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Abstract 
 

A geostatistics practical approach is divided data sample into several groups with certain rules. Then, the data groups are used for spatial 

interpolation. Furthermore, clustering technique is quite commonly used in order to get distance function between sample data. In this 

study, Self-Organizing Maps (SOM) optimized by using Learning Vector Quantization (LVQ) especially in distance variance have been 

implemented. The land value zone datasets in Samarinda, East Kalimantan, Indonesia have been used. This study shows that the SOM 

optimized by LVQ technique have a good distance variance value in the same cluster than SOM technique. In other words, SOM-LVQ can 

be alternative clustering technique especially centroid position in clusters. 
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1. Introduction 

A geostatistics is a subset of statistics that specialized in analysis 

and interpretation of geographically referenced data. Geostatistics 

provides a set of statistical tools for analyzing spatial variability and 

spatial interpolation. This technique generates not only prediction 

surfaces but also error or uncertainty surfaces [1]. 

Currently, geostatistics is widely applied in analyzing data points, 

remote sensing, image measuring and filtering (such as dimension 

DEMs), optimization of spatial partition retrieval, spatial data etc 

[2]. One of the major uses of geostatistics is to predict a sample of 

the entire area of interest, called spatial interpolation. The geo-

graphical position of a location is expressed in geographical coor-

dinate system in the form of latitude, longitude, elevation or X, Y, 

Z. Where, variables [lat, lon or X, Y] are state the location position, 

then the variable [elevation or Z] represents the location value. In 

principle, geostatistics is dividing the sample data into several 

groups with certain rules. Next step is to predict or spatial interpo-

lation in each data set. Where, clustering technique such as K-

Means, Fuzzy C-Means, Fuzzy Gustafson-Kessel (FGK) and SOM, 

etc. are widely used in the grouping of datasets based on distance 

function between the sample data [3-6]. 

The purpose of this research is optimization of final weight of intra-

layer as centroid on SOM method by using LVQ method. This pa-

per is organized as follows. Experimental is summarized in Section 

2. Results and discussions are given in Section 3, and Section 4 

draws conclusions. 

2. Experimental Details 

2.1. Self-Organizing Maps (SOM) 

SOM is one type of NN, which is classified as unsupervised learn-

ing. The SOM architecture consists of an input layer with n training 

vector units, output layer with k category / cluster and intra-layer 

unit that connects between input layer and output layer [7, 8], Fig-

ure 1. Each neuron in the input layer is directly connected to each 

neuron at the input layer where each relationship has a weighted 

vector of length n3, Figure 2. 
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Fig. 1: SOM architecture. 
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Fig. 2: SOM algorithm. 

 

2.2. Learning Vector Quantization (LVQ) 

LVQ is one type of NN, which is classified as supervised learning 

based on vector quantization. LVQ is also called a supervised ver-

sion of SOM that reconstructs intra-layer weights with quantization 

techniques based on the distance function on the data [9, 10]. The 

LVQ architecture is shown in Figure 3. 

 

 
 

Fig. 3: LVQ architecture. 
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Fig. 4: LVQ algorithm. 
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2.3. Data Sample 

Samarinda region is in geographical position, Latitude is 0.31230 - 

0.70710S and Longitude is 117.04710 - 117.30390E. In the Univer-

sal Transverse Mercator (UTM) system, Samarinda's geographical 

position is in the 50M zone that projected into X-Y, Easting (East) 

is 5.0524 x 105 - 5.3382 x 105 and Northing (North) is 9.9219 x 

106 - 9.9655 x 106 coordinate systems. Meanwhile, 310 samples of 

land price data were obtained through field observations in several 

locations representing all sub-districts in Samarinda. Where, land 

prices are in the range Rp.45.000 - Rp.8.212.198 with UTM system 

in Easting (East) is 5.0863 x 105 - 5.3050 x 105 and Northing 

(North) is 9.9349 x 106 - 9.9596 x 106 regions. 

2.4. Performance measurement 

2.4.1. Variance 

One measure of the distribution of data which is the square of the 

standard deviation is variance, Equation 1. 

 

𝑉𝑎𝑟(𝑋) =  
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖−1

 (1) 

 

Where xi is the data to i, 𝑥̅ is the average of data, n is the amount of 

data. In this study, the variance will be used to measure the spread 

of distance between cluster members to the centroid and the spacing 

between centroid clusters. 

2.4.1. Variance 

In the land price mapping, centroid is a spatial interpolation of the 

cluster member's entire land price. Ideally, the land price is the av-

erage land price of all cluster members expressed in Equation 2. 

 

𝑍𝑖𝑚
∗ =  

1

𝑛
∑ 𝑍𝑖

𝑛

𝑖=1
 (2) 

 

Where 𝑍𝑖  is the price of land from the location of members to i 

cluster; 𝑍𝑖𝑚
∗  is the ideal land price; n is a lot of members of a cluster. 

 

MAPE =  
𝑎𝑏𝑠 (𝑍𝑖𝑚

∗ − 𝑍𝑖𝑚)

𝑍𝑖𝑚
∗ 𝑥 100% (3) 

 

3. Results and Discussion 

In this experiment, clustering for several different clusters by using 

learning rate (η) = 0.001 has been tested. After several experiment, 

the best result is on 7 clusters with MAPE of 6.12% have been pre-

sented. In other words, the SOM-LVQ is better than SOM without 

optimization. The performance values of both methods can be seen 

in Table 1. 

 

Table 1: Font Specifications for A4 Papers 

 

Learning rate (h) = 0.001 

Cluster 

SOM SOM-LVQ 

Variance distance 

between members 

Variance distance 

between members 
MAPE (%) 

Variance distance 

between members 

Variance distance 

between members 
MAPE (%) 

3 4.70E+10 4.54E+07 24.90  4.45E+10 2.61E+07 17.67  

4 1.07E+13 5.79E+07 20.65  1.18E+12 3.61E+07 20.68  
5 1.91E+12 2.56E+07 30.62  2.29E+11 2.75E+07 16.85  

6 1.80E+12 2.10E+07 28.10  2.11E+11 2.12E+07 20.12  

7* 2.74E+12 3.02E+07 17.99  3.38E+11 2.70E+07 6.12  
8 4.50E+11 1.12E+07 13.75  3.39E+11 1.46E+07 21.98  

9 2.98E+12 1.59E+07 19.87  3.08E+11 1.38E+07 24.86  

10 1.18E+12 1.16E+07 38.36 3.22E+11 1.12E+07 12.00  
11 1.94E+12 1.10E+07 24.44 4.71E+11 1.19E+07 24.64 

12 6.14E+11 1.45E+07 43.68 6.87E+11 1.44E+07 13.90 

Average 2.44E+12 2.44E+07 26.24 4.13E+11 2.04E+07 17.88 

 

 

  
Fig. 5: Clustering results using SOM and SOM-LVQ. 
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4. Conclusion  

This paper has presented SOM optimized with LVQ technique. 

Where, the intra-layer final weights generated by SOM, can be con-

sidered as centroid clusters that represent the characteristics of all 

cluster members. Therefore, the average value of land prices of all 

cluster members has been implemented as a reference in order to 

test the performance of SOM and SOM-LVQ. The results show that 

the average SOM-LVQ has a smaller MAPE average compared to 

SOM. 
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