BUKTI-BUKTI PROSES REVIEW (KORESPONDENSI)

Judul	:	The ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province, Indonesia
Penulis	:	Karmini, Karyati, dan Kusno Yuli Widiati
Nama Jurnal	:	Biodiversitas
Volume/Nomor/Tahun/Halaman	•••	21, 1, 2020, 5550-5558
ISSN	:	1412-033X/E-ISSN: 2085-4722
Penerbit	:	Society for Indonesian Biodiversity
DOI	:	10.13057/biodiv/d211164

					1100
adiversitas journal of Biolog	al Diversity + Tasks 🚳		🤪 English	 View Site 	🛔 karyati
	Reviewer's Attachments			Q Sea	arch
		nt.doc	October 21, 2020		
	֎ 312154 .02-oct-wer- edited with track of changes.doc		October 23, 2020		
	Revisions		Q Se	arch Upload	I File
	Ital: 31727-1 Article Text, 6951-Article Text-30803_KK.doc		November Art 2, 2020	icle Text	
	Ø 31728-1 Other, feedback for reviewers comments 2020.pdf		November Ott 2, 2020	ner	
	Review Discussions			Add discus	sion
	Name	From	List Reply	Wephes	Closed

Constant Income and States in			O Provide to	- In the second second	
owerstate journal in Balligie.			2, 2020	e view site	- Karyan
	IB 31728-1 Other, feedback for reviewers comments 2020.pdf		November Othe 2, 2020	r	
	Review Discussions			Add disc	assion
	Name	From	Last Reply	Replies	Closed
	Uncorrected proof	editors 2020-11-01 04:37 AM	wwiryono 2020-11-07 01:59 PM	1	
	Beykad uncorrected proof	karyati 2020-11-01 05:38 AM	2	D	
	BILLING	dewinurpratiwi 2020-11-01 06:33 AM	2	0	
	The proof of payment	karyati 2020-11-03 86:11		0	

iversitas Journal of Biok	ogical Diversity 🔹 🛛 Tasks 🎑				O English	👁 View Site 👗 karys
	Short Communicat Kalimantan Provin KARMINI, KARYATI, KUR	ion: The ecological a ce, Indonesia INO YULI WIDIATI	nd economic valu	es of secondary forest or	abandoned land in San	iarinda, East
		copyraining				
	Copyediting Disc	ussions				Add discussion
	Name			From	Lotit Reply	Replies Coneri
				No items		
	Copyedited					Q. Search
	🗟 31772-1 editor	s. D211164-abandoned la	nd -karmini=REV.doc		November An 3, 2020	icle Text

diversitas Journal of Biol	logical Diversity 🔹 Tasks 🙆		O English	View Site
ois			Submission Library	View Metadata
	Short Communication: The ecological and economic va Kalimantan Province, Indonesia Kalimini: Kalizati, Kusino Yuli Witilari	lues of secondary forest on a	ibandoned land in Samar	rinda, East
	Submission Review Copyediting Production			
	Production Discussions			Add discussion
	Name	From	List Reply	Replies Closed
	-	No Revis		
	Galleys			
	and the second sec			

ahoo/mail	Find messages, documents, photos or people 👻 🍳 😢 Keryes	: 🏫 Hom
Compose	← Back ♠ �� ➡ ➡ Archive 聞 Move 音 Deite ♥ ipon ···· ▲ ▼ X 🖽 I	8 9 9
K14	* [biodiv] Submission Acknowledgement	A A
read nred afts nt chiue aft Lons Mos Show	Annual Dari Sergensen - sample di@granil.com* In the Dari Sergensen - sample di@granil.com* In the path Karyati For the statement of the sergense of follow lend in the topic from an ecology and economic perspectives ¹ to Berdenset. Journal of Ribological Diverset, With the online journal management system that we are using, you will be able to track the projets minute the economic becastives. How provide the sergense we are using you will be able to track the projets minute the economic becastives. How provide the service we are using you will be able to track the Burnerseter URL the path three of before the service we are using you will be able to track the Burnerset. Karyati If you have any categories, please contact me. Therek you for considering the journel as a versue for your work. Annual Dati Services.	
den Hide Vew Folder	Registereden Journal of Dislocical Disemby	Product

1	The ecological and economic values of secondary forest on abandoned
2	land in Samarinda, East Kalimantan Province The existence of fallow
3	land in the tropic from an ecology and economic perspectives
4	

ABSTRACT

12 There is a large area of abandoned land that is not taken manage of after plantation activities in the tropic East Kalimantan Provin These abandoned traditional gardens which have been neglected for a long time have important ecological and economic values. This study aims aimed to assess the ecological and economic values existence of secondary forest on abandoned land in the tropic from a 13 14 15 16 17 18 19 20 21 22 23 vical and onomic perspectiveSamarinda, East Kalimantan Province. The ecological aspects assessed were stand structure floristic composition, and species diversity. Meanwhile, the economic aspects analyzed were log price, harvesting cost, profit margin, and stumpage value. The vegetation survey was carried out on all woody trees with a diameter at bresst height (DBH) ≥ 5 cm in 10 subplots, each measuring sized-20 m × 20 m. A total of 192 trees were recorded, of 29 species belonging to $\frac{29}{29}$ species. I9 genera and 17 families. The most dominant species were *Macaranga triloba* (Importance Value, IV of 46.16), *Macaranga tanarius* (IV of 22.97), and Nephelium lappaceum (IV of 20.94). The indexes of diversity, dominance, evenness, and richness in the studied plots were 1.33. 0.06, 0.40, and 5.33, respectively. The means of wood price, logging cost, profit margin, and stumpage value at abandoned landof the condary forest were USD199.55 m⁻³, USD69.01 m⁻³, USD25.45 m⁻³, and USD51.56 ha⁻¹, respectively. This study e-confirmed that it abandoned lands with had high ecological and economic values-indicate the important role of aba indoned lands in the 24 succession process in the tropic

25 Key words: Abandoned land, diversity, fallow land, stumpage value, tropic.

26 Running title: The existence of fallow land

27

8 9 10

11

INTRODUCTION

In East Kalimantan Province there is about 3 million hectares of abandoned land, consisting mainly of former cod mining land and fallow land of the shifting cultivation system which is no longer cultivated by the owners. The indigenous Dayak tribe usually replanted the land after rice harvesting with multipurpose species, such as fruit trees, rattan, and bamboo. Over time, the abandoned land will turn into secondary forest due to succession. The forest growth continues to increase constantly in the tropic. After decades, the species richness in the regrowth forests can approach old forest which can serve as biodiversity repositories (Yirdaw et al. 2018).

34 The planting trees on abandoned land can be done in an effort to accelerate the restoration of vegetation and soil in the 35 area. These activities allow land use and reduce the expansion of cultivated areas (Klanderud et al. 2010). The tim 36 required for vegetation recovery to primary successionoriginal forest characteristics is influenced by several factors suc 37 as type of land use, cycle duration, and large cleared patches (Aththorick et al. 2012). The pioneer and fast growing plan 38 species dominate abandoned lands which are indicated by an intermediate diversity, a low dominance index, and a high 39 evenness index (Karmini et al. 2020; Karyati et al. 2013; Karyati et al. 2018). The rate of succession and thus t 40 restoration of soil on abandoned land can be accelerated through plantation programs. These activities can reduce the 41 expansion of forest conversion into cultivated areas (Klanderud et al. 2010).

42 The land use change has significant impacts on biodiversity, carbon sequestration, and local economies (Kunts et a. 2018). The urban growth is contrasts to the spatial distribution of fallow land at the local scale and economic recessions at the regional scale (Zambon et al. 2018). The National Land Agency (BPN) identified an area of 7.3 million hectares of land in Indonesia in 2011 was categorized as abandoned land, while around 4.8 million hectares had been declared as abandoned land. The area of abandoned land increased in 2007 to an area of 7.1 million hectares outside the forest area of abandoned land.

(Nurlinda et al. 2014). The area of abandoned land in East Kalimantan is about 3 million heetares. In general, the abandoned land consists of ex coal mining land and gardens or fields that are not cultivated by the owner. In East Kalimantan, the indigenous Dayak tribe replanted the land after planting rice with the multifunctions trees, such as fruit trees, rattan, and bamboo. Also, Forest forest planting has an important role in providing ecological, economic, religious, and cultural functions of the secondary forest (Setiawan 2010). The average stumpage value in abandoned land was calculated to be 83.05 USD ha⁻¹ and the total was calculated to beyalue 2,159.36 USD ha⁻¹ (Karmini et al. 2020).

51 52 53 54 55 The calculation of the potential economic value of wood timber and non-wood timber forest products that can be used as construction materials for buildings or furniture will illustrate the potential income that might be achieved from managing abandoned land. Some of the results of previous research on abandoned land are mostly related to aspects of 56 agrarian law policy (Afdalis 2016; Dumais 2014; Permana 2012) as well as study on the ecology and economy of 57 abandoned land after cultivation (Karmini et al. 2020). However, research on the potential for carbon stocks and the 58 economic valuation of abandoned lands after plantation is rarely reported. The objectives of the study were to assess the 59 existence ecological and economic values of secondary forest of on abandoned land based on ecology and economy 60 perspectives. The ecological aspect were assessed such as floristic structure, composition, and species diversity as well as 61 the economic aspect of standing trees such as log price, logging cost, profit margin, and stumpage value in an abandoned 62 land. The findings are expected to be used as the basis to make recommendation in conserving and managing the 63 abandoned land in East Kalimantan and in other tropical abandoned lands areas.

MATERIALS AND METHODS

Study site

2

47

48

49

50

64

65

66

The research was carried out on an fallow land of abandoned <u>traditional</u> garden in Bukit Pinang area.<u>Bukit Pinang is</u> in Samarinda Ulu sub district, Samarinda City, East Kalimantan Province, Indonesia. The boundaries of <u>the</u> area are Kutai Kartanegara district at north, Samarinda Utara district at east, Air Putih sub district at south, and Sungai Kunjang district at west. Samarinda City is the capital of East Kalimantan Province, Indonesia and the city with the largest population in the entire island of Kalimantan. The population of Samarinda is 812,597 people. Samarinda has an area of 718 km² with a hilly geographical condition with altitudes varying from <u>10-10</u> to 200 meters above sea level. Samarinda City is divided by Mahakan river and becomes the gateway to the area around by river, land, and air. The research plot lies at the coordinate points of 0²5'32.8''S 117⁶05'56.8''E (<u>as shown in</u> Figure 1).

The first and the second secon

Figure 1. Map of study site.

Procedures		
1 ioccuires		
Data collection Vacatation survey		
The research vegetation survey	was conducted from March to Sontomber ?	2020 A total of 10 subplots each measuring
The research vegetation survey of	vas conducted from March to September 2	2020. A total of 10 subplots, each measuring
$m \times 20 m_a$ were established in	the study site. All woody trees with a dia	ameter at breast height (DBH) of ≥ 5 cm
measured for diameter and heigh	t, and their species were identified.	
Data collection		
Researchers collected primary	nd secondary data Primary data were o	btained from vegetation survey. Source of
secondary data was were obtaine	<u>d from</u> reports and articles from previous r	researches.
Data analysis		
Ecological characteristics		
The following formulas we	e used to measure individual basal area (B	(Δ) and volume (V) (Husch et al. 1982):
Individuals $PA = \pi (D$	$PU(2)^2$ 10-4	(1)
$\frac{1}{1} = \frac{1}{1} + \frac{1}$	$DDU^2 = 10^4 - U - C$	(1)
Individuals $V = \frac{1}{4} \pi \times$	DBH^2 . $10^{-7} \times H \times f$	(2)
where: DBH is diameter at breas	t height (cm), 'H' is tree height (m), and ' f	" is form factor.
The importance value index in (Fachrul 2007):	(IVi) was used to determine the dominan	tt species of community within the studied
$\mathbf{PE} = (\mathbf{Frequency} \text{ of } \mathbf{a})$	necies / Total of frequencies of all species	$) \times 100$ (3)
$\mathbf{R} = (\mathbf{T} \mathbf{r} \mathbf{r} \mathbf{u} \mathbf{r} \mathbf{u})$	dividual of a spacing / Total number of in	dividuala) $\times 100$ (4)
Rd = (The humber of T	individual of a species / Total number of m	(4)
RD = (Total basal area	for a species / Total basal area for all spec	$(5) \times 100 \dots (5)$
$IV_i = RF + Rd + RD$.		(6)
where: RF is relative frequency,	Rd is relative density, and RD is relative d	lominance.
The four diversity indices	were analyzed to describe species diversi	ty of standing trees in the studied plots. T
diversity indices were Shannon-	Wiener's diversity index (H') , Simpson's	dominance index (D_s) , Pielou's evenness i
(1) and Margalef's richness ind	ex(R) (Odum 2005).	("))
	(ii) (Oddin 2000).	
$H' = -\sum_{i=1}^{N} \left(\frac{n_i}{N} \right) \ln \left(\frac{n_i}{N} \right) \cdots$		(7)
$\frac{s}{s}$		
$D_s = \sum_{i=1}^{N} \left(\frac{n_i}{N} \right) \cdots \cdots$		
H'		
$J' = \frac{H}{1 + G}$		(9)
$\ln(S)$		
$_{P} = (S-1)$		
$K = \frac{\ln n}{\ln n}$		(
where: $n_i = number of individual$	s of the <i>i</i> - th species. $N = total number of a$	Ill the individuals in a unit area, and $S = nu$
of species in each plot.	· · · · · · · · · · · · · · · · · · ·	
F 1 1 1		
Economic interature		
Data in Table 1 shows number of	f logs that produced from tree diameter up	to /5 cm. Based on diameter class and nu
of logs, could be known the equi	valent merchantable height was determined	<u>1</u> .
Table 1. Merchantable tree heights.		
Diameter class (cm)	Number of logs (5 m long)	Fauivalent merchantable height (m)
		2.5*
15 30	1	5
13 - 50	1	10
$\pm 50 - 50$	2	10
+00 - 75	5	15
/J KC dids	4	20 (EDPM) (1997)
Source. · Finnary data (2020); Fore	a y Department of r mansular <u>Peninsular</u> Malay	ysia (1 ⁻ 1/F ⁻ 1 ^V I) (1777).
Reduction factor of log price w	as determined based on size class of DB	H and its data can be seen in (Table 2)
rese <u>a</u> rach used assumption if tha	the reduction factor of log price with size	class of DBH < 15 cm is was as many as 0
Table 2. Reduction factor of log priv	e	
Tuble 2. Reduction factor of log pile		
DDH alao a		

DBH size class (cm)	Reduction factor
< 15	0.60*
15 - 29	0.45

0.00	
45 – 49 0.15 50 54 0.25	
255 = 55 0.00	

139 Source: *Primary data (2020); Noor et al. (1992) and Hanum et al. (2001). 140

141 Profit ratio is was determined fixed as at many as 30% according to Noor dan Shahwahid (1999). Equation of profit margin is-was calculated as follows (Noor dan Shahwahid, 1999): 142

143
$$PM_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} (P_{ij} x PR) / (1 + PR)$$

144 where: PM_{ij} 145 = profit margin;

= log price for each species at sawmill and diameter class; 146

P_{ij} PR 147 = profit ratio;

148 i = an index for each species (i = 1, 2, 3, 4, ..., n);

149 = an index for diameter class (i = 1, 2, 3, 4, ..., n). i

Logging cost of *Eusideroxylon zwageri* spesies was USD102.04 m⁻³ in research location when <u>the</u> research was done. Meanwhile, that of others spesies was USD68.03 m⁻³. The exchange rate <u>was of</u> 1 USD <u>equal withwas</u> 14,740 IDR <u>at on 8</u> 151 152 153 October 2020. The equation of stumpage values is presented below:

154
$$S_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} V_{ij} (P_{ij} + C + PM)$$

155 where:

163

150

$$S_{ij} = \sum_{i=1}^{N} \sum_{j=1}^{N} V_{ij} (P_{ij} + C + PM)$$

156 S_{ij} = stumpage value for each species and diameter class (USD ha⁻¹);

157 V_{ij} = volume of timber for each species and diameter class (m³);

158 P_{ij} = log price for each species at sawmill and diameter class (USD m⁻³);

159 Ċ = average logging cost (USD ha⁻¹);

160 PM_{ij} = profit margin (USD m⁻³);

161 = an index for each species (i = 1, 2, 3, 4, ..., n);

162 i = an index for diameter class (i = 1, 2, 3, 4,, n).

RESULTS AND DISCUSSION

164 **Ecological Characteristics** Diameter at Breast Height (DBH) and Height Distributions 165

The diameter distribution in the research plots shows an inverted J shape where an increase in diameter class is 166 167 followed by a decrease in the number of trees as illustrated in (Figure 2). As much as 70 percent of the tree density is was in the DBH class of 5-15 cm. The number of trees in the DBH class of 5.0-15.0 cm was 134 trees (70%), the DBH class of 168 15.1-25.0 cm was 32 trees (17%), the DBH class of 25.1-35.0 cm was 20 trees (10%), and the DBH class of > 35.0 cm was 169 170 6 trees (3%). Meanwhile, most of the trees (59%) belong to the 5-10 cm height sized class as shown in (Figure 3). The tree 171 heights classes were distributed in height size classes of 0-5.0 m (9 trees or 5%), 5.1-10.0 m (114 trees or 59%), 10.1-15.0 m (53 trees or 28%), and > 15 m (16 trees or 8%). In general, the diameter distribution of trees in secondary forest shows 172 173 has an inverted J-shape (Feldpausch et al., 2007; Álvarez-Yépiz et al., 2008) while the distribution of high-height class 174 shows is a skewed slightly positively skewed (Ohtsuka, 1999). The The similar trends in trees diameter class and height 175 class were also reported on abandoned land after cultivation (Karmini et al. 2020).

Figure 3. Distributions of height in 0.4 ha of abandoned land at the study site

Density, Basal Area, and Volume

The number of individuals recorded in the research plots was 192 trees, belonging to 29 species, 19 genera, and 1 families. There were 8 tree species belonging toof the Moraceae, 5 tree species of Euphorbiaceae, and 2 tree species of Anacardiaceae. Each of The the other 14 families consisting consisted of 1 tree species. The density, basal area, and volume of species in the study site were are presented in Table 3. The DBH of trees in the study plots ranges ranged from 6.4 cm to 29.1 cm with an average DBH of 16.3 cm. Meanwhile, the tree height ranges ranged from 6.0 m -to 17.4 m with an average height of 10.4 m. The total BA and volume of trees in the study plot were 9.44 and 76.86, respectively. These values are smaller than the total BA (9.75) and the total volume (91.97) in abandoned land after cultivation (Karmini et al. 2020). The five dominant species based on total basal area and volume were Macaranga tanarius (total BA=0.91 m² ha⁻¹ and volume=7.86 m³ ha⁻¹), Mangifera indica (total BA=0.67 m² ha⁻¹ and volume=7.49 m³ ha⁻¹), Nephelium lappaceum (total BA=0.77 m² ha⁻¹ and volume=6.37 m³ ha⁻¹), Macaranga triloba (total BA=1.00 m² ha⁻¹ and volume=6.05 m³ ha⁻¹), and Artocarpus integer (total BA=0.62 m² ha⁻¹ and volume=5.63 m³ ha⁻¹). The common species in abandoned land were dominated by fast growing species, such as Macaranga spp, and Artocarpus spp. as also reported by Karyati et al. (2018) and Karmini et al. (2020). The recorded fruit trees showed that the studied plot included was abandoned garden. Thes fruit species planted such aswere Artocarpus integer (Nangka), Artocarpus lakoocha, Artocarpus anisophyllus (Mentawa), Artocarpus odoratissimus (Terap), Artocarpus tamaran, Artocarpus elasticus (Benda), Artocarpus heterophyllus (Nangka), Mangifera indica (Mango), Mangifera odorata (Kuweni), Durio zibethinus (Durian), Nephelium lappaceum (Rambutan). Two tree species could not be identified in this study. Durio zibethinus and Artocarpus odoratissimus week are included local tree species.

