yang dilakukan ialah melakukan ekstraksi terlebih dahulu berdasarkan perbedaan suhu ekstraksi. Pada tabel-tabel dibawah ini disajikan hasil ekstraksi dan berbagai perlakuannya.

Uji stabilitas warna dilakukan dengan beberapa perlakuan yaitu pengaruh suhu ekstraksi, pengaruh sinar matahari terhadap stabilitas warna, pengaruh sinar lampu, pengaruh pH, pengaruh oksidator, pengaruh kondisi penyimpanan.

Sampel biji galuga diekstraksi dengan pelarut air, yang kemudian diekstraksi dengan variasi suhu. Kemudian dilakukan sentrifuge dengan alat sentrifuge dan langkah selanjutnya disaring sehingga didapatkan filtrat yang kemudian diuji dengan spektrofotometer dengan panjang gelombang 510 – 550 nm.

1. Pengaruh Suhu

Ekstraksi zat warna pada biji *Bixa orellana* L dengan menggunakan solvent aquadest dan proses ekstraksi pada suhu yang berbeda (30, 40, 50, 60, 70, 80, 90 °C) dimana ditunjukkan pada Gambar 48 diatas. Pada gambar 48 dapat dilihat bahwa awalnya absorbansi naik satu interval dengan rasio kenaikan absorbansi yang kecil pada 30 – 40 °C. kenaikan absorbansi ini menunjukkan kenaikan intensitas warna yang terekstrak. Kemudian turun pada suhu 50 °C ditandai dengan turunnya nilai absorbansinya. Kemudian absorbansi naik kembali pada suhu 60 °C, kemudian mengalami penurunan absorbansi (penurunan intensitas warna) sampai pada suhu 80 °C. kemudian mengalami kenaikan yang sangat signifikan pada suhu 90 °C, ini dapat dilihat pada gambar 48. terjadi kenaikan yang drastis, bila dilihat dari nilai absorbansi terjadi kenaikan satu interval suhu tetapi terjadi kenaikan nilai absorbansi warna yang begitu tinggi. Hal ini yang menyebabkan pada suhu ekstraksi 90 °C kenaikan absorbansi secara signifikan akibat semakin kuat intensitas warna yang dihasilkan.

Tabel 1. Pengaruh suhu ekstraksi terhadap absorbansi

Suhu (°C) Panjang	30	40	50	60	70	80	90
Gelombang				Absorbansi			
510 nm	0,075	0,103	0,069	0,071	0,034	0,012	0,106
520 nm	0,073	0,101	0,067	0,077	0,038	0,019	0,122
530 nm	0,073	0,099	0,065	0,087	0,043	0,030	0,141
540 nm	0,072	0,099	0, 066	0,105	0,050	0,056	0,172
550 nm	0,072	0,098	0,065	0,125	0,063	0,090	0,223

Warna yang dihasilkan dari biji tersebut dapat diasumsikan merupakan senyawa anthosianin. Anthosianin sebagai zat warna alami yang berwarna merah tersebar secara luas dalam jaringan tanaman seperti pada bunga dan buah (Hanum, 2000). Anthosianin adalah zat warna yang bersifat polar dan akan larut dengan baik pada pelarut-pelarut polar (Samsudin & Khoiruddin, 2007). Aquadest (air) adalah pelarut polar yang sehingga cukup baik melarutkan anthosianin.

2. Pengaruh Sinar Matahari

Sinar matahari merupakan salah kondisi yang menyebabkan terjadinya perubahan warna. Benda - benda di sekitar manusia, apabila diamati, terlihat bahwa benda - benda yang sering terkena sinar matahari secara langsung mengalami perubahan warna lebih cepat dibanding dengan benda – benda yang terkena sinar matahari secara tidak langsung (pada kondisi lain yang sama). Begitu pula pada zat warna dari biji B.orellana L ini. Intensitas warna berubah cukup besar terhadap sinar matahari seperti yang ada pada grafik, meskipun absorbansinya semakin besar. Hal ini menunjukkan bahwa zat warna ini tidak stabil terhadap sinar matahari.

Pada pengamatan terhadap stabilitas warna dari biji B.orellana L, adanya sinar matahari menyebabkan degradasi pigmen yang ditunjukkan penurunan absorbansi, dimana secara visual perubahan pigmen semakin bening kemudian warna merah tidak terlihat. Penurunan nilai absorbansi atau pemucatan warna disebabkan karena terjadinya dekomposisi pigmen anthosianin sehingga bentuk aglikon menjadi kalkon (tidak berwarna) dan akhirnya membentuk alfa diketon yang berwarna coklat (Hanum ,2000).

