

D N O S O S O A

Kata Pengantar

Seminar Nasional Teknik Kimia "Kejuangan" yang diselenggarakan pada tanggal 17 Maret 2016 merupakan seminar ke-16 yang diselenggarakan oleh Program Studi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta dengan tema "Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia". Seminar ini merupakan agenda tetap tahunan secara nasional di bidang Teknik Kimia sebagai forum pertemuan ilmiah. Pada kesempatan ini, para akademisi, peneliti, industri dan pemerhati Teknik Kimia dapat saling menginformasikan hasil karya ilmiahnya, baik berupa kajian pustaka atau hasil penelitian fundamental dan aplikatif di berbagai bidang yang terkait dengan Pengembangan Sumber Daya Indonesia dan Energi, sehingga diharapkan dapat menjadi menjadi basis untuk menghasilkan produk yang dibutuhkan dan bermanfaat bagi masyarakat serta mampu bersaing di pasar dunia.

Pada seminar tahun ini, panitia telah menerima 90 judul abstrak makalah bidang kajian melalui *e-mail* yang berasal dari beberapa perguruan tinggi dan lembaga penelitian di Pulau Jawa dan luar Pulau Jawa. Setelah melalui proses *review* abstrak dan penyusunan makalah, sejumlah 79 judul makalah bidang kajian disajikan secara oral dalam seminar. Makalah bidang kajian yang telah disajikan tersebut beserta 2 makalah pembicara utama (kunci) selanjutnya dimuat dalam Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2016 dalam bentuk *compact disk* (CD) dan buku cetak yang diterbitkan setelah penyelenggaraan seminar, yaitu tanggal 17 April 2016.

Dengan terselenggaranya Seminar dan diterbitkannya Prosiding Seminar Teknik Kimia "Kejuangan" 2016, panitia mengucapkan terima kasih kepada:

- 1. Rektor Universitas Pembangunan Nasional "Veteran" Yogyakarta.
- 2. Dekan Fakultas Teknologi Industri UPN "Veteran" Yogyakarta.
- 3. Ketua Program Studi Teknik Kimia, FTI, UPN "Veteran" Yogyakarta.
- 4. Ir. R. Nilanto Perbowo, MSc., Direktur Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan Kementerian Kelautan dan Perikanan, Republik Indonesia.
- 5. Dr. Maman Hermawan, M.Sc, Direktur Bina Mutu dan Diversifikasi Produk Kelautan, Kementerian Kelautan dan Perikanan, Republik Indonesia.
- 6. Prof. Dr. Ir. M. Syamsul Maarif, M.Eng, Dipl.Ing, DEA., Guru Besar Departemen Teknologi Industri Pertanian Fakultas Teknologi Pertanian (Fateta), Institut Pertanian Bogor (IPB).
- 7. Ir. Tjetje Wirjadi, Direktur PT Bukit Warna Abadi, sebagai sponsor.
- 8. Ir. I Wayan Wirata, Direktur CV Tirta Taman Bali, selaku sponsor.
- 9. Ir. Harso Meirianto, sebagai donator.
- 10. Prof. Ir. H. Wahyudi Budi Sediawan, SU, Ph.D, sebagai reviewer.
- 11. Ir. Moh. Fahrurrozi, M.Sc., Ph.D (Ketua Jurusan Teknik Kimia UGM Yogyakarta), sebagai reviewer.
- 12. Dr. Ir. Tjukup Marnoto, M.T. (UPN "Veteran" Yogyakarta), sebagai reviewer.
- 13. Dr.Y. Deddy Hermawan, ST, M.T. (UPN "Veteran" Yogyakarta), sebagai reviewer.
- 14. Pemakalah seminar.
- 15. Peserta seminar.

Panitia memohon maaf apabila ada kekurangan selama penyelenggaraan seminar serta kesalahan dalam penyusunan dan penerbitan Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2016. Panitia juga berharap semoga dengan terselenggaranya seminar dan diterbitkannya prosiding seminar ini, dapat memberikan manfaat bagi kita semua.

Yogyakarta, April 2016

Panitia

Sambutan Ketua Pelaksana

Seminar Nasional Teknik Kimia "Kejuangan" 2016 Program Studi Teknik Kimia – Fakultas Teknologi Industri UPN "Veteran" Yogyakarta

Yth: Bapak Ir. R. Nilanto Perbowo, M.Sc. (Direktur Jenderal – Direktorat Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan), Ysh: Ibu Prof. Dr. Ir. Sari Bahagiarti Kusumayuda, M.Sc., Rektor UPN "Veteran" Yogyakarta, Ysh: Bapak Prof. Dr. Ir. M. Syamsul Maarif, M.Sc., Dipl.Ing, DEA (Guru Besar Institut Pertanian Bogor), Ysh: Para hadirin sekalian peserta seminar yang tidak dapat saya sebutkan satu-persatu.