No.	Species	Family	N	Average of DBH (cm)	Average of height (m)	Total of BA (m ² ha ⁻¹)	Total volume (m ³ ha ⁻¹)
1	Macaranga tanarius	Euphorbiaceae	13	18.3	12.0	0.91	7.86
2	Mangifera indica	Anacardiaceae	4	29.1	17.4	0.67	7.49
3	Nephelium lappaceum	Sapindaceae	12	15.0	9.5	0.77	6.37
4	Macaranga triloba	Euphorbiaceae	48	9.7	8.7	1.00	6.05
5	Artocarpus integer	Moraceae	4	26.4	14.0	0.62	5.63
6	Trema orientalis	Cannabaceae	8	16.6	13.8	0.51	5.51
7	Artocarpus lakoocha	Moraceae	3	28.2	15.5	0.47	4.74
8	Artocarpus anisophyllus	Moraceae	9	14.1	9.5	0.48	4.70
9	Vernonia arborea	Asteraceae	4	23.6	12.1	0.46	3.69
10	Artocarpus odoratissimus	Moraceae	5	21.2	9.6	0.48	3.22
11	Homalanthus populneus	Euphorbiaceae	7	12.4	8.2	0.35	2.69

Table 3 Density based area and volume of species (DBH of > 5 cm) in the study plot

Commented [U2]: Sebaiknya disain grafik disamakan dengan Figure 2

Formatted: Font: Italic Formatted: Font: Italic

I

I

6
υ

No.	Species	Family	Ν	Average of DBH (cm)	Average of height (m)	Total of BA (m ² ha ⁻¹)	Total volume (m ³ ha ⁻¹)
12	Mallotus paniculatus	Euphorbiaceae	15	9.8	8.4	0.33	2.21
13	Artocarpus tamaran	Moraceae	2	22.0	11.5	0.23	2.06
14	Ficus uncinata	Moraceae	16	10.2	8.5	0.35	2.01
15	Symplocos fasciculata	Symplocaceae	5	16.5	7.1	0.31	1.74
16	Durio zibethinus	Malvaceae	2	15.2	12.4	0.13	1.49
17	Macaranga gigantea	Euphorbiaceae	2	18.9	9.8	0.19	1.43
18	Artocarpus elasticus	Moraceae	4	15.2	8.4	0.23	1.43
19	Archidendron pauciflorum	Fabaceae	10	9.5	8.7	0.19	1.19
20	Unknown species 1	Unknown family 1	1	27.5	12.0	0.15	1.16
21	Baccaurea parvifolia	Phyllanthaceae	2	17.0	14.0	0.11	1.05
22	Cratoxylum arborescens	Hypericaceae	3	12.5	7.0	0.12	0.64
23	Oroxylum indicum	Bignoniaceae	2	13.7	11.3	0.08	0.60
24	Couroupita guianensis	Lecythidaceae	2	12.0	11.2	0.06	0.52
25	Artocarpus heterophyllus	Moraceae	2	13.2	11.1	0.07	0.50
26	Unknown species 2	Unknown family 2	1	18.5	10.0	0.07	0.44
27	Eusideroxylon zwageri	Lauraceae	2	11.8	6.0	0.05	0.21
28	Alstonia scholaris	Apocynaceae	3	7.9	7.4	0.04	0.20
29	Mangifera odorata	Anacardiaceae	1	6.4	7.3	0.01	0.04
	Total		192.0	472.5	302.3	9.44	76.86
	Average		6.6	16.3	10.4	0.33	2.65
	Minimum		1.0	6.4	6.0	0.01	0.04
	Maximum		48.0	29.1	17.4	1.00	7.86

Most of the dominant trees based on importance value index (IVi) were also dominant trees based on total BA and volume. The light demanding pioneer and fast growing species dominated the studied site (as shown in Table 4). The most dominant species in terms of IVi was *Macaranga triloba* (IVi of 46.16) followed by *Macaranga triloba* (IVi of 22.97), *Nephelium lappaceum* (IVi of 20.94), *Ficus uncinata* (IVi of 18.64), and *Mallotus paniculatus* (IVi of 17.93). Twelve of 29 species recorded had an IVi of more than 10.00 and 5 species of them had an IVi of 5.00-10.00. Meanwhile the other 12 species have-had an IVi of less than 5.00. Four dominant species of Euphorbiaceae (Macaranga triloba, Macaranga tanarius, Mallotus paniculatus, and Homalanthus populneus) reached a total IVi of 99.72. These four species were included in the 10 most dominant types based on IVi. Similar results studies also reported that tree species from Euphorbiaceae are were important and dominate dominating tropical lands (Danquah et al. 2011; Nizam et al. 2006; Karyati et al. 2018; Karmini et al. 2020). The total IVi of 8 species including Moraceae reached 84.75. Moraceae is was

Note : N = number of individuals (trees), DBH = diameter at breast height, BA = basal area.

237

Importance value index (IVi)

Table 4. Importance value index	(IVi) of trees (DBH of > 5 cm) in (0.4 hectare of the study plots	
able 4. Importance value maex	(111) of fields (BBH of > 5 cm) in (0.4 neeture of the study proto.	

the family that hashad the most species in the research location.

No.	Species	Family	RF (%)	Rd (%)	RD (%)	IVi (%)
1	Macaranga triloba	Euphorbiaceae	25.00	10.53	10.63	46.16
2	Macaranga tanarius	Euphorbiaceae	6.77	6.58	9.62	22.97
3	Nephelium lappaceum	Sapindaceae	6.25	6.58	8.11	20.94
4	Ficus uncinata	Moraceae	8.33	6.58	3.72	18.64
5	Mallotus paniculatus	Euphorbiaceae	7.81	6.58	3.54	17.93
6	Artocarpus anisophyllus	Moraceae	4.69	6.58	5.11	16.37
7	Trema orientalis	Cannabaceae	4.17	5.26	5.44	14.87
8	Artocarpus odoratissimus	Moraceae	2.60	5.26	5.08	12.94
9	Homalanthus populneus	Euphorbiaceae	3.65	5.26	3.75	12.66
10	Mangifera indica	Anacardiaceae	2.08	2.63	7.05	11.77
11	Artocarpus integer	Moraceae	2.08	2.63	6.57	11.28
12	Archidendron pauciflorum	Fabaceae	5.21	3.95	2.07	11.22
13	Vernonia arborea	Asteraceae	2.08	2.63	4.84	9.56
14	Artocarpus lakoocha	Moraceae	1.56	2.63	4.99	9.19
15	Symplocos fasciculata	Symplocaceae	2.60	2.63	3.28	8.51
16	Artocarpus elasticus	Moraceae	2.08	2.63	2.46	7.18
17	Artocarpus tamaran	Moraceae	1.04	2.63	2.39	6.06
18	Baccaurea parvifolia	Phyllanthaceae	1.04	2.63	1.21	4.89
19	Macaranga gigantea	Euphorbiaceae	1.04	1.32	1.99	4.35
20	Eusideroxylon zwageri	Lauraceae	1.04	2.63	0.58	4.25
21	Cratoxylum arborescens	Hypericaceae	1.56	1.32	1.23	4.10
22	Durio zibethinus	Malvaceae	1.04	1.32	1.37	3.73

				-		
	Total		100	100	100	300
29	Mangifera odorata	Anacardiaceae	0.52	1.32	0.09	1.92
28	Unknown species 2	Unknown family 2	0.52	1.32	0.71	2.55
27	Couroupita guianensis	Lecythidaceae	1.04	1.32	0.66	3.02
26	Artocarpus heterophyllus	Moraceae	1.04	1.32	0.73	3.09
25	Oroxylum indicum	Bignoniaceae	1.04	1.32	0.81	3.16
24	Alstonia scholaris	Apocynaceae	1.56	1.32	0.41	3.29
23	Unknown species 1	Unknown family 1	0.52	1.32	1.58	3.41

Note : RF = relative frequency, Rd = relative density, RD = relative dominance, IVI = importance value index.

255 Species Diversity

256 The tree diversity index was categorized to as 'intermediate' (H' of 1.33), indicating. This shows that there is was a 257 sufficient number of trees growing at the research location. A very complex community is indicated by a high diversity of 258 species (Brower et al. 1990). Meanwhile, the dominance index was at low criteria with a Ds value of 0.06. A low 259 dominance value indicates that no species is dominant in the region. The evenness index was in the high category (J value 260 of 0.91), meaning - This category means that the presence individuals of trees in the studied plots is were evenly distributed among species. Evenness of plant species is determined by the diversity of species and the number of species 261 262 present in the area. A species richness index of 5.33 showed that there were many tree species growing in the study site However, tThere were 192 trees included in 29 tree species recorded in the research plot of 0.4 ha. The species richness in 263 a place is determined by the number of species and the density of the existing plants. Species richness is calculated based 264 on the number of species in an area (Krebs, 2001). The results show that high diversity (H'), evenness (J'), and wealth (R) 265 266 will lead to low dominance (Ds). The similar results were reported for the diversity indices for trees with DBH of > 5 cm on plots with an abandoned field age of 5, 10, 20 years (Karyati et al. 2018) and on abandoned land after cultivation 267 268 (Karmini et al. 2020). 269

Table 5. Diversity indices of trees with DBH of \geq 5 cm in the study plots.

No.	Diversity indices	Value	
1	Shannon-Wiener diversity index (H')	1.33	
2	Simpson dominance index (D_s)	0.06	
3	Pielou evenness index (J')	0.91	
4	Margalef species richness (R)	5.33	
Note : The values were calculated according to the 10 subplots sized 20 m × 20 m each.			

1

Economic Value

274 *Log Price* 275 The re

270

271

272 273

276

277

278 279 280

281

282 283 The result of this research showed the abandoned land hadfound 7 trees species with higher log prices rather than 22 the others other 22 tree spesies (Table 6). Their log prices were in the range from USD122.12 m⁻³ to USD651.29 m⁻³. The log price is variety varies depends depending on the species and diameter class of log (Karmini et al., 2020). The highest wood price owned by Eusideroxylon zwageri had the highest species price, i.e., which reached USD1,085.48 m⁻³. The wood timber price is influenced by positively correlated with its wood demand in society, the higher demand leads the higher wood prices. Eusideroxylon zwageri has good quality of wood, and people likely to use this wood for contruction materials.

Table 6. Number of stems at abandoned land, log price, and wood price at the study site.

No.	Species	Family	Number (stems ha ⁻¹)	Log price (USD m ⁻³)	Wood price (USD m ⁻³)
1	Eusideroxylon zwageri	Lauraceae	8	651.29	1,085.48
2	Alstonia scholaris	Apocynaceae	13	488.47	814.11
3	Artocarpus anisophyllus	Moraceae	38	447.76	814.11
4	Oroxylum indicum	Bignoniaceae	8	427.41	814.11
5	Durio zibethinus	Malvaceae	8	151.37	288.33
6	Cratoxylum arborescens	Hypericaceae	13	130.60	237.45
7	Artocarpus heterophyllus	Moraceae	8	122.12	203.53
8	Artocarpus elasticus	Moraceae	17	74.80	142.47
9	Artocarpus lakoocha	Moraceae	13	64.11	142.47
10	Archidendron pauciflorum	Fabaceae	42	79.38	135.69
11	Nephelium lappaceum	Sapindaceae	50	64.11	122.12
12	Baccaurea parvifolia	Phyllanthaceae	8	54.95	122.12
13	Mangifera odorata	Anacardiaceae	4	30.53	50.88
14	Macaranga triloba	Euphorbiaceae	200	30.37	50.88
15	Ficus uncinata	Moraceae	67	30.05	50.88
16	Mallotus paniculatus	Euphorbiaceae	63	29.51	50.88
17	Homalanthus populneus	Euphorbiaceae	29	28.35	50.88

Commented [U3]: Mungkin perlu diganti dengan timber. Wood adalah kayu dalam arti substansi/material penyusun batang pohon, sedangkan timber adalah kayu yang diproses untuk konstruksi.

18	Symplocos fasciculata	Symplocacaaa	21	27.48	50.88
19	Couroupita guianensis	Lecythidaceae	8	26.71	50.88
20	Trema orientalis	Cannabaceae	33	26.71	50.88
21	Macaranga gigantea	Euphorbiaceae	8	26.71	50.88
22	Macaranga tanarius	Euphorbiaceae	54	25.83	50.88
23	Artocarpus odoratissimus	Moraceae	21	24.42	50.88
24	Artocarpus tamaran	Moraceae	8	22.90	50.88
25	Artocarpus integer	Moraceae	17	22.90	50.88
26	Vernonia arborea	Asteraceae	17	22.90	50.88
27	Unknown species 1	Unknown family 1	4	22.90	50.88
28	Unknown species 2	Unknown family 2	4	22.90	50.88
29	Mangifera indica	Anacardiaceae	17	20.99	50.88
Total			801	3,198.52	5,786.97
Mean			28	110.29	199.55

Source: Primary data (analyzed) (2020).

8

Logging Cost The logging cost of Eusideroxylon zwageri species was highest-higher rather than that of the other spesies in abandoned land in this research (as shown in Table 7). However, logging cost per hectare was determined by log volume, therefore and this research found difference in logging cost per hectare among trees species. The total logging cost in abandoned land in this research (USD152.54 ha⁻¹) was lower compared to that in another research (USD1,212.24 ha⁻¹) (Karmini et al., 2020). This is relevant because the total log volume in abandoned land in this research location was as many as-76.86 m³ ha⁻¹-was, lower rather than that in another research location, i.e., reached as many as 91.97 m³ ha⁻¹.

Table 7. Logging cost of trees at abandoned landthe study site.

No	Species	Family	Logging cost	
140.	Species	Family	(USD ha ⁻¹)	(USD m ⁻³)
1	Eusideroxylon zwageri	Lauraceae	7.51	101.76
2	Artocarpus integer	Moraceae	83.25	67.84
3	Artocarpus tamaran	Moraceae	74.43	67.84
4	Mangifera indica	Anacardiaceae	61.13	67.84
5	Artocarpus lakoocha	Moraceae	57.68	67.84
6	Unknown species 1	Unknown family 1	54.70	67.84
7	Vernonia arborea	Asteraceae	41.96	67.84
8	Artocarpus odoratissimus	Moraceae	34.25	67.84
9	Macaranga gigantea	Euphorbiaceae	33.42	67.84
10	Nephelium lappaceum	Sapindaceae	30.83	67.84
11	Homalanthus populneus	Euphorbiaceae	30.55	67.84
12	Artocarpus anisophyllus	Moraceae	27.55	67.84
13	Unknown species 2	Unknown family 2	23.49	67.84
14	Macaranga tanarius	Euphorbiaceae	23.29	67.84
15	Durio zibethinus	Malvaceae	23.22	67.84
16	Trema orientalis	Cannabaceae	21.35	67.84
17	Baccaurea parvifolia	Phyllanthaceae	21.01	67.84
18	Artocarpus elasticus	Moraceae	20.02	67.84
19	Symplocos fasciculata	Symplocaceae	19.38	67.84
20	Cratoxylum arborescens	Hypericaceae	12.23	67.84
21	Oroxylum indicum	Bignoniaceae	11.75	67.84
22	Couroupita guianensis	Lecythidaceae	10.18	67.84
23	Artocarpus heterophyllus	Moraceae	6.32	67.84
24	Mallotus paniculatus	Euphorbiaceae	5.73	67.84
25	Ficus uncinata	Moraceae	4.59	67.84
26	Archidendron pauciflorum	Fabaceae	4.45	67.84
27	Macaranga triloba	Euphorbiaceae	4.39	67.84
28	Alstonia scholaris	Apocynaceae	2.38	67.84
29	Mangifera odorata	Anacardiaceae	1.48	67.84
Total			752.54	2,001.36
Mean			25.95	69.01

Source: Primary data (analyzed) (2020).

Profit Margin

The wood sellers hope profit from their marketing activities, the 3 trees species contribute contributing big profit margin_, namely-were Eusideroxylon zwageri, Alstonia scholaris, and Artocarpus anisophyllus. Those species also have

had the high of log and wood prices. This meant prices of buying and selling determine profit in marketing both log	and
wood. Data in Table 8 present profit margin of selling 29 trees species from abandoned land.	

300 301 302 303

N	C	Eamile	Profit mar	gin
No.	Species	Family	(USD m ⁻³ ha ⁻¹)	(USD m ⁻³)
1	Eusideroxylon zwageri	Lauraceae	626.24	150.30
2	Alstonia scholaris	Apocynaceae	469.68	112.72
3	Artocarpus anisophyllus	Moraceae	430.54	103.33
4	Oroxylum indicum	Bignoniaceae	410.97	98.63
5	Durio zibethinus	Malvaceae	145.55	34.93
6	Cratoxylum arborescens	Hypericaceae	125.57	30.14
7	Artocarpus heterophyllus	Moraceae	117.42	28.18
8	Archidendron pauciflorum	Fabaceae	76.32	18.32
9	Artocarpus elasticus	Moraceae	71.92	17.26
10	Nephelium lappaceum	Sapindaceae	61.65	14.79
11	Artocarpus lakoocha	Moraceae	61.65	14.79
12	Baccaurea parvifolia	Phyllanthaceae	52.84	12.68
13	Mangifera odorata	Anacardiaceae	29.35	7.05
14	Macaranga triloba	Euphorbiaceae	29.20	7.01
15	Ficus uncinata	Moraceae	28.90	6.94
16	Mallotus paniculatus	Euphorbiaceae	28.38	6.81
17	Homalanthus populneus	Euphorbiaceae	27.26	6.54
18	Symplocos fasciculata	Symplocaceae	26.42	6.34
19	Trema orientalis	Cannabaceae	25.69	6.16
20	Couroupita guianensis	Lecythidaceae	25.69	6.16
21	Macaranga gigantea	Euphorbiaceae	25.69	6.16
22	Macaranga tanarius	Euphorbiaceae	24.84	5.96
23	Artocarpus odoratissimus	Moraceae	23.48	5.64
24	Artocarpus tamaran	Moraceae	22.02	5.28
25	Artocarpus integer	Moraceae	22.02	5.28
26	Vernonia arborea	Asteraceae	22.02	5.28
27	Unknown species 1	Unknown family 1	22.02	5.28
28	Unknown species 2	Unknown family 2	22.02	5.28
29	Mangifera indica	Anacardiaceae	20.18	4.84
Total			3,075.50	738.12
Moon			106.05	25.45

Source: Primary data (analyzed) (2020).

304 305 306 307 308 Stumpage Value The total stumpage value at the abandoned land was estimated as much as USD1,495.31 ha⁻¹. There were 29 trees species has identified and each species contributed an average of USD51.56 ha⁻¹. Figure 1 describes {The highest stumpage value was from *Artocarpus anisophyllus* species, i.e., as much as USD168.97 ha⁻¹ and the lowest stumpage value was contributed<u>one by Mangifera odorata</u>, spesies as much as<u>i.e.</u>, USD2.29 ha⁻¹. (Figure 1). 309

313 Figure 4. Stumpage value of trees at abandoned land.

ACKNOWLEDGEMENTS

The authors-We would like to express their our gratitude and highest appreciation to the Ministry of Education and 315 316 317 Culture, the Republic of Indonesia for the financial the support for this research by through the scheme of Hibah Penelitian Dasar Unggulan Perguruan Tinggi Contract No.: 183/SP2H/AMD/LT/DRPM/2020 for this research.