Tabel 2. Pengaruh sinar matahari terhadap absorban:					
Panjang		Absorbansi			
Gelombang (nm)	Awal	3 jam	6 jam		
510	0,235	0,205	0,197		
520	0,190	0,180	0,176		
530	0,145	0,138	0,133		
540	0,135	0,126	0,118		
550	0,107	0,103	0,101		

3. Pengaruh Sinar lampu

Pada pemberian sinar lampu terdapat pengaruh pada absorbansi. Dimana sinar lampu mempunyai pengaruh yang besar terhadap kestabilan warna. Kestabilan pigmen yang terkandung pada biji juga dipengaruhi oleh adanya penyinaran lampu. Senyawa yang terkandung didalam ekstrak tersebut diduga antosianin yang memiliki kecenderungan kuat mengabsorbsi sinar tampak dan energi radiasi sinar menyebabkan reaksi fotokimia pada spektrum tampak dan mengakibatkan perubahan warna (Lydia, dkk, 2001 dalam Samsudin, 2007).

T 1 1 0					
IANDIR	Penaariih	cınar	lamnıı	terhadan	absorbansi
i abci o.	i Ciiqaiuii	JIIIai	Idilipu	torriadap	absorbarisi

Panjang		Absor	rbansi	
Gelombang (nm)	Awal	12 jam	24 jam	48 jam
510	0,235	0,111	0,111	0,091
520	0,190	0,091	0,092	0,075
530	0,145	0,078	0,078	0,062
540	0,135	0,066	0,070	0,053
550	0,107	0,060	0,068	0,046

4. Pengaruh nilai pH

Pengaruh pH (keasaman) sangat berpengaruh pada absorbansi dari zat warna yang dikandung dari ekstrak biji B.orellana L, terlihat adanya kenaikan serapan (absorbansi) dengan menurunnya pH. Semakin rendah pH maka warna akan stabil. Hal ini dikarenakan bentuk pigmen antosianin pada kondisi asam adalah kation flavium sedangkan inti kation flavium dari pigmen antosianin kekurangan elektron sehingga reaktif (Francis et al, 1982).

Tabel 4. Pengaruh pH terhadap absorbansi

raber in engaran pri temadap abeerbaner					
Panjang	Absorbansi				
Gelombang (nm)	Awal	pH = 5	pH = 4	pH = 3	
510	0,235	0,195	0,297	0,394	
520	0,190	0,176	0,278	0,382	
530	0,145	0,167	0,267	0,365	
540	0,135	0,156	0,258	0,357	
550	0,107	0,147	0,195	0,347	

5. Pengaruh Oksidator

Pengaruh oksidator menyebabkan penurunan serapan (absorbansi) atau berkurangnya kadar pewarna yang disebabkan oleh adanya penyerangan pada gugus reaktif pada pewarna oleh oksidator, sehingga gugus reaktif yang bersifat memberi warna berubah menjadi tidak berwarna. Hal ini seperti yang dijelaskan oleh Hanum (2000) bahwa adanya oksidator dalam larutan menyebabkan kation flavium yang berwarna merah kehilangan proton dan berubah menjadi karbinol yang tidak memberikan warna.

Tabel 5. Pengaruh Oksidator terhadap absorbansi Panjang Absorbansi Gelombang Awal 3 jam 6 jam (nm) 0.235 0.184 0.149 510 520 0,190 0,145 0,118 0,120 0,106 530 0,145 540 0,135 0,106 0.091 550 0,107 0,093 0,086

6. Pengaruh Penyimpanan

Pengaruh kondisi penyimpanan terhadap absorbansi dari ekstrak biji *Bixa orellana* L, hal ini dapat terlihat dari penurunan abosrbansi. Perubahan saat penyimpanan dimungkinkan disebabkan oleh reaksi kopigmentasi dan adanya dugaan ekstrak masih mengandung enzim polifenolase yang mengkatalis reaksi pencoklatan (Lydia, 2001). Tetapi pada penyimpanan dalam keadaan dingin, reaksi pencoklatan dan kopigmentasi dapat dihambat (Samsudin, 2007).