Om Suastiastu, Assalamu'alaikum Wr. Wb., Salam Sejahtera untuk kita semua.

Pertama-tama marilah kita panjatkan puji syukur kehadapan Tuhan Yang Maha Esa, atas berkat rahmat dan karuniaNya kita semua dapat berkumpul dalam keadaan sehat walafiat untuk menghadiri dan berpartisipasi dalam acara Seminar Nasional Teknik Kimia "Kejuangan" tahun 2016.

Pada kesempatan yang berbahagia ini, perkenankan saya menyampaikan laporan pelaksanaan Seminar Nasional Teknik Kimia "Kejuangan" Tahun 2016. Seminar ini secara rutin kami laksanakan setiap tahun sejak 16 tahun terakhir ini, diselenggarakan oleh Program Studi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta dengan **Prosiding Nomor ISSN 1693-4393** dan Tema **Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia**.

Para hadirin yang berbahagia, Kami menginformasikan bahwa seminar kali ini menyajikan 2 makalah kunci dan 79 makalah bidang kajian yang berasal dari 90 judul abstrak yang telah masuk melalui *e-mail*. Makalah bidang kajian tersebut berasal dari beberapa perguruan tinggi dan lembaga penelitian yang berasal dari beberapa wilayah antara lain propinsi DIY, Jawa Tengah, Jawa Timur, Jawa Barat, Banten, Kalimantan Timur, dan Nusa Tenggara Timur. Makalah tersebut kami distribusikan dalam 11 bidang kajian, yaitu (1) Teknologi pengolahan sumber daya laut, mineral, dan energi, (2) Teknologi proses dan pengendaliannya, (3) Perpindahan massa dan panas, (4) Termodinamika, (5) Kinetika reaksi dan katalisis, (6) Bioteknologi, (7) Teknologi Pemisahan, (8) Teknologi Pengolahan Limbah, (9) Energi Baru dan Terbarukan, (10) Analisis risiko, dan (11) Teknik Produk.

Pada kesempatan ini kami menyampaikan terima kasih yang sebesar-besarnya kepada Bapak Ir. R. Nilanto Perbowo, M.Sc., (Direktur Jenderal – Direktorat Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan) dan Bapak Prof. Dr. Ir. M. Syamsul Maarif, M.Sc., (Guru Besar Institut Pertanian Bogor) sebagai pembicara kunci, serta para sponsor yang telah memberikan dukungan untuk kesuksesan acara ini. Kami juga mengucapkan terima kasih kepada UPN "Veteran" Yogyakarta atas dukungan dana dan fasilitas yang telah diberikan. Selanjutnya kepada Ibu Prof. Sari Bahagiarti Rektor UPN "Veteran" Yogyakarta atau yang mewakili dimohon berkenan membuka acara seminar ini.

Akhir kata, kami atas nama seluruh panitia pelaksana Seminar Nasional Teknik Kimia "Kejuangan" 2016 mohon maaf yang sebesar-besarnya jika selama persiapan sampai dengan penyelenggaraan seminar ini terdapat hal-hal yang kurang berkenan. Selamat melaksanakan diskusi dan seminar. Semoga seminar ini bermanfaat bagi kita semua.

Om Shanti Shanti Om. Semoga selalu dalam damai.

Yogyakarta, 17 Maret 2016 Ketua Pelaksana

Ttd

Dr. Ir. IGS Budiaman, MT

Sambutan Dekan Fakultas Teknologi Industri UPN "Veteran" Yogyakarta

Assalamu'alaikum Wr.Wb.

Pertama-tama kita panjatkan puji syukur ke hadirat Allah SWT atas rahmat dan karunia-Nya sehingga Seminar Nasional Teknik Kimia "Kejuangan" **2016** dapat terlaksana. Selanjutnya kami haturkan terima kasih secara khusus kepada pemakalah utama, juga kepada pemakalah-pemakalah dan peserta serta para tamu undangan, yang telah mendukung terlaksananya seminar ini. Seminar nasional merupakan sarana ilmiah, di mana kita bisa bertukar pikiran, pengalaman dengan bertemu langsung para peneliti, maupun praktisi dari berbagai institusi.