REFERENCES

319	Afdalis, 2016, Abandonment of Property Rights, [Thesis], Fakultas Hukum Universitas Hasanuddin, Makassar, [Indonesia]
320	Álvarez-Yépiz JC, Martínez-Yrízar A, Búrquez A, Lindquist C, 2008, Variation in vegetation structure and soil properties related to land use history of
321	old-growth and secondary tropical dry forests in Northwestern Mexico. Forest Ecology and Management 256: 355-366. doi:
322	https://doi.org/10.1016/i.foreco.2008.04.049
323	Aththorick TA. Setiadi D. Purwanto Y. Gubardia Y. 2012. Vegetation stands structure and aboveground biomass after the shifting cultivation practices of
324	Karo People in Leuser Ecosystem, North Sumatra, Biodiversitas 13(2): 92-97.
325	Danguah JA, Appiah M, Ari P, 2011. Comparison of post-fire planted and natural dry semideciduous forest communities in Ghana, African Journal of
326	Agricultural Research 6(23): 5266-5277. doi: https://doi.org/10.5897/AJAR11.820.
327	Dumais RO. 2014. Legal arrangements for the existence of abandoned land in Indonesia. Lex et Societatis, II(5).
328	https://eiournal.unsrat.ac.id/index.php/lexetsocietatis/article/viewFile/4890/4415.
329	Fachrul MF, 2007. Bioecology Sampling Method. Bumi Aksara, Jakarta. [Indonesian]
330	Feldpausch TR, Prates-Clark CC, Fernandes ECM, Riha SJ. 2007. Secondary forest growth deviation from chronosequence predictions in Central
331	Amazonia. Global Change Biology 13: 967-979. doi: https://doi.org/10.1111/j.1365-2486.2007.01344.x
332	Husch B, Miller CI, Beers TW. 1982. Forest Mensuration. John Wiley and Sons Publishing, New York.
333	Karmini, Karyati, Widiati KY. 2020. The role of tropical abandoned land relative to ecological and economic aspects. Forest and Society 4(1): 181-194.
334	Karyati, Ipor IB, Jusoh I, Wasli ME, Seman IA. 2013. Composition and diversity of plant seedlings and saplings at early secondary succession of fallow
335	lands in Sabal, Sarawak. Acta Biologica Malaysiana 2(3), 85-94. doi: http://dx.doi.org/10.7593/abm/2.3.85
336	Karyati, Ipor IB, Jusoh I, Wasli ME. 2018. Tree stand floristic dynamics in secondary forests of different ages in Sarawak, Malaysia. Biodiversitas 19(3),
337	687-693. doi: https://doi.org/10.13057/biodiv/d190302
338	Klanderud K, Mbolatiana HZH, Vololomboahangy MN, Radimbison MA, Roger E, Totland O, Rajeriarison C. 2010. Recovery of plant species richness
339	and composition after slash-and-burn agriculture in a tropical rainforest in Madagascar. Biodivers Conserv 19:187-204. DOI 10.1007/s10531-009-
340	9714-3
341	Kuntz KA, Beaudry F, Porter KL. 2018. Farmers' perceptions of agricultural land abandonment in rural western New York State. Land 7(128): 1-11.
342	Nizam MS, Norziana J, Sahibin AR, Latiff A. 2006. Edaphic relationships among tree species in the National Park at Merapoh, Pahang, Malaysia. Jurnal
343	Biosains 17(2): 37-53.
344	Nurlinda I, Pujiwati Y, Ishak M. 2014. Comparison of the handling of abandoned land in Tasikmalaya Regency and Sukabumi Regency in
345	realizing food security in West Java Province. Jurnal Hukum IUS Quia Iustum 21(1): 120-138. [Indonesian]
346	Odum EPE. 2005. Fundamentals of Ecology, 5th Ed. Thomson Brooks/Cole, Belmont CA.
34/	Ohtsuka T. 1999. Early stages of secondary succession on abandoned cropland in north-east Borneo island. Ecological Research 14: 281-290. doi:
348	https://doi.org/10.1046/j.1440-1703.1999.143304.x

Ohtsuka T. 1999. Early stages of secondary succession on abandoned cropland in north-east Borneo island. Ecological Research 14: 281-290. doi: https://doi.org/10.1046/j.1440-1703.1999.143304.x

10

311 312

314

Permana EY. 2012. Peralihan Hak Atas Tanah Akibat Tanah Terantar (Studi Kasus Terhadap Keputusan Kepala Badan Pertanahan Nasi onal Republik Indonesia Nomor 10/PTT-HGU/BPN RI/2012). Tersedia di laman https://media.neliti.com/media/publications/34172-ID-peralihan-hak-atas-tanah-akibat-tanah-terlantar-studi-kasus-terhadap-keputusan-k.pdf. Diakses pada 25 Mei 2017.
Setiawan AD. 2010. Review: Biodiversity conservation strategy in a native perspective; case study of shifting cultivation at the Dayaks of Kalimantan. Bioscience 2(2): 97-108.
Yirdaw E, Monge AM, Austin A, Toure I. 2019. Recovery of foristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests, 50:1007–1026. https://doi.org/10.1007/s11056-019-09711-2
Zambon I, Serra P, Salvia L. 2018. Fallow land, recession and socio-demographic local contexts: Recent dynamics in a mediterranean urban fringe. Agriculture 8(159): 1-17.

The existence of fallow land in the tropic from an ecology and economic perspectives

9

10

1

2

ABSTRACT

There is a large area of abandoned land that is not taken manage of after plantation activities in the tropic. These abandoned gardens 11 which have been neglected for a long time have important ecological and economic values. This study aims to assess the existence of 12 13 abandoned land in the tropic from an ecological and economic perspective. The ecological aspects assessed were stand structure, 14 floristic composition, and species diversity. Meanwhile, the economic aspects analyzed were log price, harvesting cost, profit margin, 15 16 17 and stumpage value. The vegetation survey was carried out on all woody trees with a diameter at $\frac{bresstbreast}{bresstbreast}$ height (DBH) ≥ 5 cm in [1] subplots each sized 20 m × 20 m. A total of 192 trees were recorded of 29 species belonging to 19 genera and 17 families. The most dominant species were *Macaranga triloba* (Importance Value, IV of 46.16), *Macaranga tanarius* (IV of 22.97), and *Nephelium* 18 lappaceum (IV of 20.94). The indexes of diversity, dominance, evenness, and richness in the studied plots were 1.33, 0.06, 0.40, and 19 5.33, respectively. The means of wood price, logging cost, profit margin, and stumpage value at abandoned land were USD199.55 m⁻³, USD69.01 m⁻³, USD25.45 m⁻³, and USD51.56 ha⁻¹, respectively. The abandoned lands with high ecological and economic value indicate 20 21 the important role of abandoned lands in the secondary succession process in the tropics.

22 Key words: Abandoned land, diversity, fallow land, stumpage value, tropic.

23 Running title: The existence of fallow land

24

25

26

INTRODUCTION

The forest growth continues to increase constantly in the tropic After decades, the species richness in the regrowth forests can approach old forest which can serve as biodiversity repositories (Yirdaw et al. 2018). PThe planting trees of abandoned land can be done in an effort to accelerate the restoration of vegetation and soil in the area. These activities allow land use and reduce the expansion of cultivated areas (Klanderud et al. 2010). The time required for vegetation recovery to primary succession is influenced by several factors such as type of land use, cycle duration, and large cleared patches (Aththorick et al. 2012). PThe pioneer and fast growing plant species dominate abandoned lands which are indicated by an intermediate diversity, a low dominance index, and a high evenness index (Karmini et al. 2020; Karyati et al. 2013; Karyati et al. 2018).

35 The land use change has significant impacts on biodiversity, carbon sequestration, and local economies (Kunts et al. 36 2018). The urban growth is contrasts to the spatial distribution of fallow land at the local scale and economic recessions at 37 the regional scale (Zambon et al. 2018). The National Land Agency (BPN) has identified an area of 7.3 million hectares of 38 land in Indonesia in 2011 was categorized as abandoned land, while around 4.8 million hectares had been declared as 39 abandoned land. The area of abandoned land increased in 2007 to an area of 7.1 million hectares outside the forest area 40 (Nurlinda et al. 2014). The area of abandoned land in East Kalimantan is about 3 million hectares. In general, the 41 abandoned land consists of ex-coal mining land and gardens or fields that are not cultivated by the owner. In East 42 Kalimantan, the indigenous Dayak tribe replanted the land after planting rice with the multifunctions trees, such as fruit 43 trees, rattan, and bamboo. Forest planting has an important role in providing ecological, economic, religious, and cultural

Commented [WU1]: Paraphrase these sentences to provide much clearer justification of this research work. i.e. Abandoned farmland often neglected of its ecological and economic values...

What is the definition of plantation activities? Commercial plantation or smallholder-based farmland. The impact of different types of abandoned plantation will provide different consequences on its ecological and economic value.

Commented [WU2]: What would be the estimated age after abandonment of these selected sites? Were these abandoned land form after similar past land uses?

Commented [WU5]: Abandoned land? And declared abandoned land? Paraphrase this sentence to provide simple and clear logic.

Commented [WU4]: Only richness? How about composition?

Commented [WU3]: Paraphrase this statement.

Commented [WU6]: Provide a clear timeline on the rate of increment in abandoned land in Indonesia i.e. From 2007 xxxha of abandoned land had been reported. In 2011, the abandoned land area has expanded to...xxxha...

44 functions (Setiawan 2010). The average stumpage value in abandoned land was calculated to be 83.05 USD ha⁻¹ and the 45 total was calculated to be 2,159.36 USD ha⁻¹ (Karmini et al. 2020).

46 47 The calculation of the potential economic value of wood and non-wood that can be used as construction materials for buildings or furniture will illustrate the potential income that might be achieved from managing abandoned land. Some of 48 the results of previous research on abandoned land are mostly related to aspects of agrarian law policy (Afdalis 2016; 49 Dumais 2014; Permana 2012) as well as study on the ecology and economy of abandoned land after cultivation (Karmini 50 51 et al. 2020). However, research on the potential for carbon stocks and the economic valuation of abandoned lands after plantation is rarely reported. The objectives of the study were to assess the existence of abandoned land based on ecology 52 and economy perspectives. The ecological aspect werewas assessed such as floristic structure, composition, and species 53 diversity as well as the economic aspect of standing trees such as log price, logging cost, profit margin, and stumpage 54 value in an abandoned land. The findings are expected to be recommendation in conserving and managing tropical 55 abandoned lands.

MATERIALS AND METHODS

57 Study site

56

The research was carried out on an fallow land of abandoned garden in Bukit Pinang area. Bukit Pinang is in Samarinda Ulu sub district, Samarinda City, East Kalimantan Province, Indonesia. The boundaries of area are Kutai Kartanegara district at north, Samarinda Utara district at east, Air Putih sub district at south, and Sungai Kunjang district at west. Samarinda City is the capital of East Kalimantan Province, Indonesia and the city with the largest population in the entire island of Kalimantan. The population of Samarinda is 812,597 people. Samarinda has an area of 718 km² with a hilly geographical condition with altitudes varying from 10 to 200 meters above sea level. Samarinda City is divided by Mahakan river and becomes the gateway to the area around by river, land, and air. The research plot lies at the coordinate point 0°25′32.8″S 117°05′56.8″E as shown in Figure 1.

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Commented [WU7]: I think this parts needs paraphrasing for better explanation on the justification and importance of this study.

Commented [WU8]: Only at one location?

The term "fallow" often associated to land abandoned after slash and burn farming. In the case of your study, can it be assumed that the abandoned land that you are referring in this study are fallow land after slash and burn activities?

99 Procedures

00 Vegetation survey

101 The research was conducted from March to September 2020. A total of 10 subplots each measuring 20 m \times 20 m were 102 established in the study site. All woody trees with a diameter at breast height (DBH) of ≥ 5 cm were measured for diameter 103 and height, and their species were identified.

104 Data collection

105 Researchers collected primary and secondary data. Primary data were obtained from vegetation survey. Source of 106 secondary data was reports and articles from previous researches

107 Data analysis

- 108 Ecological characteristics
- The following formulas were used to measure individual basal area (BA) and volume (V) (Husch et al. 1982): 109
 - where: DBH is diameter at breast height (cm), 'H' is tree height (m), and 'f' is form factor.
- 110

The importance value index (IVi) was used to determine the dominant species of community within the studied plots 111 112 in (Fachrul 2007):

- $RF = (Frequency of a species / Total of frequencies of all species) \times 100$ (3)
- Rd = (The number of individual of a species / Total number of individuals) × 100(4)
- RD = (Total basal area for a species / Total basal area for all species) × 100 (5)
- IVi = RF + Rd + RD(6) where: RF is relative frequency, Rd is relative density, and RD is relative dominance.
- 113

114 The four diversity indices were analyzed to describe species diversity of standing trees in the studied plots. These 115 diversity indices were Shannon-Wiener's diversity index (H'), Simpson's dominance index (D_s) , Pielou's evenness index 116 (J'), and Margalef's richness index (R) (Odum 2005):

$H' = -\sum_{i=1}^{s} \left(\frac{n_i}{N}\right) \ln\left(\frac{n_i}{N}\right) $ (7)
$D_s = \sum_{i=1}^{s} \left(\frac{n_i}{N}\right)^2 \dots (8)$
$J' = \frac{H'}{\ln(S)} \tag{9}$
$R = \frac{(S-1)}{\ln n} \dots $

where: ni = number of individuals of the i- th species, N = total number of all the individuals in a unit area, and S = number 117

118 of species in each plot.

119 Economic literature

120 Data in Table 1 shows number of logs that produced from tree diameter up to 75 cm. Based on diameter class and number

121 of logs could be known the equivalent merchantable height. 122

123 Table 1. Merchantable tree heights.

Diameter class (cm)	Number of logs (5 m long)	Equivalent merchantable height (m)
< 15	0.5	2.5*
15 - 30	1	5
+30 - 60	2	10
+60 - 75	3	15
75 ke atas	4	20
Source: * Primary data (2020); Forest	ry Department of Pinansular Malaysia (FDPM	I) (1997).

124 125

Reduction factor of log price was determined based on size class of DBH and its data can be seen in Table 2. This reserach 126 used assumption if reduction factor of log price with size class of DBH < 15 cm is as many as 0.6. 127 128

129 Table 2. Reduction factor of log price.

DBH size class (cm)	Reduction factor	
< 15	0.60*	
15 - 29	0.45	
30 - 44	0.30	
45 - 49	0.15	
50 - 54	0.025	

Commented [WU9]: Do these selected plots possess similar land use history? Elaborate in brief the land use history of the selected study plots i.e post shifting cultivation land, previous cultivation history, etc

3

Furthermore, is the survey conducted at one specific land area and the subplots were established within this one single land rather than random location of various abandoned land and subplots were established at different locations? Please verify.

Commented [WU10]: Include reference where you adapted the method for vegetation survey here.

Commented [WU11]: You can include the reference of the past studies here

Commented [WU12]: State the reference

Commented [WU13]: Not included in the reference list

	4		
	≥ 55 0.00	_	
130	Source: *Primary data (2020); Noor et al. (1992) and Hanum et al. (2001).	(Commented [WU14]: Not listed in the reference list
131			
132	Profit ratio is determined as many as 30% according to Noor dan Shahwahid (1999). Equation of profit margin is as		Commented [WU15]: Not in reference list
133	follows (Noor dan Shahwahid, 1999):	[Formatted: Highlight
134	$PM_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} (P_{ij} x PR) / (1 + PR)$		
135	where:		
136	$PM_{ii} = \text{profit margin:}$		
137	$P_{ii} = \log \text{ price for each species at sawmill and diameter class;}$		
138	PR = profit ratio;		
139	i = an index for each species (i = 1, 2, 3, 4,, n);		
140	j = an index for diameter class (i = 1, 2, 3, 4,, n).		
141			
142	Logging cost of <i>Eusideroxylon zwageri</i> spesies was USD102.04 m ⁻³ in research location when research was done.		
143	Meanwhile, that of others spesies was USD68.03 m ⁻³ . The exchange rate was 1 USD equal with 14,740 IDR at 8 October		
144	2020. The equation of stumpage values is presented below:		
145	$S_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} V_{ij} (P_{ij} + C + PM)$		
146	where:		
147	S_{ii} = stumpage value for each species and diameter class (USD ha ⁻¹);		
148	V_{ij} = volume of timber for each species and diameter class (m ³);		
149	$P_{ij} = \log \text{ price for each species at sawmill and diameter class (USD m-3);}$		
150	C = average logging cost (USD ha ⁻¹);		
151	PM_{ij} = profit margin (USD m ⁻³);		
152	i = an index for each species ($i = 1, 2, 3, 4, \dots, n$);		
153	j = an index for diameter class (i = 1, 2, 3, 4,, n).	(Commented [WU16]: So, this equation is only used for
		e	estimating the logging cost of Eusideroxylon zwageri only? Or can it
		L.	be applicable for logging cost of other timber species? Please verify.
154	RESULTS AND DISCUSSION		
155	Ecological Characteristics		
156	Diameter at Breast Height (DBH) and Height Distributions		
157	The diameter distribution in the research plot shows an inverted J shape where an increase in diameter class is followed	_	
158	by a decrease in the number of trees as illustrated in Figure 2. As much as 70 percent of the tree density is in the DBH		Commented [WU17]: If this value is not stated or presented in
159	class 5-15 cm. The number of trees in DBH class of 5.0-15.0 cm was 134 trees (70%), DBH class of 15.1-25.0 cm was 32	t	the Figure, avoid using specific values to explain the trend of your
160	trees (1%), DBH class of $25.1-35.0$ cm was 20 trees (10%), and DBH class of > 35.0 cm was 6 trees (3%). Meanwhile,		
161	most of the trees (59%) belong to the 5-10 cm height sized class as shown in Figure 3. The tree height classes were		Commented [WU18]: Density or number of tree stand?

162 distributed in height size of 0.0-5.0 m (9 trees or 5%), 5.1-10.0 m (114 trees or 59%), 10.1-15.0 m (53 trees or 28%), and > (Feldpausch et al., 2007; Álvarez-Yépiz et al., 2008) while the distribution of high class shows a skewed slightly positively (Ohtsuka, 1999). The The similar trends in trees diameter class and height class were also reported on abandoned land 163 164 165 166 after cultivation (Karmini et al. 2020).

Figure 2. Distributions of diameter at breast height (DBH) in 0.4 ha of abandoned land.

Density, Basal Area, and Volume

The number of individuals recorded in the research plot was 192 trees belonging to 29 species, 19 genera, and 17 families. There were 8 tree species belonging to the Moraceae, 5 tree species of Euphorbiaceae, and 2 tree species of Anacardiaceae. The other 14 families consisting of 1 tree species. The density, basal area, and volume of species in the study site were presented in Table 3. The DBH of trees in the study plots ranges from 6.4 to 29.1 cm with an average DBH of 16.3 cm. Meanwhile, the tree height ranges from 6.0-17.4 m with an average height of 10.4 m. The total BA and volume of trees in the study plot were 9.44 and 76.86, respectively. These values are smaller than the total BA (9.75) and the total volume (91.97) in abandoned land after cultivation (Karmini et al. 2020). The five dominant species based on total basal area and volume were Macaranga tanarius (total BA=0.91 m² ha⁻¹ and volume=7.86 m³ ha⁻¹), Mangifera indica (total BA=0.67 m² ha⁻¹ and volume=7.49 m³ ha⁻¹), Nephelium lappaceum (total BA=0.77 m² ha⁻¹ and volume=6.37 m³ ha⁻¹), Macaranga triloba (total BA=1.00 m² ha⁻¹ and volume=6.05 m³ ha⁻¹), and Artocarpus integer (total BA=0.62 m² ha⁻¹ and volume=5.63 m³ ha⁻¹). The common species in abandoned land were dominated by fast growing species, such as Macaranga spp, and Artocarpus spp. as also reported by Karyati et al. (2018) and Karmini et al. (2020). The recorded fruit trees showed that the studied plot included abandoned garden. These fruit species planted such as Artocarpus integer (Nangka), Artocarpus lakoocha, Artocarpus anisophyllus (Mentawa), Artocarpus odoratissimus (Terap), Artocarpus tamaran, Artocarpus elasticus (Benda), Artocarpus heterophyllus (Nangka), Mangifera indica (Mango), Mangifera odorata (Kuweni), Durio zibethinus (Durian), Nephelium lappaceum (Rambutan). Two tree species could not be identified in this study. Durio zibethinus and Artocarpus odoratissimus were included local trees.