Tabel 6. Pengaruh Penyimpanan (15°C) terhadap absorbansi

Panjang	Absorbansi		
Gelombang (nm)	Awal	48 jam	
510	0,235	0,184	
520	0,190	0,145	
530	0,145	0,120	
540	0,135	0,106	
550	0,107	0,093	

Dari hasil analisa data diatas mengenai kestabilan warna saat ekstraksi terhadap suhu dan faktor karakteristiknya. Pada suhu ekstraksi 90°C dihasilkan serapan absorbansi yang optimal, hal ini menunjukkan bahwa suhu ekstraksi yang baik ialah suhu 90°C. Kemudian dilakukan perlakuan dengan berbagai faktor seperti penyinaran sinar matahari, sinar lampu, pH, oksidator dan penyimpanan.

Pada penyinaran sinar matahari terjadi penurunan serapan, ini terlihat dari absorbansi yang semakin kecil berdasarkan waktu kontak dengan sinar matahari. Hal ini mempertegas bahwa zat warna ini tidak stabil terhadap sinar matahari. Begitu juga dengan sinar lampu, zat warna tersebut mengalami penurunan serapan yang dapat dikatakan zat warna tidak stabil bila terpapar sinar

Pada pengaruh pH, zat warna mengalami kestabilan, hal ini dapat dilihat dari serapan yang diukur. Semakin rendah nilai pH maka warna konsentrat semakin merah dan stabil. Hal ini disebabkan bentuk pigmen antosianin pada kondisi asam adalah kation flavium (Francis,1982). Pada faktor pengaruh oksidator terjadi penurunan nilai serapan zat warna, hal ini dapat dikatakan zat warna tidak stabil akibat penyerangan gugus reaktif pada pewarna oleh oksidator. Pada faktor penyimpanan pada

suhu 15°C terjadi perubahan sehingga serapan yang ada sedikit berubah, tetapi penyimpanan pada suhu dingin dapat menghambat terjadinya kopigmentasi dan pencegahan reaksi pencoklatan. Dari penjelasan diatas pengaruh faktor-faktor tersebut diatas mampu mempengaruhi kestabilan zat warna dari biji tumbuhan *Bixa orellana* L.

IV. Kesimpulan

Karakteristik zat warna dari ekstrak biji buah B. Orellana L. Pada suhu 90°C menunjukkan intensitas warna tertinggi dengan absorbansi maksimal. Hal ini menunjukkan banyak senyawa warna yang terekstrak yang diindikasikan dengan tingginya nilai absorbansinya. Kesetabilan zat warna dipengaruhi juga oleh faktor penyinaran matahari, sinar lampu, oksidator, pH dan penyimpanan. Dimana terjadi penurunan absorbansi akibat penyinaran baik matahari maupun penyinaran lampu, oksidator, dan penyimpanan. Sedangkan adanya peningkatan keasaman meningkatkan nilai absorbansi.

Daftar Pustaka

- Francis, F.J. 1982. Analysis of Anthocyanins dalam Hanum, T. 2000. Bulletin Teknologi dan Industri Pangan Vol. XI No. 1.
- Hanum, T. 2000. Ekstraksi dan Stabilitas Zat Pewarna Alam dari Katul Beras Ketan Hitam (Oryza sativa glutinosa). Bulletin Teknologi dan Industri Pangan Vol. XI No. 1. Fakultas Pertanian. Universitas lampung.
- Harbelubun, A.E., Kesaulija, E.M., Rahawarin, Y.Y. 2005. *Tumbuhan Pewarna Alami dan Pemanfaatannya Secara Tradisional oleh Suku marori Men-Gey di Taman Nasional Wasur Kabupaten Merauke*. Jurnal Biodiversitas Vol. 5 No. 5. Hal. 285 288.
- Lydia S., Wijaya,I., Simon,B., Susanto,T. 2001. Ekstraksi dan karakterisasi Pigmen dari Kulit Buah Buah Rambutan. Binjai Biosains Vol. 1 No. 2. Hal. 42-43.
- Pande, K. 2009. Jenis Tumbuhan sebagai Pewarna Alam pada Beberapa Perusahaan Tenun di Gianyar. Jurnal Bumi Lestari Vol. 9 No. 2 hal. 217-223.
- Samsudin & Khoiruddin, 2007. Ekstraksi, Filtrasi Membran dan Uji Stabilitas Zat Warna dari Kulit manggis (Garcinia mangostana). Fakultas Teknik UNDIP.