Hadirin, para ilmuwan yang kami hormati,

Kebijakan pemerintah era sekarang adalah membangun Indonesia dari pinggiran dengan memperkuat daerah-daerah dan desa. Kandungan Nawacita dan Trisakti, khususnya pada 8 prioritas utama yaitu pengawalan implementasi UU Desa, di dalamnya terdapat kebijakan share-holding dan juga hak akses daerah/desa mengelola sumber daya alam, sehingga perlu dukungan Teknologi Berkelanjutan dalam Pengelolaan Sumber Daya Alam Indonesia yang Berkelanjutan, untuk menyiapkan dan menjalankan kebijakan-kebijakan regulasi baru tentang *share-holding* antara pemerintah, investor dan daerah dalam pengelolaan sumber daya alam (tambang, kehutanan, perkebunan, perikanan, kelautan dan sebagainya). Perlu dilakukan peningkatan keberdayaan sumber daya manusia, peningkatan pengetahuan teknologi kimia, teknologi proses dan teknologi lainnya yang berwawasan lingkungan.

Seminar Nasional Teknik Kimia "Kejuangan" mengusung topik Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia, sebagai wujud nyata kejuangan ilmuwan, praktisi Teknik Kimia dengan harapkan agar kita dapat mengambil pesan penting dari makalah-makalah yang disajikan. Melalui forum Ilmiah ini tentunya akan muncul ide-ide untuk peningkatan penguasaan teknologi, implementasi teknologi dan penyebaran teknologi sehingga dapat mewujudkan kedaulatan dalam bidang teknologi, untuk mendukung pelaksanaan Pembangunan Bangsa dan Negara Kesatuan Republik Indonesia, amiin.

Akhirnya kami mengucapkan selamat kepada panitia dan pengelola Program Studi Teknik Kimia UPN "Veteran" Yogyakarta atas terselenggaranya **SNTKK 2016**. Selamat bediskusi bagi para peserta. Semoga seminar ini sukses dan membawa pencerahan bagi kita semua. Terima kasih.

Wassalamu'alaikum Wr. Wb.

Yogyakarta, 17 Maret 2016 Dekan Ttd

Ir. H. Tjukup Martono, MT, PhD

Sambutan Rektor

Dalam Rangka Seminar Nasional Teknik Kimia "Kejuangan" 2016 Program Studi Teknik Kimia FTI UPN "Veteran" Yogyakarta 17 Maret 2016

Assalaamu'alaikum Wr.Wb.

Seminar merupakan salah satu sarana penyebarluasan hasil-hasil penelitian dan kajian yang dilakukan oleh berbagai pihak untuk saling tukar menukar informasi dalam rangka peningkatan diri peneliti, pengembangan pendidikan tinggi, dan untuk kepentingan industri. Lebih dari itu, dari seminar juga diharapkan terjadi komunikasi antara dunia industri dan perguruan tinggi serta lembaga-lembaga penelitian.

Seminar Nasional Teknik Kimia "Kejuangan" merupakan seminar yang diadakan setiap tahun oleh Program Studi Teknik Kimia Fakultas Teknologi Industri UPN "Veteran" Yogyakarta. Seminar mengambil tema *Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia*. Tema tersebut sangat tepat mengingat Sumber Daya Alam Indonesia yang jumlahnya sangat terbatas, maka perlu kiranya dilakukan penelitian untuk mengolah dengan efisien untuk mendapatkan hasil yang optimal.

Seminar seperti ini sudah banyak diadakan, namun sentuhan terhadap pengembangan industri masih sedikit. Masih banyak penelitian yang bersifat mikro dan berorientasi penelitian, belum bersifat komersial. Para ilmuwan masih asik berkutat dalam dunianya sendiri dan masih terobsesi pada pengembangan hi-tech, produk penelitian belum berorientasi pada pasar, inovasi baru, serta aplikasi teknologi. Hasil penelitian belum dapat mendorong investor membiayai komersialisasi hasil-hasil penelitian.

Penelitian yang dilakukan perguruan tinggi banyak yang bersifat penelitian fundamental, sehingga belum mempunyai nilai jual bagi industri. Penelitian fundamental tersebut sudah tentu belum dapat diaplikasikan secara langsung, masih perlu diikuti dengan studi lebih detail dalam bentuk *feasibility study*. Masih banyak langkah dan modifikasi yang perlu dilakukan, dengan kondisi yang demikian industriawan cendrung lebih percaya pada lisensi produk dan konsultan asing. Kontribusi iptek terhadap pengembangan industry dan ekonomi belum maksimal. Selain itu para investor sedikit yang mau hadir dalam seminar seperti ini, kiranya hal tersebut perlu menjadi pemikiran kita bersama agar seminar seperti ini dapat memberikan kontribusi yang maksimal dan menjadi pendorong kemajuan industri untuk ketahanan ekonomi diantaranya dengan memperbanyak penelitian aplikatif atau terapan.

Akhirnya saya sampaikan selamat berseminar semoga sukses dan hasilnya dapat memenuhi harapan kita bersama.

Wassalamu'alaikum Wr. Wb.