Table 3. Density, basal area, and volume of species (DBH of \geq 5 cm) in the study plot

No.	Species	Family	N	Average of DBH (cm)	Average of height (m)	Total of BA (m ² ha ⁻¹)	Total volume (m ³ ha ⁻¹)
1	Macaranga tanarius	Euphorbiaceae	13	18.3	12.0	0.91	7.86
2	Mangifera indica	Anacardiaceae	4	29.1	17.4	0.67	7.49
3	Nephelium lappaceum	Sapindaceae	12	15.0	9.5	0.77	6.37
4	Macaranga triloba	Euphorbiaceae	48	9.7	8.7	1.00	6.05
5	Artocarpus integer	Moraceae	4	26.4	14.0	0.62	5.63
6	Trema orientalis	Cannabaceae	8	16.6	13.8	0.51	5.51
7	Artocarpus lakoocha	Moraceae	3	28.2	15.5	0.47	4.74
8	Artocarpus anisophyllus	Moraceae	9	14.1	9.5	0.48	4.70
9	Vernonia arborea	Asteraceae	4	23.6	12.1	0.46	3.69
10	Artocarpus odoratissimus	Moraceae	5	21.2	9.6	0.48	3.22
11	Homalanthus populneus	Euphorbiaceae	7	12.4	8.2	0.35	2.69
12	Mallotus paniculatus	Euphorbiaceae	15	9.8	8.4	0.33	2.21
13	Artocarpus tamaran	Moraceae	2	22.0	11.5	0.23	2.06
14	Ficus uncinata	Moraceae	16	10.2	8.5	0.35	2.01
15	Symplocos fasciculata	Symplocaceae	5	16.5	7.1	0.31	1.74

	species
Ľ	Formatted: Highlight
$\langle \rangle$	Formatted: Highlight
Ì	Formatted: Highlight
-	Commented [WU20]: Can it be identified even at Family level?
Υ	Commented [WU21]: I do not understand this statement

		~
		-
	r	1

2 12.4 9 9.8	0.13	
9 98	0.15	1.49
, ,,,,	0.19	1.43
2 8.4	0.23	1.43
5 8.7	0.19	1.19
5 12.0	0.15	1.16
0 14.0	0.11	1.05
5 7.0	0.12	0.64
7 11.3	0.08	0.60
0 11.2	0.06	0.52
2 11.1	0.07	0.50
5 10.0	0.07	0.44
8 6.0	0.05	0.21
7.4	0.04	0.20
4 7.3	0.01	0.04
.5 302.3	9.44	76.86
3 10.4	0.33	2.65
6.0	0.01	0.04
	7 11.3 0 11.2 2 11.1 5 10.0 8 6.0 0 7.4 4 7.3 5 302.3 3 10.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Note : N = number of individuals (trees), DBH = diameter at breast height, BA = basal area.

Importance value index (IVi)

Most of the dominant trees based on importance value index (IVi) were also dominant trees based on total BA and volume. The light demanding pioneer and fast growing species dominate the studied site as shown in Table 4. The most dominant species in terms of IVi was *Macaranga triloba* (IVi of 46.16) followed by *Macaranga triloba* (IVi of 22.97), *Nephelium lappaceum* (IVi of 20.94), *Ficus uncinata* (IVi of 18.64), and *Mallotus paniculatus* (IVi of 17.93). Twelve of 29 species recorded had an IVi of more than 10.00 and 5 species of them had an IVi of 5.00-10.00. Meanwhile the other 12 species have an IVi of less than 5.00. Four dominant species of Euphorbiacea (*Macaranga triloba, Macaranga tanarius, Mallotus paniculatus*, and *Homalanthus populneus*) reached a total IVi of 99.72. These four species were included in the 10 most dominant types based on IVi. Similar results report that tree species from Euphorbiacea are important and dominate tropical lands (Danquah et al. 2011; Nizam et al. 2006; Karyati et al. 2018; Karmini et al. 2020). The total IVi of 8 species including Moraceae reached 84.75. Moraceae is the family that has the most species in the research location.

Commented [WU22]: Euphorbiaceae

Table 4. Importance value index (IVi) of trees (DBH of > 5 cm) in 0.4 hectare of the study plot.

No.	Species	Family	RF (%)	Rd (%)	RD (%)	IVi (%)
1	Macaranga triloba	Euphorbiaceae	25.00	10.53	10.63	46.16
2	Macaranga tanarius	Euphorbiaceae	6.77	6.58	9.62	22.97
3	Nephelium lappaceum	Sapindaceae	6.25	6.58	8.11	20.94
4	Ficus uncinata	Moraceae	8.33	6.58	3.72	18.64
5	Mallotus paniculatus	Euphorbiaceae	7.81	6.58	3.54	17.93
6	Artocarpus anisophyllus	Moraceae	4.69	6.58	5.11	16.37
7	Trema orientalis	Cannabaceae	4.17	5.26	5.44	14.87
8	Artocarpus odoratissimus	Moraceae	2.60	5.26	5.08	12.94
9	Homalanthus populneus	Euphorbiaceae	3.65	5.26	3.75	12.66
10	Mangifera indica	Anacardiaceae	2.08	2.63	7.05	11.77
11	Artocarpus integer	Moraceae	2.08	2.63	6.57	11.28
12	Archidendron pauciflorum	Fabaceae	5.21	3.95	2.07	11.22
13	Vernonia arborea	Asteraceae	2.08	2.63	4.84	9.56
14	Artocarpus lakoocha	Moraceae	1.56	2.63	4.99	9.19
15	Symplocos fasciculata	Symplocaceae	2.60	2.63	3.28	8.51
16	Artocarpus elasticus	Moraceae	2.08	2.63	2.46	7.18
17	Artocarpus tamaran	Moraceae	1.04	2.63	2.39	6.06
18	Baccaurea parvifolia	Phyllanthaceae	1.04	2.63	1.21	4.89
19	Macaranga gigantea	Euphorbiaceae	1.04	1.32	1.99	4.35
20	Eusideroxylon zwageri	Lauraceae	1.04	2.63	0.58	4.25
21	Cratoxylum arborescens	Hypericaceae	1.56	1.32	1.23	4.10
22	Durio zibethinus	Malvaceae	1.04	1.32	1.37	3.73
23	Unknown species 1	Unknown family 1	0.52	1.32	1.58	3.41
24	Alstonia scholaris	Apocynaceae	1.56	1.32	0.41	3.29
25	Oroxylum indicum	Bignoniaceae	1.04	1.32	0.81	3.16
26	Artocarpus heterophyllus	Moraceae	1.04	1.32	0.73	3.09
27	Couroupita guianensis	Lecythidaceae	1.04	1.32	0.66	3.02

Formatted: Highlight

Commented [WU23]: Dominate tropical land in general or, fallow land?

28Unknown species 2Unknown family 20.5229Mangifera odorataAnacardiaceae0.52Total100	1.32	0.71	2.55
	1.32	0.09	1.92
	100	100	300

242 Note : RF = relative frequency, Rd = relative density, RD = relative dominance, IVI = importance value index.

243 244 Species Diversity

245 The tree diversity index was categorized to 'intermediate' (H' of 1.33). This shows that there is a sufficient number of 246 trees growing at the research location. A very complex community is indicated by a high diversity of species (Brower et al. 247 1990). Meanwhile, the dominance index was at low criteria with a Ds value of 0.06. A low dominance value indicates that no species is dominant in the region. The evenness index was in the high category (J' value of 0.91). This category means 248 249 that the presence of trees in the studied plots is evenly distributed. Evenness of plant species is determined by the diversity 250 of species and the number of species present in the area. A species richness index of 5.33 showed that there were many 251 252 tree species grow in the study site. However, there were 192 trees included in 29 tree species ecorded in the research studied plots of 0.4 ha. The species richness in a place is determined by the number of species and the density of the 253 existing plants. Species richness is calculated based on the number of species in an area (Krebs, 2001). The results show 254 that high diversity (H'), evenness (J'), and wealth (R) will lead to low dominance (Ds). The similar results were reported 255 for the diversity indices for trees with DBH of > 5 cm on plots with an abandoned field age of 5, 10, 20 years (Karyati et al. 2010) and the second secon 256 al. 2018) and on abandoned land after cultivation (Karmini et al. 2020). 257

258 Table 5. Diversity indices of trees with DBH of \geq 5 cm in the study plot.

No.	Diversity indices	Value	
1	Shannon-Wiener diversity index (H')	1.33	
2	Simpson dominance index (D_s)	0.06	
3	Pielou evenness index (J')	0.91	
4	Margalef species richness (R)	5.33	

Note : The values were calculated according to the 10 subplots sized 20 m \times 20 m each.

259 260

261 Economic Value

262 263

Log Price The result of this research showed the abandoned land had 7 trees species with high log prices rather than 22 others tree spesies (Table 6). Their log prices were in the range from USD122.12 m⁻³ to USD651.29 m⁻³. The log price is variety 264 265 depends on the species and diameter class of log (Karmini et al., 2020). The highest wood price owned by Eusideroxylon 266 zwageri species which reached USD1,085.48 m⁻³. The wood price is influenced by wood demand in society, the higher 267 demand leads the higher wood prices. Eusideroxylon zwageri has good quality of wood, people likely use this wood for 268contruction materials.

269 270

Table 6. Number of stems at abandoned land, log price, and wood price.

Na	Em a al a a	Famile	Number	Log price	Wood price
INO.	species	ranny	(stems ha ⁻¹)	(USD m ⁻³)	$(USD m^{-3})$
1	Eusideroxylon zwageri	Lauraceae	8	651.29	1,085.48
2	Alstonia scholaris	Apocynaceae	13	488.47	814.11
3	Artocarpus anisophyllus	Moraceae	38	447.76	814.11
4	Oroxylum indicum	Bignoniaceae	8	427.41	814.11
5	Durio zibethinus	Malvaceae	8	151.37	288.33
6	Cratoxylum arborescens	Hypericaceae	13	130.60	237.45
7	Artocarpus heterophyllus	Moraceae	8	122.12	203.53
8	Artocarpus elasticus	Moraceae	17	74.80	142.47
9	Artocarpus lakoocha	Moraceae	13	64.11	142.47
10	Archidendron pauciflorum	Fabaceae	42	79.38	135.69
11	Nephelium lappaceum	Sapindaceae	50	64.11	122.12
12	Baccaurea parvifolia	Phyllanthaceae	8	54.95	122.12
13	Mangifera odorata	Anacardiaceae	4	30.53	50.88
14	Macaranga triloba	Euphorbiaceae	200	30.37	50.88
15	Ficus uncinata	Moraceae	67	30.05	50.88
16	Mallotus paniculatus	Euphorbiaceae	63	29.51	50.88
17	Homalanthus populneus	Euphorbiaceae	29	28.35	50.88
18	Symplocos fasciculata	Symplocaceae	21	27.48	50.88
19	Couroupita guianensis	Lecythidaceae	8	26.71	50.88
20	Trema orientalis	Cannabaceae	33	26.71	50.88
21	Macaranga gigantea	Euphorbiaceae	8	26.71	50.88
22	Macaranga tanarius	Euphorbiaceae	54	25.83	50.88
23	Artocarpus odoratissimus	Moraceae	21	24.42	50.88
24	Artocarpus tamaran	Moraceae	8	22.90	50.88

7

already explained in the Methodology section on what is the definition of Species Evenness. Commented [WU25]: High number of tree stand exiting in the study sites Commented [WU26]: recorded Commented [WU27]: ?? Commented [WU28]: This sentence - not necessary as it was already explained in the Methodology section

Commented [WU24]: This sentence - not necessary as it was

Commented [WU29]: Shifting cultivation?

Artocarpus integer	Moraceae	17	22.90	50.88
Vernonia arborea	Asteraceae	17	22.90	50.88
Unknown species 1	Unknown family 1	4	22.90	50.88
Unknown species 2	Unknown family 2	4	22.90	50.88
Mangifera indica	Anacardiaceae	17	20.99	50.88
		801	3,198.52	5,786.97
		28	110.29	199.55
	Artocarpus integer Vernonia arborea Unknown species 1 Unknown species 2 Mangifera indica	Artocarpus integerMoraceaeVernonia arboreaAsteraceaeUnknown species 1Unknown family 1Unknown species 2Unknown family 2Mangifera indicaAnacardiaceae	Artocarpus integer Moraceae 17 Vernonia arborea Asteraceae 17 Unknown species 1 Unknown family 1 4 Unknown species 2 Unknown family 2 4 Mangifera indica Anacardiaceae 17 801 28	Artocarpus integerMoraceae1722.90Vernonia arboreaAsteraceae1722.90Unknown species 1Unknown family 1422.90Unknown species 2Unknown family 2422.90Mangifera indicaAnacardiaceae1720.998013,198.5228110.29

Source: Primary data (analyzed) (2020).

Logging Cost

The logging cost of *Eusideroxylon zwageri* species was highest rather than other spesies in abandoned land in this research as shown in Table 7. However, logging cost per hectare was determined by log volume therefore this research found difference logging cost per hectare among trees species. The total logging cost in abandoned land in this research (USD152.54 ha⁻¹) was lower compared to that in other research (USD1,212.24 ha⁻¹) (Karmini et al., 2020). This is relevant because the total log volume in abandoned land in this research location was as many as 76.86 m³ ha⁻¹ was lower rather than that in other research location reached as many as 91.97 m³ ha⁻¹.

Commented [WU30]: Revise this sentence to provide clear logic of your explanation

Table 7. Logging cost of trees at abandoned land.

NI.	S	F1	Logging	Logging cost		
NO.	Species	Family	(USD ha ⁻¹)	(USD m ⁻³)		
1	Eusideroxylon zwageri	Lauraceae	7.51	101.76		
2	Artocarpus integer	Moraceae	83.25	67.84		
3	Artocarpus tamaran	Moraceae	74.43	67.84		
4	Mangifera indica	Anacardiaceae	61.13	67.84		
5	Artocarpus lakoocha	Moraceae	57.68	67.84		
6	Unknown species 1	Unknown family 1	54.70	67.84		
7	Vernonia arborea	Asteraceae	41.96	67.84		
8	Artocarpus odoratissimus	Moraceae	34.25	67.84		
9	Macaranga gigantea	Euphorbiaceae	33.42	67.84		
10	Nephelium lappaceum	Sapindaceae	30.83	67.84		
11	Homalanthus populneus	Euphorbiaceae	30.55	67.84		
12	Artocarpus anisophyllus	Moraceae	27.55	67.84		
13	Unknown species 2	Unknown family 2	23.49	67.84		
14	Macaranga tanarius	Euphorbiaceae	23.29	67.84		
15	Durio zibethinus	Malvaceae	23.22	67.84		
16	Trema orientalis	Cannabaceae	21.35	67.84		
17	Baccaurea parvifolia	Phyllanthaceae	21.01	67.84		
18	Artocarpus elasticus	Moraceae	20.02	67.84		
19	Symplocos fasciculata	Symplocaceae	19.38	67.84		
20	Cratoxylum arborescens	Hypericaceae	12.23	67.84		
21	Oroxylum indicum	Bignoniaceae	11.75	67.84		
22	Couroupita guianensis	Lecythidaceae	10.18	67.84		
23	Artocarpus heterophyllus	Moraceae	6.32	67.84		
24	Mallotus paniculatus	Euphorbiaceae	5.73	67.84		
25	Ficus uncinata	Moraceae	4.59	67.84		
26	Archidendron pauciflorum	Fabaceae	4.45	67.84		
27	Macaranga triloba	Euphorbiaceae	4.39	67.84		
28	Alstonia scholaris	Apocynaceae	2.38	67.84		
29	Mangifera odorata	Anacardiaceae	1.48	67.84		
Total	00		752.54	2,001.36		
Mean	L		25.95	69.01		
Source	: Primary data (analyzed) (2020).					

284 Profit Margin

The wood sellers hope profit from their marketing activities, the 3 trees species contribute big profit margin, namely *Eusideroxylon zwageri*, *Alstonia scholaris*, and *Artocarpus anisophyllus*. Those also have the high of log and wood prices. This meant prices of buying and selling determine profit in marketing both log and wood. Data in Table 8 present profit margin of selling 29 trees species from abandoned land.

Table 8. Profit margin.

Na	Emories	Earnily.	Profit margin		
INO.	species	Family	(USD m ⁻³ ha ⁻¹)	(USD m ⁻³)	
1	Eusideroxylon zwageri	Lauraceae	626.24	150.30	
2	Alstonia scholaris	Apocynaceae	469.68	112.72	

Commented [WU31]: Revise this sentence.

NT.	Species	E	Profit marg	Profit margin		
No.		Family	(USD m ⁻³ ha ⁻¹)	(USD m ⁻³)		
3	Artocarpus anisophyllus	Moraceae	430.54	103.33		
4	Oroxylum indicum	Bignoniaceae	410.97	98.63		
5	Durio zibethinus	Malvaceae	145.55	34.93		
6	Cratoxylum arborescens	Hypericaceae	125.57	30.14		
7	Artocarpus heterophyllus	Moraceae	117.42	28.18		
8	Archidendron pauciflorum	Fabaceae	76.32	18.32		
9	Artocarpus elasticus	Moraceae	71.92	17.26		
10	Nephelium lappaceum	Sapindaceae	61.65	14.79		
11	Artocarpus lakoocha	Moraceae	61.65	14.79		
12	Baccaurea parvifolia	Phyllanthaceae	52.84	12.68		
13	Mangifera odorata	Anacardiaceae	29.35	7.05		
14	Macaranga triloba	Euphorbiaceae	29.20	7.01		
15	Ficus uncinata	Moraceae	28.90	6.94		
16	Mallotus paniculatus	Euphorbiaceae	28.38	6.81		
17	Homalanthus populneus	Euphorbiaceae	27.26	6.54		
18	Symplocos fasciculata	Symplocaceae	26.42	6.34		
19	Trema orientalis	Cannabaceae	25.69	6.16		
20	Couroupita guianensis	Lecythidaceae	25.69	6.16		
21	Macaranga gigantea	Euphorbiaceae	25.69	6.16		
22	Macaranga tanarius	Euphorbiaceae	24.84	5.96		
23	Artocarpus odoratissimus	Moraceae	23.48	5.64		
24	Artocarpus tamaran	Moraceae	22.02	5.28		
25	Artocarpus integer	Moraceae	22.02	5.28		
26	Vernonia arborea	Asteraceae	22.02	5.28		
27	Unknown species 1	Unknown family 1	22.02	5.28		
28	Unknown species 2	Unknown family 2	22.02	5.28		
29	Mangifera indica	Anacardiaceae	20.18	4.84		
Total			3,075.50	738.12		
Mean			106.05	25.45		
Source:	Primary data (analyzed) (2020).					

291 292

Stumpage Value

293 294 295

296 297

The total stumpage value at the abandoned land was estimated as much as USD1,495.31 ha⁻¹. There 29 trees species has identified and each species contibutes an average of USD51.56 ha⁻¹. Figure 1 describes the highest stumpage value was from *Artocarpus anisophyllus* species as much as USD168.97 ha⁻¹ and the lowest stumpage value was contributed by Mangifera odorata spesies as much as USD2.29 ha-1.

Figure 4. Stumpage value of trees at abandoned land.

9

Formatted: Normal

10

302

303

ACKNOWLEDGEMENTS

304 The authors would like to express their gratitude and highest appreciation to the Ministry of Education and Culture, the 305 Republic of Indonesia for financial the support by Hibah Penelitian Dasar Unggulan Perguruan Tinggi Contract No.: 183/SP2H/AMD/LT/DRPM/2020 for this research. 306

307

REFERENCES

Afdalis. 2016. Abandonment of Property Rights. [Thesis]. Fakultas Hukum Universitas Hasanuddin, Makassar. [Indonesia]

Álvarez-Yépiz JC, Martínez-Yrízar A, Búrquez A, Lindquist C. 2008. Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in Northwestern Mexico. Forest Ecology and Management 256: 355-366. doi: https://doi.org/10.1016/j.foreco.2008.04.049

Aththorick TA, Setiadi D, Purwanto Y, Guhardja Y. 2012. Vegetation stands structure and aboveground biomass after the shifting cultivation practices of Karo People in Leuser Ecosystem, North Sumatra. Biodiversitas 13(2): 92-97.

Danquah JA, Appiah M, Ari P. 2011. Comparison of post-fire planted and natural dry semideciduous forest communities in Ghana. African Journal of Agricultural Research 6(23): 5266-5277. doi: https://doi.org/10.5897/AJAR11.820. Dumais RO. 2014. Legal arrangements for the existence of abandoned land in Indonesia. Lex et Societatis, II(5).

https://ejournal.unsrat.ac.id/index.php/lexetsocietatis/article/vie wFile/4890/4415. Fachrul MF. 2007. Bioecology Sampling Method. Bumi Aksara, Jakarta. [Indonesian]

Feldpausch TR, Prats-Clark CC, Fernandes ECM, Riha SJ. 2007. Secondary forest growth deviation from chronosequence predictions in Central Amazonia. Global Change Biology 13: 967-979. doi: https://doi.org/10.1111/j.1365-2486.2007.01344.x
Husch B, Miller CI, Beers TW. 1982. Forest Mensuration. John Wiley and Sons Publishing, New York.

Karmini, Karyati, Widiati KY. 2020. The role of tropical abandoned land relative to ecological and economic aspects. Forest and Society 4(1): 181-194. Karyati, Ipor IB, Jusoh I, Wasli ME, Seman IA. 2013. Composition and diversity of plant seedlings and saplings at early secondary succession of fallow

Karyati, Jos B., Josofi F., Walson F., Vishin P. 2015. Composition and recently of pairs second scenary second structure and supposed and supposed and second se

Klanderud K, Mbolatiana HZH, Vololomboahargy MN, Radimbison MA, Roger E, Totland O, Rajeriarison C. 2010. Recovery of plant species richness and composition after slash-and-burn agriculture in a tropical rainforest in Madagascar. Biodivers Conserv 19:187-204. DOI 10.1007/s10531-009-9714-3

Kuntz KA, Beaudry F, Porter KL. 2018. Farmers' perceptions of agricultural land abandonment in rural western New York State. Land 7(128): 1-11. Nizam MS, Norziana J, Sahibin AR, Latiff A. 2006. Edaphic relationships among tree species in the National Park at Merapoh, Pahang, Malaysia. Jurnal Biosains 17(2): 37-53.

Nurlinda I, Pujiwati Y, Ishak M. 2014. Comparison of the handling of abandoned land in Tasikmalaya Regency and Sukabumi Regency in realizing food security in West Java Province. Jurnal Hukum IUS Quia Iustum 21(1): 120-138. [Indonesian] Odum PE. 2005. Fundamentals of Ecology, 5th Ed. Thomson Brooks/Cole, Belmont CA.

Ohtsuka T. 1999. Early stages of secondary succession on abandoned cropland in north-east Borneo island. Ecological Research 14: 281-290. doi: https://doi.org/10.1046/j.1440-1703.1999.143304.x Permana EY. 2012. Peralihan Hak Atas Tanah Akibat Tanah Terantar (Studi Kasus Terhadap Keputusan Kepala Badan Pertanahan Nasional

Republik Indonesia Nomor 10/PTT-HGU/BPN RI/2012). Tersedia di laman https://media.neliti.com/media/publications/34172-ID-peralihan-hak-atas-tanah-akibat-tanah-terlantar-studi-kasus-terhadap-keputusan-k.pdf. Diakses pada 25 Mei 2017. Setiawan AD. 2010. Review: Biodiversity conservation strategy in a native perspective; case study of shifting cultivation at the Dayaks of Kalimantan.

Bioscience 2(2): 97-108. Yirdaw E, Monge AM, Austin A, Toure I. 2019. Recovery of foristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests, 50:1007–1026. https://doi.org/10.1007/s11056-019-09711-2

Zambon I, Serra P, Salvati L. 2018. Fallow land, recession and socio-demographic local contexts: Recent dynamics in a mediterranean urbar fringe. Agriculture 8(159): 1-17.

Commented [WU32]: Please recheck the reference list I find some in-text citation were missing in the reference list

Dear Managing Editor,

Bersama ini kami sampaikan beberapa perbaikan pada manuskrip terlampir.

The comment on review of manuscript dengan :

Judul asli : "The existence of fallow land in the tropic from an ecology and economic perspectives"

Judul yang direvisi : "The ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province"

No. Page/Line Review		Feedback and revision		
Comments				
Reviewer A				
	Artikel	Perubahan judul dan perbaikan/revisi kalimat.	Kami menerima dengan terbuka dan sangat berterima kasih atas saran- saran dan perbaikan yang telah diberikan terhadap keseluruhan artikel ini.	
1	Introduction, hal. 1, baris 42- 45	 n, Dua kalimat ini agak bertentangan, kecuali dalam aspek carbon stock. Sementara carbon stock tidak dibahas dalam artikel ini. Artikel ini hanya membahas nilai ekologi dan ekonomi, sama dengan yang sudah dilakukan sebelumnya. Saya sarankan penulis menambahkan beberapa kalimat yang menunjukkan kebaruan artikel ini 		
2	Results and Discussion, Figure 3, hal. 4	Sebaiknya disain grafik disamakan dengan Figure 2.	Disain grafik Figure 3 telah disamakan dengan Figure 2.	
3	Results and Discussion, Table 6, hal. 7	Mungkin perlu diganti dengan timber. Wood adalah kayu dalam arti substansi/material penyusun batang pohon, sedangkan timber adalah kayu yang diproses untuk konstruksi.	Kata "wood" telah diganti menjadi "timber".	
4	References, hal. 10	References yang tidak lagi digunakan perlu dihapus.	References sudah disesuaikan.	
5	5 References, hal. Odum PE. 2005. Seharusnya Odu 10 2005.		Telah direvisi.	
			L	
Reviewer B	6			
1	Abstract, hal 1, baris 11-12	Paraphrase these sentences to provide much clearer justification of this research work. i.e. Abandoned farmland often neglected of its ecological and economic values What is the definition of plantation activities? Commercial plantation or smallholder-based farmland. The impact of different types of abandoned plantation will provide different consequences on its ecological and economic value.	Kalimat ini telah direvisi.	
2	Abstract, hal. 1, baris 15-16	What would be the estimated age after abandonment of these selected sites? Were these abandoned land form after similar past land uses?	Informasi tentang umur lahan terbiarkan dan bentuk penggunaan lahan sebelumnya kami tambahkan pada bagian Study Site (hal. 2, baris 52-54).	
3	Introduction, hal. 1, baris 27	Paraphrase this statement.	Kalimat ini telah direvisi.	
4	Introduction, hal. 1, baris 27	Only richness? How about composition?	Kalimat ini telah direvisi.	

No. Comments	Page/Line	Review	Feedback and revision
5	Introduction,	Abandoned land? And declared abandoned	Kalimat ini telah direvisi.
	hal. 1. baris 38-	land? Paraphrase this sentence to provide	
	39	simple and clear logic.	
6	Introduction.	Provide a clear timeline on the rate of	Kalimat ini telah direvisi.
0	hal 1 baris 39	increment in abandoned land in Indonesia	
		i.e. From 2007 xxxha of abandoned land	
		had been reported. In 2011 the abandoned	
		land area has expanded to xxxha	
7	Introduction	I think this parts needs paraphrasing for	Kalimat ini telah direvisi
,	hal 2 haris 50-	better explanation on the justification and	Rammat ini telan the visi.
	55	importance of this study	
8	Material and	Only at one location?	Kalimat ini telah direvisi
0	methods hal 2	Only at one location?	Kannat ini telan tirevisi.
	haris 58	The term "fallow" often associated to land	
	04113 50	abandoned after slash and burn farming. In	
		the case of your study can it be assumed	
		that the abandoned land that you are	
		referring in this study are fallow land after	
		slash and hurn activities?	
0	Material and	Do these selected plots possess similar land	Informasi tentang sejarah
	methods hal 3	use history? Elaborate in brief the land use	nenggunaan lahan telah kami
	haris 101-102	history of the selected study plots i e post	tambahkan pada bagian Study Site
	04115 101 102	shifting cultivation land previous	(hal 2 haris 52-54)
		cultivation history etc.	(111. 2, 0413 32 34).
		cultivation instory, etc	
		Furthermore is the survey conducted at one	Informasi tentang letak plot telah
		specific land area and the subplots were	ditambahkan (hal 2 baris 99)
		established within this one single land	unanioanikan (nai. 2, baris 77).
		rather than random location of various	
		abandoned land and subplots were	
		established at different locations? Please	
		verify	
10	Material and	Include reference where you adapted the	Informasi telah ditambahkan
10	methods hal 3	method for vegetation survey here	informasi telan unambankan.
	baris 102-103	include for vegetation survey here.	
11	Material and	You can include the reference of the past	Referensi telah ditambahkan
11	methods hal 3	studies here	Referensi telun utumbunkun.
	haris 106	studies here.	
12	Material and	State the reference	Narasi telah disesuaikan
12	methods hal 3	State the reference	i varasi telan disesuarkan.
	baris 124		
13	Material and	Not included in the reference list	Referensi telah ditambahkan
15	methods hal 3	The mended in the reference list	Referensi telun utumbunkun.
	haris 124		
14	Material and	Not listed in the reference list	Referensi telah ditambahkan
1.	methods hal 4	The hold in the reference list	Referensi telun utumbunkun.
	haris 132		
15	Material and	Not in reference list	Referensi telah ditambahkan
15	methods hal 1	Not in reference list	Referensi telan ultambalikan.
	haris 133		
16	Material and	So this equation is only used for estimating	Kalimat talah diravisi
10	methods bal 4	the logging cost of <i>Eusiderorylon zwageri</i>	
	heris 1/2 152	only? Or can it be applicable for logging	
	04115 143-133	cost of other timber species? Places verify	
17	Deculto and	If this value is not stated or presented in the	Kalimat talah diharwa
1/	Discussion bal	Figure avoid using specific volves to	Kannat telan unapus.
	Discussion, nal.	rigure, avoid using specific values to	
10	4, Dar18 158	explain the trend of your results.	Zal'mated also d'ha
18	Results and	Density or number of tree stand?	Kanmat telan dinapus.

No. Comments	Page/Line	Review	Feedback and revision
	Discussion, hal. 4, baris 158		
19	Results and Discussion, hal. 5, baris 219	Italic the scientific names of plant species	Penulisan jenis tumbuhan (cetak miring) telah direvisi.
20	Results and Discussion, hal. 5, baris 223-224	Can it be identified even at Family level?	Dua jenis yang tidak diketahui berhasil diidentifikasi yaitu <i>Glochidion obscurum</i> (Pyllantaceae) dan <i>Mangifera</i> sp. (Anacardiaceae). Penyesuaian jenis pada teks dan tabel terhadap dua jenis ini telah dilakukan.
21	Results and Discussion, hal. 5, baris 224	I do not understand this statement	Kalimat telah direvisi.
22	Results and Discussion, hal. 6, baris 235	Euphorbiaceae	Kata telah direvisi.
23	Results and Discussion, hal. 6, baris 238	Dominate tropical land in general or, fallow land?	Kalimat telah direvisi.
24	Results and Discussion, hal 7, baris 249-250	This sentence – not necessary as it was already explained in the Methodology section on what is the definition of Species Evenness.	Kalimat telah dihapus.
25	Results and Discussion, hal. 7, baris 250-251	High number of tree stand exiting in the study sites.	Kalimat telah direvisi sesuai saran yang diberikan.
26	Results and Discussion, hal. 7, baris 251	recorded	Telah direvisi menjadi "recorded".
27	Results and Discussion, hal. 7, baris 252	??	Kalimat telah direvisi.
28	Results and Discussion, hal. 7, baris 252-253	This sentence – not necessary as it was already explained in the Methodology section	Kalimat telah dihapus.
29	Results and Discussion, hal 7, baris 256	Shifting cultivation?	Kalimat telah direvisi.
30	Results and Discussion, hal. 8, baris 277-279	Revise this sentence to provide clear logic of your explanation	Kalimat telah direvisi.
31	Results and Discussion, hal. 8, baris 286	Revise this sentence.	Kalimat telah direvisi.
32	Reference, hal. 10	Please recheck the reference list I find some in-text citation were missing in the reference list	References telah disesuaikan dengan teks.

Samarinda, 31 Oktober 2020

Karyati

BIODIVERSITAS Volume 21, Number 11, November 2020 Pages: xxxx

Short Communication: The ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province, Indonesia

KARMINI^{1.}, KARYATI^{2,}, KUSNO YULI WIDIATI²

¹Faculty of Agriculture, Universitas Mulawarman. Jl. Pasir Balengkong, Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia. 75119. Telp.: +62 541 749161, Fax.: +62 541 738341. ♥email: karmini@faperta.unmul.ac.id

²Faculty of Forestry, Universitas Mulawarman. Jl. Ki Hajar Dewantara, Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia, 75119 Telp. +62 0541 735089, 749068 Fax. +62 541 735379, **email: karyati@fahutan.unmul.ac.id

Manuscript received: xxx. Revision accepted: xxx October 2020.

Abstract. *Karmini, Karyati, Widiati KY. 2020. Short Communication: The ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province, Indonesia. Biodiversitas 21: xxxx.* There is a large area of abandoned land in East Kalimantan Province. These abandoned traditional gardens which have been neglected for a long time have important ecological and economic values. This study aimed to assess the ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province. The ecological aspects assessed were stand structure, floristic composition, and species diversity. Meanwhile, the economic aspects analyzed were log price, harvesting cost, profit margin, and stumpage value. The vegetation survey was carried out on all woody trees with a diameter at breast height (DBH) ≥ 5 cm in 10 subplots, each measuring 20 m \times 20 m. A total of 192 trees were recorded, belonging to 29 species, 19 genera and 17 families. The most dominant species were *Macaranga triloba* (Importance Value, IV of 46.16), *Macaranga tanarius* (IV of 22.97), and *Nephelium lappaceum* (IV of 20.94). The indexes of diversity, dominance, evenness, and richness in the studied plots were 1.33, 0.06, 0.40, and 5.33, respectively. The means of wood price, logging cost, profit margin, and stumpage value of the secondary forest were USD199.55 m⁻³, USD69.01 m⁻³, USD25.45 m⁻³, and USD51.56 ha⁻¹, respectively. This study confirmed that the abandoned land had high ecological and economic values.

Keywords: Abandoned land, diversity, fallow land, stumpage value, tropic

INTRODUCTION

In East Kalimantan Province there is about 3 million hectares of abandoned land, consisting mainly of former coal mining land and fallow land of the shifting cultivation system which is no longer cultivated by the owners. The indigenous Dayak tribe usually replanted the land after rice harvesting with multipurpose species, such as fruit trees, rattan, and bamboo. Over time, the abandoned land will turn into secondary forest due to succession. After decades, the species richness and composition in the regrowth forests can approach old forest which can serve as biodiversity repositories (Karyati et al. 2018; Yirdaw et al. 2019).

The time required for vegetation recovery to original forest characteristics is influenced by several factors such as type of land use, cycle duration, and large cleared patches (Aththorick et al. 2012). The pioneer plant species dominate abandoned land indicated by an intermediate diversity, a low dominance index, and a high evenness index (Karmini et al. 2020; Karyati et al. 2013; Karyati et al. 2018). The rate of succession and thus the restoration of soil on abandoned land can be accelerated through plantation programs. These activities can reduce the expansion of forest conversion into cultivated areas (Klanderud et al. 2010).

Also, forest planting has an important role in providing ecological, economic, religious, and cultural functions of the secondary forest (Setiawan 2010). The average stumpage value in abandoned land was calculated to be 83.05 USD ha⁻¹ and the total value 2,159.36 USD ha⁻¹ (Karmini et al. 2020).

The calculation of the potential economic value of timber and non-timber forest products that can be used as onstruction materials for buildings or furniture will illustrate the potential income that might be achieved from managing abandoned land. Most of the previous studies reported information on the ecological and economic value of abandoned lands separately. The previous similar study reported the ecological and economic value of abandoned land where the previous land use was shifting cultivation (Karmini et al. 2020). However, study that provides comprehensive information on the ecological and economic value of abandoned land after being used as traditional gardens in the tropics is still very limited. The objectives of the study were to assess the ecological and economic values of secondary forest on abandoned land. The findings are expected to be used as the basis to make recommendation in managing the abandoned land in East Kalimantan and in other tropical areas.

MATERIALS AND METHODS

Study site

The research was carried out on a land area of abandoned traditional garden in Bukit Pinang area, in

Samarinda Ulu Subdistrict, Samarinda City, East Kalimantan Province, Indonesia. The research plot is located on land which is a traditional garden that has been left for more than 44 years based on land owner confirmation. The previous similar land use type of traditional gardening on this land was also reported based on interviews with land owners. The boundaries of the area are Kutai Kartanegara district at north. Samarinda Utara district at east, Air Putih Subdistrict at south, and Sungai Kunjang district at west. Samarinda City is the capital of East Kalimantan Province, Indonesia and the city with the largest population in the entire island of Kalimantan. The population of Samarinda is 812,597 people. Samarinda has an area of 718 km² with a hilly geographical condition with altitudes varying from 10 to 200 meters above sea level. Samarinda City is divided by Mahakan river and becomes the gateway to the area around by river, land, and air. The research plot lies at the coordinate points of 0°25'32.8"S 117°05′56.8″E (Figure 1).

Procedures

Data collection

The vegetation survey was conducted from March to September 2020. A total of 10 subplots, each measuring 20 $m \times 20$ m, were established in the study site (Fachrul 2007; Kusmana 2017). Sub plots were established within a same abandoned land. All woody trees with a diameter at breast height (DBH) of \geq 5 cm were measured for diameter and height, and their species were identified. The secondary data were obtained from reports and articles from previous researches (Forestry Department of Peninsular Malaysia (FDPM) (1997); Hanum et al. 2001; Noor et al. 1992; Noor and Shahwahid 1999).

Data analysis

Ecological characteristics

The following formulas were used to measure individual basal area (BA) and volume (V) (Husch et al. 1982):

Individuals BA = π (DBH/2) ² . 10 ⁻⁴	(1)

Individuals V = $\frac{1}{4}\pi \times DBH^2$. 10⁻⁴ × H × f (2)

Where: DBH is diameter at breast height (cm), 'H' is tree height (m), and 'f' is form factor.

The importance value index (IVi) was used to determine the dominant species of community within the studied plots in (Fachrul 2007):

RF = (Frequency of a species/Total of frequencies of all species) $\times 100$ (3)

number of individuals) \times 100 (4)

(5)

$$IVi = RF + Rd + RD \tag{6}$$

and RD is relative dominance.

Figure 1. Map of study site in Bukit Pinang area, in Samarinda Ulu Subdistrict, Samarinda City, East Kalimantan Province, Indonesia

Rd = (The number of individual of a species/Total RD = (Total basal area for a species/Total basal area for all species) × 100 Where: RF is relative frequency, Rd is relative density,

BIODIVERSITAS

Volume 21, Number 11, November 2020 Pages: xxxx

The four diversity indices were analyzed to describe species diversity of standing trees in the studied plots. These diversity indices were Shannon-Wiener's diversity index (*H'*), Simpson's dominance index (D_s), Pielou's evenness index (*J'*), and Margalef's richness index (*R*) (Odum and Barrett 2005):

$$H' = -\sum_{i=1}^{s} \left(\frac{n_i}{N}\right) \ln\left(\frac{n_i}{N}\right)$$
(7)

$$D_s = \sum_{i=1}^{s} \left(\frac{n_i}{N}\right)^2 \tag{8}$$

$$J' = \frac{H'}{\ln(S)} \tag{9}$$

$$R = \frac{(S-1)}{\ln n} \tag{10}$$

Where: n_i: number of individuals of the *i*- th species, N: total number of all the individuals in a unit area, and S: number of species in each plot.

Economic literature

Data in Table 1 shows number of logs that produced from tree diameter up to 75 cm. Based on diameter class and number of logs, the equivalent merchantable height was determined.

Reduction factor of log price was determined based on size class of DBH (Table 2). This research used assumption that the reduction factor of log price with size class of DBH < 15 cm was 0.6.

Profit ratio was fixed at 30% according to Noor and Shahwahid (1999).

Equation of profit margin was calculated as follows (Noor and Shahwahid, 1999):

Table 1. Merchantable tree heights

Diameter class (cm)	Number of logs (5 m long)	Equivalent merchantable height (m)
< 15	0.5	2.5*
15 - 30	1	5
+30 - 60	2	10
+60 - 75	3	15
75 ke atas	4	20

Note: *Analyzed data; FDPM (Forestry Department of Peninsular Malaysia) (1997)

Table 2. Reduction factor of log price

DBH size class (cm)	Reduction factor
< 15	0.60*
15 - 29	0.45
30 - 44	0.30
45 - 49	0.15
50 - 54	0.025
<u>> 55</u>	0.00

ISSN: 1412-033X

E-ISSN: 2085-4722

DOI: 10.13057/biodiv/d2111xx

Note: *Analyzed data; Noor et al. (1992) and Hanum et al. (2001)

$$PM_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} (P_{ij} x PR) / (1 + PR)$$
(11)

Where:

 PM_{ii} : profit margin;

 P_{ij} : log price for each species at sawmill and diameter class;

PR : profit ratio;

i : an index for each species (i = 1, 2, 3, 4, ..., n);

j : an index for diameter class (i = 1, 2, 3, 4, ..., n).

Logging cost of all species was USD68.03 m⁻³ (except logging cost of *Eusideroxylon zwageri* was USD102.04 m⁻³) in research location when the research was done. The exchange rate of 1 USD was 14,740 IDR on 8 October 2020. The equation of stumpage values is presented below:

$$S_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} V_{ij} \left(P_{ij} + C + PM \right)$$
(12)

Where:

 S_{ij} : stumpage value for each species and diameter class (USD ha⁻¹);

 V_{ij} : volume of timber for each species and diameter class (m³);

 P_{ij} : log price for each species at sawmill and diameter class (USD m⁻³);

- C : average logging cost (USD ha⁻¹);
- PM_{ij} : profit margin (USD m⁻³);
- i : an index for each species (i = 1, 2, 3, 4, ..., n);
- j : an index for diameter class (i = 1, 2, 3, 4, ..., n).

RESULTS AND DISCUSSION

Ecological characteristics

Diameter at Breast Height (DBH) and height distributions

The diameter distribution in the research plots shows an inverted J shape where an increase in diameter class is followed by a decrease in the number of trees (Figure 2). The number of trees in the DBH class of 5.0-15.0 cm was 134 (70%), the DBH class of 15.1-25.0 cm 32 (17%), the DBH class of 25.1-35.0 cm 20 (10%), and the DBH class of > 35.0 cm 6 (3%). Meanwhile, most of the trees (59%) belong to the 5-10 cm height class (Figure 3). The tree heights were distributed in height classes of 0.0-5.0 m (9 trees or 5%), 5.1-10.0 m (114 trees or 59%), 10.1-15.0 m (53 trees or 28%), and > 15 m (16 trees or 8%). In general, the diameter distribution of trees in secondary forest has an inverted J-shape (Feldpausch et al., 2007; Álvarez-Yépiz et al., 2008) while the distribution of height class is slightly positively skewed (Ohtsuka, 1999). The The similar trends in trees diameter class and height class were also reported on abandoned land after cultivation (Karmini et al. 2020).

Density, basal area, and volume

The number of individuals recorded in the research plots was 192 trees, belonging to 29 species, 19 genera, and

120

100

80

60

40

20

0

0-5.0

Number of individuals (trees)

17 families. There were 8 tree species of Moraceae, 5 tree species of Euphorbiaceae, 3 tree species of Anacardiaceae, and 2 tree species of Phyllanthaceae. Each of the other 11 families consisted of 1 tree species. The density, basal area, and volume of species in the study site are presented in Table 3. The DBH of trees in the study plots ranged from 6.4 cm to 29.1 cm with an average DBH of 16.3 cm.

Meanwhile, the tree height ranged from 6.0 m to17.4 m with an average height of 10.4 m. The total BA and volume of trees in the study plot were 9.44 and 76.86, respectively. These values are smaller than the total BA (9.75) and the total volume (91.97) in abandoned land after cultivation (Karmini et al. 2020).

Figure 2. Distribution of diameter at breast height (DBH) in 0.4 ha at the study plot

Figure 3. Distribution of height in 0.4 ha at the study plot

5.1-10.0

10.1-15.0

Height sized class (m)

>15.0

Table 3. Density, basal area, and volume of species (DBH of \geq 5 cm) in the study plots

<u> </u>	E	NT	Average of DBH	Average of height	Total of BA	Total volume
Species	species Failing		(cm)	(m)	(m ² ha ⁻¹)	(m ³ ha ⁻¹)
Macaranga tanarius	Euphorbiaceae	13	18.3	12.0	0.91	7.86
Mangifera indica	Anacardiaceae	4	29.1	17.4	0.67	7.49
Nephelium lappaceum	Sapindaceae	12	15.0	9.5	0.77	6.37
Macaranga triloba	Euphorbiaceae	48	9.7	8.7	1.00	6.05
Artocarpus integer	Moraceae	4	26.4	14.0	0.62	5.63
Trema orientalis	Cannabaceae	8	16.6	13.8	0.51	5.51
Artocarpus dadah	Moraceae	3	28.2	15.5	0.47	4.74
Artocarpus anisophyllus	Moraceae	9	14.1	9.5	0.48	4.70
Vernonia arborea	Asteraceae	4	23.6	12.1	0.46	3.69
Artocarpus odoratissimus	Moraceae	5	21.2	9.6	0.48	3.22
Homalanthus populneus	Euphorbiaceae	7	12.4	8.2	0.35	2.69
Mallotus paniculatus	Euphorbiaceae	15	9.8	8.4	0.33	2.21
Artocarpus tamaran	Moraceae	2	22.0	11.5	0.23	2.06
Ficus uncinata	Moraceae	16	10.2	8.5	0.35	2.01
Symplocos fasciculata	Symplocaceae	5	16.5	7.1	0.31	1.74
Durio zibethinus	Malvaceae	2	15.2	12.4	0.13	1.49
Macaranga gigantea	Euphorbiaceae	2	18.9	9.8	0.19	1.43
Artocarpus elasticus	Moraceae	4	15.2	8.4	0.23	1.43
Archidendron pauciflorum	Fabaceae	10	9.5	8.7	0.19	1.19
Glochidion obscurum	Phyllanthaceae	1	27.5	12.0	0.15	1.16
Baccaurea parvifolia	Phyllanthaceae	2	17.0	14.0	0.11	1.05
Cratoxylum arborescens	Hypericaceae	3	12.5	7.0	0.12	0.64
Oroxylum indicum	Bignoniaceae	2	13.7	11.3	0.08	0.60
Couroupita guianensis	Lecythidaceae	2	12.0	11.2	0.06	0.52
Artocarpus heterophyllus	Moraceae	2	13.2	11.1	0.07	0.50
Mangifera sp.	Anacardiaceae	1	18.5	10.0	0.07	0.44
Eusideroxylon zwageri	Lauraceae	2	11.8	6.0	0.05	0.21
Alstonia scholaris	Apocynaceae	3	7.9	7.4	0.04	0.20
Mangifera odorata	Anacardiaceae	1	6.4	7.3	0.01	0.04
Total		192.0	472.5	302.3	9.44	76.86
Average		6.6	16.3	10.4	0.33	2.65
Minimum		1.0	6.4	6.0	0.01	0.04
Maximum		48.0	29.1	17.4	1.00	7.86

Note: N: number of individuals (trees), DBH: diameter at breast height, BA: basal area

The five dominant species based on total basal area and volume were Macaranga tanarius (total BA=0.91 m² ha⁻¹ and volume=7.86 m³ ha⁻¹), Mangifera indica (total BA=0.67 m² ha⁻¹ and volume=7.49 m³ ha⁻¹), Nephelium lappaceum (total BA=0.77 m² ha⁻¹ and volume=6.37 m³ ha⁻¹ ¹), Macaranga triloba (total BA=1.00 m² ha⁻¹ and volume=6.05 m³ ha⁻¹), and Artocarpus integer (total BA=0.62 m² ha⁻¹ and volume=5.63 m³ ha⁻¹). The common species in abandoned land were dominated by fast growing species, such as Macaranga spp. and Artocarpus spp. as also reported by Karyati et al. (2018) and Karmini et al. (2020). The recorded fruit trees showed that the studied plot was abandoned garden. These fruit species planted (Mentawa), were Artocarpus anisophyllus Artocarpus elasticus (Benda), Artocarpus heterophyllus (Nangka), Artocarpus integer (Cempedak), Artocarpus odoratissimus (Terap), Mangifera indica (Mangga), Mangifera odorata (Kuweni), Durio zibethinus (Durian), and Nephelium lappaceum (Rambutan). Artocarpus odoratissimus is a native tree species, while Artocarpus tamaran is an endemic tree species.

Importance value index (IVi)

Most of the dominant trees based on importance value index (IVi) were also dominant trees based on total BA and volume. The light demanding pioneer and fast growing species dominated the studied site (Table 4). The most dominant species in terms of IVi was Macaranga triloba (IVi of 46.16) followed by Macaranga triloba (IVi of 22.97), Nephelium lappaceum (IVi of 20.94), Ficus uncinata (IVi of 18.64), and Mallotus paniculatus (IVi of 17.93). Twelve of 29 species recorded had an IVi of more than 10.00 and 5 species of them had an IVi of 5.00-10.00. Meanwhile the other 12 species had an IVi of less than 5.00. Four dominant species of Euphorbiaceae (Macaranga triloba, Macaranga tanarius, Mallotus paniculatus, and Homalanthus populneus) reached a total IVi of 99.72. These four species were included in the 10 most dominant types based on IVi. Similar studies also reported that tree species from Euphorbiaceae were important and dominating tropical fallow lands (Karyati et al. 2018; Karmini et al. 2020). The total IVi of 8 species including Moraceae reached 84.75. Moraceae was the family that had the most species in the research location.

Table 4. Importance value index (IVi) of trees (DBH of > 5 cm) in 0.4 hectare of the study plots

Species	Family	RF (%)	Rd (%)	RD (%)	IVi (%)
Macaranga triloba	Euphorbiaceae	25.00	10.53	10.63	46.16
Macaranga tanarius	Euphorbiaceae	6.77	6.58	9.62	22.97
Nephelium lappaceum	Sapindaceae	6.25	6.58	8.11	20.94
Ficus uncinata	Moraceae	8.33	6.58	3.72	18.64
Mallotus paniculatus	Euphorbiaceae	7.81	6.58	3.54	17.93
Artocarpus anisophyllus	Moraceae	4.69	6.58	5.11	16.37
Trema orientalis	Cannabaceae	4.17	5.26	5.44	14.87
Artocarpus odoratissimus	Moraceae	2.60	5.26	5.08	12.94
Homalanthus populneus	Euphorbiaceae	3.65	5.26	3.75	12.66
Mangifera indica	Anacardiaceae	2.08	2.63	7.05	11.77
Artocarpus integer	Moraceae	2.08	2.63	6.57	11.28
Archidendron pauciflorum	Fabaceae	5.21	3.95	2.07	11.22
Vernonia arborea	Asteraceae	2.08	2.63	4.84	9.56
Artocarpus dadah	Moraceae	1.56	2.63	4.99	9.19
Symplocos fasciculata	Symplocaceae	2.60	2.63	3.28	8.51
Artocarpus elasticus	Moraceae	2.08	2.63	2.46	7.18
Artocarpus tamaran	Moraceae	1.04	2.63	2.39	6.06
Baccaurea parvifolia	Phyllanthaceae	1.04	2.63	1.21	4.89
Macaranga gigantea	Euphorbiaceae	1.04	1.32	1.99	4.35
Eusideroxylon zwageri	Lauraceae	1.04	2.63	0.58	4.25
Cratoxylum arborescens	Hypericaceae	1.56	1.32	1.23	4.10
Durio zibethinus	Malvaceae	1.04	1.32	1.37	3.73
Glochidion obscurum	Phyllanthaceae	0.52	1.32	1.58	3.41
Alstonia scholaris	Apocynaceae	1.56	1.32	0.41	3.29
Oroxylum indicum	Bignoniaceae	1.04	1.32	0.81	3.16
Artocarpus heterophyllus	Moraceae	1.04	1.32	0.73	3.09
Couroupita guianensis	Lecythidaceae	1.04	1.32	0.66	3.02
Mangifera sp.	Anacardiaceae	0.52	1.32	0.71	2.55
Mangifera odorata	Anacardiaceae	0.52	1.32	0.09	1.92
Total		100	100	100	300

Note: RF: relative frequency, Rd: relative density, RD: relative dominance, IVI: importance value index.

Species diversity

The tree diversity index was categorized as 'intermediate' (H' of 1.33), indicating that there was a sufficient number of trees growing at the research location (Table 5). A very complex community is indicated by a high diversity of species (Brower et al. 1990). Meanwhile, the dominance index was at low criteria with a Ds value of 0.06. A low dominance value indicates that no species is dominant in the region. The evenness index was in the high category (J' value of 0.91), meaning that the individuals of trees in the studied plots were evenly distributed among species. A species richness index of 5.33 showed that high number of tree stand exiting in the study site. There were 192 trees included in 29 tree species recorded in the studied plots. Species richness is calculated based on the number of species in an area (Krebs, 2001). The results show that high diversity (H '), evenness (J'), and wealth (R) will lead to low dominance (Ds). The similar results were reported for the diversity indices for trees with DBH of > 5 cm on plots with an abandoned field age of 5, 10, 20 years (Karyati et al. 2018) and on abandoned land after shifting cultivation (Karmini et al. 2020).

Economic value

Log price

This research found 7 trees species with higher log prices than the other 22 tree spesies (Table 6). Their log prices were in the range from USD122.12 m⁻³ to USD651.29 m⁻³. The log price varies depending on the species and diameter class of log (Karmini et al. 2020). *Eusideroxylon zwageri* had the highest price, i.e., USD1,085.48 m⁻³. The timber price is positively correlated with its demand in society. *Eusideroxylon zwageri* has good quality of wood, and people like to use this wood for contruction materials.

Table 5. Diversity indices of trees with DBH of \geq 5 cm in the study plots

Diversity indices	Value
Shannon-Wiener diversity index (H')	1.33
Simpson dominance index (D_s)	0.06
Pielou evenness index (J')	0.91
Margalef species richness (R)	5.33

Table 6. Number of stems, log price, and wood price at the study site

Spacies	Family	Number	Log price	Timber price
Species	Failing	(stems ha ⁻¹)	(USD m ⁻³)	(USD m ⁻³)
Eusideroxylon zwageri	Lauraceae	8	651.29	1,085.48
Alstonia scholaris	Apocynaceae	13	488.47	814.11
Artocarpus anisophyllus	Moraceae	38	447.76	814.11
Oroxylum indicum	Bignoniaceae	8	427.41	814.11
Durio zibethinus	Malvaceae	8	151.37	288.33
Cratoxylum arborescens	Hypericaceae	13	130.60	237.45
Artocarpus heterophyllus	Moraceae	8	122.12	203.53
Artocarpus elasticus	Moraceae	17	74.80	142.47
Artocarpus dadah	Moraceae	13	64.11	142.47
Archidendron pauciflorum	Fabaceae	42	79.38	135.69
Nephelium lappaceum	Sapindaceae	50	64.11	122.12
Baccaurea parvifolia	Phyllanthaceae	8	54.95	122.12
Mangifera odorata	Anacardiaceae	4	30.53	50.88
Macaranga triloba	Euphorbiaceae	200	30.37	50.88
Ficus uncinata	Moraceae	67	30.05	50.88
Mallotus paniculatus	Euphorbiaceae	63	29.51	50.88
Homalanthus populneus	Euphorbiaceae	29	28.35	50.88
Symplocos fasciculata	Symplocaceae	21	27.48	50.88
Couroupita guianensis	Lecythidaceae	8	26.71	50.88
Trema orientalis	Cannabaceae	33	26.71	50.88
Macaranga gigantea	Euphorbiaceae	8	26.71	50.88
Macaranga tanarius	Euphorbiaceae	54	25.83	50.88
Artocarpus odoratissimus	Moraceae	21	24.42	50.88
Artocarpus tamaran	Moraceae	8	22.90	50.88
Artocarpus integer	Moraceae	17	22.90	50.88
Vernonia arborea	Asteraceae	17	22.90	50.88
Glochidion obscurum	Phyllanthaceae	4	22.90	50.88
<i>Mangifera</i> sp.	Anacardiaceae	4	22.90	50.88
Mangifera indica	Anacardiaceae	17	20.99	50.88
Total		801	3,198.52	5,786.97
Mean		28	110.29	199.55

BIODIVERSITAS

Volume 21, Number 11, November 2020 Pages: xxxx Logging cost

The logging cost of *Eusideroxylon zwageri* species was higher than that of the other spesies in this research (Table 7). However, logging cost per hectare was determined by log volume, and this research found difference in logging cost per hectare among trees species. The total logging cost in abandoned land in this research (USD752.54 ha⁻¹) was lower compared to that in another research (USD1,212.24 ha⁻¹) (Karmini et al. 2020). This is relevant because the total log volume in abandoned land in this research location was 76.86 m³ ha⁻¹ (Table 3), lower than that in another research location, i.e., 91.97 m³ ha⁻¹ (Karmini et al. 2020).

Profit margin

The 3 trees species contributing big profit margin were *Eusideroxylon zwageri, Alstonia scholaris,* and *Artocarpus*

anisophyllus. Those species also had high log and wood prices. This mean prices of buying and selling determine profit in marketing both log and wood. Data in Table 8 present profit margin of selling 29 trees species from abandoned land.

Stumpage value

The total stumpage value at the abandoned land was estimated as much as USD1,495.31 ha⁻¹. There were 29 trees species and each species contributed an average of USD51.56 ha⁻¹. The highest stumpage value was from *Artocarpus anisophyllus*, i.e., USD168.97 ha⁻¹ and the lowest one *Mangifera odorata*, i.e., USD2.29 ha⁻¹ (Figure 4).

Table 7. Logging cost of trees at the study site

Table 8. Profit margin

Species	Family	Logging cost		Species	Family	Profit margin	
Species	гашпу	(USD ha ⁻¹)	(USD m ⁻³)	Species	гашну	(USDm ⁻³ ha ⁻¹)	(USDm ⁻³)
Eusideroxylon zwageri	Lauraceae	7.51	101.76	Eusideroxylon zwageri	Lauraceae	626.24	150.30
Artocarpus integer	Moraceae	83.25	67.84	Alstonia scholaris	Apocynaceae	469.68	112.72
Artocarpus tamaran	Moraceae	74.43	67.84	Artocarpus anisophyllus	Moraceae	430.54	103.33
Mangifera indica	Anacardiaceae	61.13	67.84	Oroxylum indicum	Bignoniaceae	410.97	98.63
Artocarpus dadah	Moraceae	57.68	67.84	Durio zibethinus	Malvaceae	145.55	34.93
Glochidion obscurum	Phyllanthaceae	54.70	67.84	Cratoxylum arborescens	Hypericaceae	125.57	30.14
Vernonia arborea	Asteraceae	41.96	67.84	Artocarpus heterophyllus	Moraceae	117.42	28.18
Artocarpus odoratissimus	Moraceae	34.25	67.84	Archidendron pauciflorum	Fabaceae	76.32	18.32
Macaranga gigantea	Euphorbiaceae	33.42	67.84	Artocarpus elasticus	Moraceae	71.92	17.26
Nephelium lappaceum	Sapindaceae	30.83	67.84	Nephelium lappaceum	Sapindaceae	61.65	14.79
Homalanthus populneus	Euphorbiaceae	30.55	67.84	Artocarpus dadah	Moraceae	61.65	14.79
Artocarpus anisophyllus	Moraceae	27.55	67.84	Baccaurea parvifolia	Phyllanthaceae	52.84	12.68
<i>Mangifera</i> sp.	Anacardiaceae	23.49	67.84	Mangifera odorata	Anacardiaceae	29.35	7.05
Macaranga tanarius	Euphorbiaceae	23.29	67.84	Macaranga triloba	Euphorbiaceae	29.20	7.01
Durio zibethinus	Malvaceae	23.22	67.84	Ficus uncinata	Moraceae	28.90	6.94
Trema orientalis	Cannabaceae	21.35	67.84	Mallotus paniculatus	Euphorbiaceae	28.38	6.81
Baccaurea parvifolia	Phyllanthaceae	21.01	67.84	Homalanthus populneus	Euphorbiaceae	27.26	6.54
Artocarpus elasticus	Moraceae	20.02	67.84	Symplocos fasciculata	Symplocaceae	26.42	6.34
Symplocos fasciculata	Symplocaceae	19.38	67.84	Trema orientalis	Cannabaceae	25.69	6.16
Cratoxylum arborescens	Hypericaceae	12.23	67.84	Couroupita guianensis	Lecythidaceae	25.69	6.16
Oroxylum indicum	Bignoniaceae	11.75	67.84	Macaranga gigantea	Euphorbiaceae	25.69	6.16
Couroupita guianensis	Lecythidaceae	10.18	67.84	Macaranga tanarius	Euphorbiaceae	24.84	5.96
Artocarpus heterophyllus	Moraceae	6.32	67.84	Artocarpus odoratissimus	Moraceae	23.48	5.64
Mallotus paniculatus	Euphorbiaceae	5.73	67.84	Artocarpus tamaran	Moraceae	22.02	5.28
Ficus uncinata	Moraceae	4.59	67.84	Artocarpus integer	Moraceae	22.02	5.28
Archidendron pauciflorum	Fabaceae	4.45	67.84	Vernonia arborea	Asteraceae	22.02	5.28
Macaranga triloba	Euphorbiaceae	4.39	67.84	Glochidion obscurum	Phyllanthaceae	22.02	5.28
Alstonia scholaris	Apocynaceae	2.38	67.84	<i>Mangifera</i> sp.	Anacardiaceae	22.02	5.28
Mangifera odorata	Anacardiaceae	1.48	67.84	Mangifera indica	Anacardiaceae	20.18	4.84
Total		752.54	2,001.36	Total		3,075.50	738.12
Mean		25.95	69.01	Mean		106.05	25.45

Figure 4. Stumpage value of trees at abandoned land

ACKNOWLEDGEMENTS

We would like to express our gratitude to the Ministry of Education and Culture, the Republic of Indonesia for the financial support for this research through the scheme of *Hibah Penelitian Dasar Unggulan Perguruan Tinggi* Contract No.: 183/SP2H/AMD/LT/DRPM/2020.

REFERENCES

- Álvarez-Yépiz JC, Martínez-Yrízar A, Búrquez A, Lindquist C. 2008. Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in Northwestern Mexico. For Ecol Manage 256: 355-366. DOI: 10.1016/j.foreco.2008.04.049
- Aththorick TA, Setiadi D, Purwanto Y, Guhardja Y. 2012. Vegetation stands structure and aboveground biomass after the shifting cultivation practices of Karo People in Leuser Ecosystem, North Sumatra. Biodiversitas 13 (2): 92-97. DOI: 10.13057/biodiv/d130207
- Brower JE, Zar JH, Von Ende CN. 1990. Field and Laboratory Methods for General Ecology, 3rd Ed. Wm. C. Brown Publishers, USA.
- Fachrul MF. 2007. Metode Sampling Bioekologi. Bumi Aksara, Jakarta. [Indonesian]
- Feldpausch TR, Prates-Clark CC, Fernandes ECM, Riha SJ. 2007. Secondary forest growth deviation from chronosequence predictions in Central Amazonia. Global Change Biol 13: 967-979. DOI: <u>10.1111/j.1365-2486.2007.01344.x</u>
- FDPM. 1997. Manual Kerja Luar Sistem Pengurusan Memilih. Forestry Department of Peninsular Malaysia, Kuala Lumpur. [Malaysian]
- Hanum IF, Pius P, Noor AAG. 2001. Economic valuation of tree species diversity at Ayer Hitam Forest, Selangor, Peninsular Malaysia. Petranika J Trop Agric Sci 22 (2): 167-170.

- Husch B, Miller CI, Beers TW. 1982. Forest Mensuration. John Wiley and Sons Publishing, New York.
- Karmini, Karyati, Widiati KY. 2020. The role of tropical abandoned land relative to ecological and economic aspects. For Soc 4 (1): 181-194. DOI: 10.24259/fs.v4i1.8939
- Karyati, Ipor IB, Jusoh I, Wasli ME, Seman IA. 2013. Composition and diversity of plant seedlings and saplings at early secondary succession of fallow lands in Sabal, Sarawak. Acta Biologica Malaysiana 2 (3), 85-94. DOI: 10.7593/abm/2.3.85
- Karyati, Ipor IB, Jusoh I, Wasli ME. 2018. Tree stand floristic dynamics in secondary forests of different ages in Sarawak, Malaysia. Biodiversitas 19 (3), 687-693. DOI: 10.13057/biodiv/d190302
- Klanderud K, Mbolatiana HZH, Vololomboahangy MN, Radimbison MA, Roger E, Totland O, Rajeriarison C. 2010. Recovery of plant species richness and composition after slash-and-burn agriculture in a tropical rainforest in Madagascar. Biodivers Conserv 19:187-204. DOI: 10.1007/s10531-009-9714-3
- Krebs CJ. 2001. Ecology, 5th Ed. Addison Wesley Longman Inc., USA.
- Kusmana C. 2017. Metode Survey dan Interpretasi Data Vegetasi. IPB Press, Bogor. [Indonesian]
- Noor AGA, Vincent JR, Yusuf H. 1992. Comparative Economic Analysis of Forest Revenue System in Peninsular Malaysia. Osborn Center Forestry Policy Grants Program Final Report, USA.
- Noor AGA, Shahwahid MHO. 1999. Price-Based Valuation Method: Stumpage Appraisal of Timber Resources Peat Swamp Forest. Manual on Economic Valuation of Environmental Goods and Services of Peat Swamp Forests. Forestry Department of Peninsular Malaysia, Kuala Lumpur.
- Odum EP, Barrett GW. 2005. Fundamentals of Ecology, 5th Ed. Thomson Brooks/Cole, Belmont, CA.
- Ohtsuka T. 1999. Early stages of secondary succession on abandoned cropland in north-east Borneo island. Ecol Res 14: 281-290. DOI: 10.1046/j.1440-1703.1999.143304.x
- Setiawan AD. 2010. Review: Biodiversity conservation strategy in a native perspective; case study of shifting cultivation at the Dayaks of

Kalimantan. Nusantara Biosci 2 (2): 97-108. DOI: 10.13057/nusbiosci/n020208

Yirdaw E, Monge AM, Austin A, Toure I. 2019. Recovery of foristic diversity, composition and structure of regrowth forests on fallow

lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests 50: 1007-1026. DOI: 10.1007/s11056-019-09711-2.

BIODIVERSITAS Volume 21, Number 11, November 2020 Pages: xxxx

ISSN: 1412-033X E-ISSN: 2085-4722 DOI: 10.13057/biodiv/d2111xx

Short Communication: The ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province, Indonesia

KARMINI^{1.}, KARYATI^{2,}, KUSNO YULI WIDIATI²

Faculty of Agriculture, Universitas Mulawarman. Jl. Pasir Balengkong, Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia. 75119. ¹ Techny of Fighterhaut, On Fernand, Frank, Star Duergevolg, Hampus Grand, Branka, Lat Kammana, Lat Mannana, Indonesia, 1917. Telp.: +62 541 749161, Fax.: +62 541 738341. *email: karmini@faperta.unmul.ac.id
 ² Faculty of Forestry, Universitas Mulawarman. JI. Ki Hajar Dewantara, Kampus Gunung Kelua, Samarinda, East Kalimantan, Indonesia, 75119 Telp. +62 0541 735089, 749068 Fax. +62 541 735379, **email: karyati@fabutan.unmul.ac.id

Manuscript received: xxx. Revision accepted: xxx October 2020.

Abstract. Karmini, Karyati, Widiati KY. 2020. Short Communication: The ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province, Indonesia. Biodiversitas 21: xxxx. There is a large area of abandoned land in East Kalimantan Province. These abandoned traditional gardens which have been neglected for a long time have important ecological and economic values. This study aimed to assess the ecological and economic values of secondary forest on abandoned land in Samarinda, East Kalimantan Province. The ecological aspects assessed were stand structure, floristic composition, and species diversity. Meanwhile, the economic aspects analyzed were log price, harvesting cost, profit margin, and stumpage value. The vegetation survey was carried out on all woody trees with a diameter at breast height (DBH) \geq 5 cm in 10 subplots, each measuring 20 m \times 20 m. A total of 192 trees were recorded, belonging to 29 species, 19 genera and 17 families. The most dominant species were Macaranga triloba (Importance Value, IV of 46.16), Macaranga tanarius (IV of 22.97), and Nephelium lappaceum (IV of 20.94). The indexes of diversity, dominance, evenness, and richness in the studied plots were 1.33, 0.06, 0.40, and 5.33, respectively. The means of wood price, logging cost, profit margin, and stumpage value of the secondary forest were USD199.55 m⁻³, USD69.01 m⁻³, USD25.45 m⁻³, and USD51.56 ha ¹, respectively. This study confirmed that the abandoned land had high ecological and economic values.

Keywords: Abandoned land, diversity, fallow land, stumpage value, tropic

INTRODUCTION

In East Kalimantan Province there is about 3 million hectares of abandoned land, consisting mainly of former coal mining land and fallow land of the shifting cultivation system which is no longer cultivated by the owners. The indigenous Dayak tribe usually replanted the land after rice harvesting with multipurpose species, such as fruit trees, rattan, and bamboo. Over time, the abandoned land will turn into secondary forest due to succession. After decades, the species richness and composition in the regrowth forests can approach old forest which can serve as biodiversity repositories (Karyati et al. 2018; Yirdaw et al. 2019).

The time required for vegetation recovery to original forest characteristics is influenced by several factors such as type of land use, cycle duration, and large cleared patches (Aththorick et al. 2012). The pioneer plant species dominate abandoned land indicated by an intermediate diversity, a low dominance index, and a high evenness index (Karmini et al. 2020; Karyati et al. 2013; Karyati et al. 2018). The rate of succession and thus the restoration of soil on abandoned land can be accelerated through plantation programs. These activities can reduce the expansion of forest conversion into cultivated areas (Klanderud et al. 2010).

Also, forest planting has an important role in providing ecological, economic, religious, and cultural functions of the secondary forest (Setiawan 2010). The average stumpage value in abandoned land was calculated to be

83.05 USD ha-1 and the total value 2,159.36 USD ha-1 (Karmini et al. 2020).

The calculation of the potential economic value of timber and non-timber forest products that can be used as onstruction materials for buildings or furniture will illustrate the potential income that might be achieved from managing abandoned land. Most of the previous studies reported information on the ecological and economic value of abandoned lands separately. The previous similar study reported the ecological and economic value of abandoned land where the previous land use was shifting cultivation (Karmini et al. 2020). However, study that provides comprehensive information on the ecological and economic value of abandoned land after being used as traditional gardens in the tropics is still very limited. The objectives of the study were to assess the ecological and economic values of secondary forest on abandoned land. The findings are expected to be used as the basis to make recommendation in managing the abandoned land in East Kalimantan and in other tropical areas.

MATERIALS AND METHODS

Study site

The research was carried out on a land area of abandoned traditional garden in Bukit Pinang area, in Samarinda Ulu Subdistrict, Samarinda City, East Kalimantan Province, Indonesia. The research plot is located on land which is a traditional garden that has been left for more than 44 years based on land owner confirmation. The previous similar land use type of traditional gardening on this land was also reported based on interviews with land owners. The boundaries of the area are Kutai Kartanegara district at north, Samarinda Utara district at east, Air Putih Subdistrict at south, and Sungai Kunjang district at west. Samarinda City is the capital of East Kalimantan Province, Indonesia and the city with the largest population in the entire island of Kalimantan. The population of Samarinda is 812,597 people. Samarinda has an area of 718 km² with a hilly geographical condition with altitudes varying from 10 to 200 meters above sea level. Samarinda City is divided by Mahakan river and becomes the gateway to the area around by river, land, and air. The research plot lies at the coordinate points of 0°25'32.8"S 117°05'56.8"E (Figure 1).

Procedures

Data collection

The vegetation survey was conducted from March to September 2020. A total of 10 subplots, each measuring 20 m × 20 m, were established in the study site (Fachrul 2007; Kusmana 2017). Sub plots were established within a same abandoned land. All woody trees with a diameter at breast height (DBH) of \geq 5 cm were measured for diameter and height, and their species were identified. The secondary

data were obtained from reports and articles from previous researches (Forestry Department of Peninsular Malaysia (FDPM) (1997); Hanum et al. 2001; Noor et al. 1992; Noor and Shahwahid 1999).

Data analysis

Ecological characteristics

The following formulas were used to measure individual basal area (BA) and volume (V) (Husch et al. 1982):

Individuals BA =
$$\pi$$
 (DBH/2)². 10⁻⁴

Individuals V = $\frac{1}{4}\pi \times DBH^2$. $10^{-4} \times H \times f$ (2)

(1)

(6)

Where: DBH is diameter at breast height (cm), 'H' is tree height (m), and 'f' is form factor.

The importance value index (IVi) was used to determine the dominant species of community within the studied plots in (Fachrul 2007):

- RF = (Frequency of a species/Total of frequencies of all species) $\times 100$ (3)
- Rd = (The number of individual of a species/Total number of individuals) × 100 (4)
- $RD = (Total basal area for a species/Total basal area for all species) \times 100$ (5)

IVi = RF + Rd + RD

Where: RF is relative frequency, Rd is relative density, and RD is relative dominance.

Figure 1. Map of study site in Bukit Pinang area, in Samarinda Ulu Subdistrict, Samarinda City, East Kalimantan Province, Indonesia

BIODIVERSITAS

Volume 21, Number 11, November 2020 Pages: xxxx

The four diversity indices were analyzed to describe species diversity of standing trees in the studied plots. These diversity indices were Shannon-Wiener's diversity index (H'), Simpson's dominance index (D_s) , Pielou's evenness index (J'), and Margalef's richness index (R)(Odum and Barrett 2005):

$$H' = -\sum_{i=1}^{s} \left(\frac{n_i}{N} \right) \ln\left(\frac{n_i}{N} \right)$$
(7)

$$D_{s} = \sum_{i=1}^{s} \left(\frac{n_{i}}{N}\right)^{2}$$

$$J' = \frac{H'}{\ln(S)}$$
(8)
(9)

$$R = \frac{(S-1)}{\ln n} \tag{10}$$

Where: n: number of individuals of the *i*- th species, N: total number of all the individuals in a unit area, and S: number of species in each plot.

Economic literature

Data in Table 1 shows number of logs that produced from tree diameter up to 75 cm. Based on diameter class and number of logs, the equivalent merchantable height was determined.

Reduction factor of log price was determined based on size class of DBH (Table 2). This research used assumption that the reduction factor of log price with size class of DBH < 15 cm was 0.6.

Profit ratio was fixed at 30% according to Noor and Shahwahid (1999).

Equation of profit margin was calculated as follows (Noor and Shahwahid, 1999):

Table 1. Merchantable tree heights

Diameter class (cm)	Number of logs (5 m long)	Equivalent merchantable height (m)
< 15	0.5	2.5*
15 - 30	1	5
+30 - 60	2	10
+60 - 75	3	15
75 ke atas	4	20

Note: *Analyzed data; FDPM (Forestry Department of Peninsular Malaysia) (1997)

Table 2. Reduction factor of log price

DBH size class (cm)	Reduction factor
< 15	0.60*
15 - 29	0.45
30 - 44	0.30
45 - 49	0.15
50 - 54	0.025
> 55	0.00

Note: *Analyzed data; Noor et al. (1992) and Hanum et al. (2001)

$$PM_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{k} (P_{ij} x PR) / (1 + PR)$$
(11)

Where:

 PM_{ij} : profit margin;

Pij : log price for each species at sawmill and diameter class;

PR : profit ratio;

Logging cost of all species was USD68.03 m⁻³ (except logging cost of Eusideroxylon zwageri was USD102.04 m⁻ ³) in research location when the research was done. The

exchange rate of 1 USD was 14,740 IDR on 8 October 2020. The equation of stumpage values is presented below: n k

$$S_{ij} = \sum_{i=1}^{N} \sum_{j=1}^{N} V_{ij} (P_{ij} + C + PM)$$
(12)
Where:

 S_{ij} : stumpage value for each species and diameter class (USD ha-1);

: volume of timber for each species and diameter V_{ii} class (m3);

 P_{ij} : log price for each species at sawmill and diameter class (USD m-3);

: average logging cost (USD ha-1); С

PM_{ij} : profit margin (USD m⁻³);

: an index for each species (i = 1, 2, 3, 4,, n); : an index for diameter class (i = 1, 2, 3, 4, ..., n).

RESULTS AND DISCUSSION

Ecological characteristics

Diameter at Breast Height (DBH) and height distributions The diameter distribution in the research plots shows an inverted J shape where an increase in diameter class is followed by a decrease in the number of trees (Figure 2). The number of trees in the DBH class of 5.0-15.0 cm was 134 (70%), the DBH class of 15.1-25.0 cm 32 (17%), the DBH class of 25.1-35.0 cm 20 (10%), and the DBH class of > 35.0 cm 6 (3%). Meanwhile, most of the trees (59%) belong to the 5-10 cm height class (Figure 3). The tree heights were distributed in height classes of 0.0-5.0 m (9 trees or 5%), 5.1-10.0 m (114 trees or 59%), 10.1-15.0 m (53 trees or 28%), and > 15 m (16 trees or 8%). In general, the diameter distribution of trees in secondary forest has an inverted J-shape (Feldpausch et al., 2007; Álvarez-Yépiz et al., 2008) while the distribution of height class is slightly positively skewed (Ohtsuka, 1999). The The similar trends in trees diameter class and height class were also reported on abandoned land after cultivation (Karmini et al. 2020).

Density, basal area, and volume

The number of individuals recorded in the research plots was 192 trees, belonging to 29 species, 19 genera, and 17 families. There were 8 tree species of Moraceae, 5 tree

BIODIVERSITAS 21 (11): xxx, November 2020

species of Euphorbiaceae, 3 tree species of Anacardiaceae, and 2 tree species of Phyllanthaceae. Each of the other 11 families consisted of 1 tree species. The density, basal area, and volume of species in the study site are presented in Table 3. The DBH of trees in the study plots ranged from 6.4 cm to 29.1 cm with an average DBH of 16.3 cm. Meanwhile, the tree height ranged from 6.0 m to17.4 m with an average height of 10.4 m. The total BA and volume of trees in the study plot were 9.44 and 76.86, respectively. These values are smaller than the total BA (9.75) and the total volume (91.97) in abandoned land after cultivation (Karmini et al. 2020).

Figure 2. Distribution of diameter at breast height (DBH) in 0.4 ha at the study plot

Figure 3. Distribution of height in 0.4 ha at the study plot

Table 3. Density, basal area, and volume of species (DBH of \geq 5 cm) in the study plots

g ;	F "		Average of DBH	Average of height	Total of BA	Total volume
Species	Family	N	(cm)	(m)	(m ² ha ⁻¹)	(m ³ ha ⁻¹)
Macaranga tanarius	Euphorbiaceae	13	18.3	12.0	0.91	7.86
Mangifera indica	Anacardiaceae	4	29.1	17.4	0.67	7.49
Nephelium lappaceum	Sapindaceae	12	15.0	9.5	0.77	6.37
Macaranga triloba	Euphorbiaceae	48	9.7	8.7	1.00	6.05
Artocarpus integer	Moraceae	4	26.4	14.0	0.62	5.63
Trema orientalis	Cannabaceae	8	16.6	13.8	0.51	5.51
Artocarpus dadah	Moraceae	3	28.2	15.5	0.47	4.74
Artocarpus anisophyllus	Moraceae	9	14.1	9.5	0.48	4.70
Vernonia arborea	Asteraceae	4	23.6	12.1	0.46	3.69
Artocarpus odoratissimus	Moraceae	5	21.2	9.6	0.48	3.22
Homalanthus populneus	Euphorbiaceae	7	12.4	8.2	0.35	2.69
Mallotus paniculatus	Euphorbiaceae	15	9.8	8.4	0.33	2.21
Artocarpus tamaran	Moraceae	2	22.0	11.5	0.23	2.06
Ficus uncinata	Moraceae	16	10.2	8.5	0.35	2.01
Symplocos fasciculata	Symplocaceae	5	16.5	7.1	0.31	1.74
Durio zibethinus	Malvaceae	2	15.2	12.4	0.13	1.49
Macaranga gigantea	Euphorbiaceae	2	18.9	9.8	0.19	1.43
Artocarpus elasticus	Moraceae	4	15.2	8.4	0.23	1.43
Archidendron pauciflorum	Fabaceae	10	9.5	8.7	0.19	1.19
Glochidion obscurum	Phyllanthaceae	1	27.5	12.0	0.15	1.16
Baccaurea parvifolia	Phyllanthaceae	2	17.0	14.0	0.11	1.05
Cratoxylum arborescens	Hypericaceae	3	12.5	7.0	0.12	0.64
Oroxylum indicum	Bignoniaceae	2	13.7	11.3	0.08	0.60
Couroupita guianensis	Lecythidaceae	2	12.0	11.2	0.06	0.52
Artocarpus heterophyllus	Moraceae	2	13.2	11.1	0.07	0.50
Mangifera sp.	Anacardiaceae	1	18.5	10.0	0.07	0.44
Eusideroxylon zwageri	Lauraceae	2	11.8	6.0	0.05	0.21
Alstonia scholaris	Apocynaceae	3	7.9	7.4	0.04	0.20
Mangifera odorata	Anacardiaceae	1	6.4	7.3	0.01	0.04
Total		192.0	472.5	302.3	9.44	76.86
Average		6.6	16.3	10.4	0.33	2.65
Minimum		1.0	6.4	6.0	0.01	0.04
Maximum		48.0	29.1	17.4	1.00	7.86

Note: N: number of individuals (trees), DBH: diameter at breast height, BA: basal area

The five dominant species based on total basal area and volume were Macaranga tanarius (total BA=0.91 m² ha⁻¹ and volume=7.86 m³ ha⁻¹), Mangifera indica (total BA=0.67 m² ha⁻¹ and volume=7.49 m³ ha⁻¹), Nephelium lappaceum (total BA=0.77 m² ha⁻¹ and volume=6.37 m³ ha⁻ ¹), Macaranga triloba (total BA=1.00 m² ha⁻¹ and volume=6.05 m³ ha⁻¹), and Artocarpus integer (total BA=0.62 m² ha⁻¹ and volume=5.63 m³ ha⁻¹). The common species in abandoned land were dominated by fast growing species, such as Macaranga spp. and Artocarpus spp. as also reported by Karyati et al. (2018) and Karmini et al. (2020). The recorded fruit trees showed that the studied plot was abandoned garden. These fruit species planted (Mentawa), were Artocarpus anisophyllus Artocarpus elasticus (Benda), Artocarpus heterophyllus (Nangka), Artocarpus integer (Cempedak), Artocarpus odoratissimus (Terap), Mangifera indica (Mangga), Mangifera odorata (Kuweni), Durio zibethinus (Durian), and Nephelium lappaceum (Rambutan). Artocarpus odoratissimus is a native tree species, while Artocarpus tamaran is an endemic tree species.

Importance value index (IVi)

Most of the dominant trees based on importance value index (IVi) were also dominant trees based on total BA and volume. The light demanding pioneer and fast growing species dominated the studied site (Table 4). The most dominant species in terms of IVi was Macaranga triloba (IVi of 46.16) followed by Macaranga triloba (IVi of 22.97), Nephelium lappaceum (IVi of 20.94), Ficus uncinata (IVi of 18.64), and Mallotus paniculatus (IVi of 17.93). Twelve of 29 species recorded had an IVi of more than 10.00 and 5 species of them had an IVi of 5.00-10.00. Meanwhile the other 12 species had an IVi of less than 5.00. Four dominant species of Euphorbiaceae (Macaranga triloba, Macaranga tanarius, Mallotus paniculatus, and Homalanthus populneus) reached a total IVi of 99.72. These four species were included in the 10 most dominant types based on IVi. Similar studies also reported that tree species from Euphorbiaceae were important and dominating tropical fallow lands (Karyati et al. 2018; Karmini et al. 2020). The total IVi of 8 species including Moraceae reached 84.75. Moraceae was the family that had the most species in the research location.

Table 4. Importance value index (IVi) of trees (DBH of > 5 cm) in 0.4 hectare of the study plots

Species	Family	RF (%)	Rd (%)	RD (%)	IVi (%)
Macaranga triloba	Euphorbiaceae	25.00	10.53	10.63	46.16
Macaranga tanarius	Euphorbiaceae	6.77	6.58	9.62	22.97
Nephelium lappaceum	Sapindaceae	6.25	6.58	8.11	20.94
Ficus uncinata	Moraceae	8.33	6.58	3.72	18.64
Mallotus paniculatus	Euphorbiaceae	7.81	6.58	3.54	17.93
Artocarpus anisophyllus	Moraceae	4.69	6.58	5.11	16.37
Trema orientalis	Cannabaceae	4.17	5.26	5.44	14.87
Artocarpus odoratissimus	Moraceae	2.60	5.26	5.08	12.94
Homalanthus populneus	Euphorbiaceae	3.65	5.26	3.75	12.66
Mangifera indica	Anacardiaceae	2.08	2.63	7.05	11.77
Artocarpus integer	Moraceae	2.08	2.63	6.57	11.28
Archidendron pauciflorum	Fabaceae	5.21	3.95	2.07	11.22
Vernonia arborea	Asteraceae	2.08	2.63	4.84	9.56
Artocarpus dadah	Moraceae	1.56	2.63	4.99	9.19
Symplocos fasciculata	Symplocaceae	2.60	2.63	3.28	8.51
Artocarpus elasticus	Moraceae	2.08	2.63	2.46	7.18
Artocarpus tamaran	Moraceae	1.04	2.63	2.39	6.06
Baccaurea parvifolia	Phyllanthaceae	1.04	2.63	1.21	4.89
Macaranga gigantea	Euphorbiaceae	1.04	1.32	1.99	4.35
Eusideroxylon zwageri	Lauraceae	1.04	2.63	0.58	4.25
Cratoxylum arborescens	Hypericaceae	1.56	1.32	1.23	4.10
Durio zibethinus	Malvaceae	1.04	1.32	1.37	3.73
Glochidion obscurum	Phyllanthaceae	0.52	1.32	1.58	3.41
Alstonia scholaris	Apocynaceae	1.56	1.32	0.41	3.29
Oroxylum indicum	Bignoniaceae	1.04	1.32	0.81	3.16
Artocarpus heterophyllus	Moraceae	1.04	1.32	0.73	3.09
Couroupita guianensis	Lecythidaceae	1.04	1.32	0.66	3.02
Mangifera sp.	Anacardiaceae	0.52	1.32	0.71	2.55
Mangifera odorata	Anacardiaceae	0.52	1.32	0.09	1.92
Total		100	100	100	300

Note: RF: relative frequency, Rd: relative density, RD: relative dominance, IVI: importance value index.

BIODIVERSITAS 21 (11): xxx, November 2020

Species diversity

The tree diversity index was categorized as 'intermediate' (H' of 1.33), indicating that there was a sufficient number of trees growing at the research location (Table 5). A very complex community is indicated by a high diversity of species (Brower et al. 1990). Meanwhile, the dominance index was at low criteria with a Ds value of 0.06. A low dominance value indicates that no species is dominant in the region. The evenness index was in the high category (J' value of 0.91), meaning that the individuals of trees in the studied plots were evenly distributed among species. A species richness index of 5.33 showed that high number of tree stand exiting in the study site. There were 192 trees included in 29 tree species recorded in the studied plots. Species richness is calculated based on the number of species in an area (Krebs, 2001). The results show that high diversity (H '), evenness (J'), and wealth (R) will lead to low dominance (Ds). The similar results were reported for the diversity indices for trees with DBH of > 5 cm on plots with an abandoned field age of 5, 10, 20 years (Karyati et al. 2018) and on abandoned land after shifting cultivation (Karmini et al. 2020).

Economic value

Log price

This research found 7 trees species with higher log prices than the other 22 tree spesies (Table 6). Their log prices were in the range from USD122.12 m⁻³ to USD651.29 m⁻³. The log price varies depending on the species and diameter class of log (Karmini et al. 2020). *Eusideroxylon zwageri* had the highest price, i.e., USD1,085.48 m⁻³. The timber price is positively correlated with its demand in society. *Eusideroxylon zwageri* has good quality of wood, and people like to use this wood for contruction materials.

Table 5. Diversity indices of trees with DBH of \geq 5 cm in the study plots

Diversity indices	Value
Shannon-Wiener diversity index (H')	1.33
Simpson dominance index (D_s)	0.06
Pielou evenness index (J')	0.91
Margalef species richness (R)	5.33

Table 6. Number of stems, log price, and wood price at the study site

Species	Family	Number (stems ha ⁻¹)	Log price (USD m ⁻³)	Timber price
Eusideroxylon zwageri	Lauraceae	(stems na)	651.29	1.085.48
Alstonia scholaris	Anocynaceae	13	488.47	814.11
Artocarpus anisophyllus	Moraceae	38	447.76	814.11
Oroxylum indicum	Bignoniaceae	8	427.41	814 11
Durio zibethinus	Malvaceae	8	151 37	288 33
Cratoxylum arborescens	Hypericaceae	13	130.60	237.45
Artocarpus heterophyllus	Moraceae	8	122.12	203.53
Artocarpus elasticus	Moraceae	17	74.80	142.47
Artocarpus dadah	Moraceae	13	64.11	142.47
Archidendron pauciflorum	Fabaceae	42	79.38	135.69
Nephelium lappaceum	Sapindaceae	50	64.11	122.12
Baccaurea parvifolia	Phyllanthaceae	8	54.95	122.12
Mangifera odorata	Anacardiaceae	4	30.53	50.88
Macaranga triloba	Euphorbiaceae	200	30.37	50.88
Ficus uncinata	Moraceae	67	30.05	50.88
Mallotus paniculatus	Euphorbiaceae	63	29.51	50.88
Homalanthus populneus	Euphorbiaceae	29	28.35	50.88
Symplocos fasciculata	Symplocaceae	21	27.48	50.88
Couroupita guianensis	Lecythidaceae	8	26.71	50.88
Trema orientalis	Cannabaceae	33	26.71	50.88
Macaranga gigantea	Euphorbiaceae	8	26.71	50.88
Macaranga tanarius	Euphorbiaceae	54	25.83	50.88
Artocarpus odoratissimus	Moraceae	21	24.42	50.88
Artocarpus tamaran	Moraceae	8	22.90	50.88
Artocarpus integer	Moraceae	17	22.90	50.88
Vernonia arborea	Asteraceae	17	22.90	50.88
Glochidion obscurum	Phyllanthaceae	4	22.90	50.88
Mangifera sp.	Anacardiaceae	4	22.90	50.88
Mangifera indica	Anacardiaceae	17	20.99	50.88
Total		801	3,198.52	5,786.97
Mean		28	110.29	199.55

BIODIVERSITAS

Volume 21, Number 11, November 2020 Pages: xxxx

Logging cost

The logging cost of Eusideroxylon zwageri species was higher than that of the other spesies in this research (Table 7). However, logging cost per hectare was determined by log volume, and this research found difference in logging cost per hectare among trees species. The total logging cost in abandoned land in this research (USD752.54 ha⁻¹) was lower compared to that in another research (USD1,212.24 ha⁻¹) (Karmini et al. 2020). This is relevant because the total log volume in abandoned land in this research location was 76.86 m³ ha⁻¹ (Table 3), lower than that in another research location, i.e., 91.97 m³ ha⁻¹ (Karmini et al. 2020).

Profit margin

The 3 trees species contributing big profit margin were Eusideroxylon zwageri, Alstonia scholaris, and Artocarpus

Table 7. Logging cost of trees at the study site

Table 8. Profit margin

a .	F "	Loggi	ng cost	a ;	F "	Profit margin	
Species	Family	(USD ha ⁻¹)	(USD m ⁻³)	Species	Family	(USDm ⁻³ ha ⁻¹)	(USDm ⁻³)
Eusideroxylon zwageri	Lauraceae	7.51	101.76	Eusideroxylon zwageri	Lauraceae	626.24	150.30
Artocarpus integer	Moraceae	83.25	67.84	Alstonia scholaris	Apocynaceae	469.68	112.72
Artocarpus tamaran	Moraceae	74.43	67.84	Artocarpus anisophyllus	Moraceae	430.54	103.33
Mangifera indica	Anacardiaceae	61.13	67.84	Oroxylum indicum	Bignoniaceae	410.97	98.63
Artocarpus dadah	Moraceae	57.68	67.84	Durio zibethinus	Malvaceae	145.55	34.93
Glochidion obscurum	Phyllanthaceae	54.70	67.84	Cratoxylum arborescens	Hypericaceae	125.57	30.14
Vernonia arborea	Asteraceae	41.96	67.84	Artocarpus heterophyllus	Moraceae	117.42	28.18
Artocarpus odoratissimus	Moraceae	34.25	67.84	Archidendron pauciflorum	Fabaceae	76.32	18.32
Macaranga gigantea	Euphorbiaceae	33.42	67.84	Artocarpus elasticus	Moraceae	71.92	17.26
Nephelium lappaceum	Sapindaceae	30.83	67.84	Nephelium lappaceum	Sapindaceae	61.65	14.79
Homalanthus populneus	Euphorbiaceae	30.55	67.84	Artocarpus dadah	Moraceae	61.65	14.79
Artocarpus anisophyllus	Moraceae	27.55	67.84	Baccaurea parvifolia	Phyllanthaceae	52.84	12.68
Mangifera sp.	Anacardiaceae	23.49	67.84	Mangifera odorata	Anacardiaceae	29.35	7.05
Macaranga tanarius	Euphorbiaceae	23.29	67.84	Macaranga triloba	Euphorbiaceae	29.20	7.01
Durio zibethinus	Malvaceae	23.22	67.84	Ficus uncinata	Moraceae	28.90	6.94
Trema orientalis	Cannabaceae	21.35	67.84	Mallotus paniculatus	Euphorbiaceae	28.38	6.81
Baccaurea parvifolia	Phyllanthaceae	21.01	67.84	Homalanthus populneus	Euphorbiaceae	27.26	6.54
Artocarpus elasticus	Moraceae	20.02	67.84	Symplocos fasciculata	Symplocaceae	26.42	6.34
Symplocos fasciculata	Symplocaceae	19.38	67.84	Trema orientalis	Cannabaceae	25.69	6.16
Cratoxylum arborescens	Hypericaceae	12.23	67.84	Couroupita guianensis	Lecythidaceae	25.69	6.16
Oroxylum indicum	Bignoniaceae	11.75	67.84	Macaranga gigantea	Euphorbiaceae	25.69	6.16
Couroupita guianensis	Lecythidaceae	10.18	67.84	Macaranga tanarius	Euphorbiaceae	24.84	5.96
Artocarpus heterophyllus	Moraceae	6.32	67.84	Artocarpus odoratissimus	Moraceae	23.48	5.64
Mallotus paniculatus	Euphorbiaceae	5.73	67.84	Artocarpus tamaran	Moraceae	22.02	5.28
Ficus uncinata	Moraceae	4.59	67.84	Artocarpus integer	Moraceae	22.02	5.28
Archidendron pauciflorum	Fabaceae	4.45	67.84	Vernonia arborea	Asteraceae	22.02	5.28
Macaranga triloba	Euphorbiaceae	4.39	67.84	Glochidion obscurum	Phyllanthaceae	22.02	5.28
Alstonia scholaris	Apocynaceae	2.38	67.84	Mangifera sp.	Anacardiaceae	22.02	5.28
Mangifera odorata	Anacardiaceae	1.48	67.84	Mangifera indica	Anacardiaceae	20.18	4.84
Total		752.54	2,001.36	Total		3,075.50	738.12
Mean		25.95	69.01	Mean		106.05	25.45

ISSN: 1412-033X E-ISSN: 2085-4722 DOI: 10.13057/biodiv/d2111xx

anisophyllus. Those species also had high log and wood prices. This mean prices of buying and selling determine profit in marketing both log and wood. Data in Table 8 present profit margin of selling 29 trees species from abandoned land.

Stumpage value

The total stumpage value at the abandoned land was estimated as much as USD1,495.31 ha⁻¹. There were 29 trees species and each species contributed an average of USD51.56 ha⁻¹. The highest stumpage value was from *Artocarpus anisophyllus*, i.e., USD168.97 ha⁻¹ and the lowest one *Mangifera odorata*, i.e., USD2.29 ha⁻¹ (Figure 4).

BIODIVERSITAS 21 (11): xxx, November 2020

Figure 4. Stumpage value of trees at abandoned land

ACKNOWLEDGEMENTS

We would like to express our gratitude to the Ministry of Education and Culture, the Republic of Indonesia for the financial support for this research through the scheme of Hibah Penelitian Dasar Unggulan Perguruan Tinggi Contract No.: 183/SP2H/AMD/LT/DRPM/2020.

REFERENCES

- Álvarez-Yépiz JC, Martínez-Yrízar A, Búrquez A, Lindquist C. 2008. Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in Northwestern Mexico. For Ecol Manage 256: 355-366. DOI: 10.1016/j.foreco.2008.04.049
- Athhorick TA, Setiadi D, Purvanto Y, Guhardja Y. 2012. Vegetation stands structure and aboveground biomass after the shifting cultivation practices of Karo People in Leuser Ecosystem, North Sumatra. Biodiversitas 13 (2): 92-97. DOI: 10.13057/biodiv/d130207 Brower JE, Zar JH, Von Ende CN. 1990. Field and Laboratory Methods
- for General Ecology, 3rd Ed. Wm. C. Brown Publishers, USA. Fachrul MF. 2007. Metode Sampling Bioekologi. Bumi Aksara, Jakarta [Indonesian]
- Feldpausch TR, Prates-Clark CC, Fernandes ECM, Riha SJ. 2007. Secondary forest growth deviation from chronosequence predictions in Central Amazonia. Global Change Biol 13: 967-979. DOI: 10.1111/j.1365-2486.2007.01344.xFDPM. 1997. Manual Kerja Luar Sistem Pengurusan Memilih. Forestry
- Department of Peninsular Malaysia, Kula Lumpur, [Malaysia] Hanum IF, Pius P, Noor AAG. 2001. Economic valuation of tree species
- diversity at Ayer Hitam Forest, Selangor, Peninsular Malaysia Petranika J Trop Agric Sci 22 (2): 167-170.

Husch B, Miller CI, Beers TW. 1982. Forest Mensuration. John Wiley and

- Sons Publishing, New York. rmini, Karyati, Widiati KY. 2020. The role of tropical abandoned land relative to ecological and economic aspects. For Soc 4 (1): 181-194 DOI: 10.24259/fs.v4i1.8939
- Karyati, Ipor IB, Jusoh I, Wasli ME, Seman IA. 2013. Composition and diversity of plant seedings and saplings at early secondary succession of fallow lands in Sabal, Sarawak. Acta Biologica Malaysiana 2 (3)₂₇ 85-94. DOI: 10.7593/abm/2.3.85
- Karyati, Ipor IB, Jusoh I, Wasli ME. 2018. Tree stand floristic dynamics in secondary forests of different ages in Sarawak, Malaysia. Biodiversitas 19 (3): 687-693. DOI: 10.13057/biodiv/d190302
- Klanderud K, Mbolatiana HZH, Vololomboahangy MN, Radimbison MA, Roger E, Totland O, Rajeriarison C. 2010. Recovery of plant species Reget a, Tohand O, Rajeranson C. 2010. Recovery of paint species richness and composition after slash-and-burn agriculture in a tropical rainforest in Madagascar. Biodivers Conserv 19:187-204. DOI: 10.1007/s10531-009-9714-3
- Krebs CJ. 2001. Ecology, 5th Ed. Addison Wesley Longman Inc., USA. Kusmana C. 2017. Metode Survey dan Interpretasi Data Vegetasi. IPB
- Press, Bogor. [Indonesian] Noor AGA, Vincent JR, Yusuf H. 1992. Comparative Economic Analysis
- Noor AGA, Vincent RF, 1982. Comparative Economic Analysis of Forest Revenue System in Peninsular Malaysia. Osborn Center Forestry Policy Grants Program Final Report, USA. Noor AGA, Shahwahid MHO. 1999. Price-Based Valuation Method: Stumpage Appraisal of Timber Resources Peat Swamp Forest. Manual on Economic Valuation of Environmental Goods and Construction of Construction Statement Science Peat Swamp Forest. Services of Peat Swamp Forests. Forestry Department of Peninsular Malaysia, Kuala Lumpur. Odum EP, Barrett GW. 2005. Fundamentals of Ecology, 5th Ed. Thomson
- Brooks/Cole, Belmont, CA. Ohtsuka T. 1999. Early stages of secondary succession on abandoned
- cropland in north-east Borneo island. Ecol Res 14: 281-290. DOI: 10.1046/j.1440- 1703.1999.143304.x
- Setiawan AD, 2010, Review: Biodiversity conservation strategy in a native perspective; case study of shifting cultivation at the Dayaks of

Formatted: Indent: Left: 0", Hanging: 0.19"

Field Code Changed

Formatted: No underline

8

Ì

Kalimantan. Nusantara Biosci 2 (2): 97-108. DOI: 10.13057/nusbiosci/n020208
Yirdaw E, Monge AM, Austin A, Toure I. 2019. Recovery of foristic diversity, composition and structure of regrowth forests on fallow

lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests 50: 1007-1026. DOI: 10.1007/s11056-019-09711-2.