Yogyakarta, 17 Maret 2016

Rektor Ttd

Dr. Sari Bahagiarti K, M.Sc

NIP: 19561219 198411 2 001

Daftar Isi

		Hal.
Kat	a Pengantar	iii
San	nbutan Ketua Pelaksana	iv
San	nbutan Rektor	v
San	nbutan Dekan	vi
Rev	viewer	vii
Sus	unan Panitia	viii
Daf	ctar Isi	X
Daf	tar Makalah	xi
Mal	kalah Pembicara Utama	MU1-1
Mal	kalah Bidang Kajian :	
A.	Teknologi Pengolahan Sumber Daya Laut, Mineral, dan lain-Lain	A1-1
В.	Teknologi Proses dan Pengendaliannya	B1-1
C.	Perpindahan Massa dan Panas	C1-1
D.	Termodinamika	D1-1
E.	Kinetika Reaksi dan Katalisis	E1-1
F.	Bioteknologi	F1-1
G.	Teknologi Pemisahan	G1-1
I.	Teknologi Pengelolaan Limbah	I1-1
J.	Energi Baru dan Terbarukan	J1-1
K.	Analisis Resiko	K1-1
L.	Teknik Produk	L1-1
	Indeks Penulis Makalah	
	Indeks Kata Kunci	

Daftar Makalah

Makalah Pembicara Utama:

Kode Judul, Penulis dan Alamat

MU1 Peluang Pengembangan Produk Kelautan Dan Perikanan Untuk Pengolahan Sumber Daya Alam Indonesia

Ir. R. Nilanto Perbowo, MSc

Direktur Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan

Kementerian Kelautan dan Perikanan – Republik Indonesia

MU2 Manajemen Perubahan dan Inovasi: Peran Teknologi Dalam Pengelolaan Sumberdaya Alam Indonesia

Prof. DR. Ir. M. Syamsul Maarif, M.Eng, Dipl.Ing, DEA

Guru Besar Departemen Teknologi Industri Pertanian Fakultas Teknologi Pertanian (Fateta),

Institut Pertanian Bogor (IPB)

Makalah Bidang Kajian:

A. Teknologi Pengolahan Sumber Daya Laut, Mineral, dan Energi

Kode Judul, Penulis dan Alamat

A1 Penentuan *Oil Losses* dan Faktor Koreksi pada Jalur Pipa Pengiriman Minyak Mentah di Sumatera Selatan

Hariyadi¹, Edgie Yuda Kaesti²

Program Studi Teknik Perminyakan, Fakultas Teknologi Mineral, UPN "Veteran" Yogyakarta

Jl. SWK 104 (Lingkar Utara), Condong Catur, Yogyakarta 55283

Email: haryd_upn@yahoo.com

A2 Pengaruh Ukuran Partikel Bentonit dan Arang Kayu Pada Pembuatan Keramik Filter Widayati¹, Adi Ilham², Trenggono Nur Adiguna³, Hanurizal Himawari Hashari⁴

¹ Departement of Chemical Engineering, Faculty of Industrial Technology, UPN "Veteran" Yogyakarta Jl. SWK No. 104, Ring Road Utara, Depok, Sleman, Yogyakarta 55281 Indonesia

*E-mail: wida@upnyk.ac.id

A3 Studi Pemanfaatan Kondensat Air Conditioning (AC) Menjadi Air Layak Minum Bambang Hari P*), Dia Anakorin, Tesa Manggar Retno

Program Studi Teknik Kimia, FT, UNJANI Jl. Terusan Jenderal Sudirman PO BOX 148, Cimahi

No. Telp (022)6642064

*bhpuitk@yahoo.co.id

B. Teknologi Proses dan Pengendaliaannya

Kode Judul, Penulis dan Alamat

B1 Evaluation of Condensation Friction Pressure Loss Refrigerant 134-A in Internal Horizontal Tube Condenser by CFD

Bambang Harjanto¹*, Teguh Hady Ariwibowo², dan Fifi Hesty Sholihah²

^{1*}Mahasiswa Program Sarjana Terapan Program Studi D4 Teknik Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya ²Staf Pengajar Program Studi D4 Teknik Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya

*E-mail: bambangharjanto26@gmail.com

B2 Model Predictive Control Based on System Re-Identification for Methanol and Dimethyl Ether Synthesis Control

Abdul Wahid*, Afdal Adha dan Shofiyyah Taqiyyah

Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia. Kampus Baru UI Depok 16424, INDONESIA

*E-mail: wahid@che.ui.ac.id

B3 Analysis of the Effect of By-pass Pumping System Application on the Efficiency of the Pump and Process

Edwin Eka Yanuar¹*, Setyo Nugroho²

^{1*}Program Studi Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS Sukolilo 60111 Surabaya

²Staff Pengajar Program Studi Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS Sukolilo 60111 Surabaya

*E-mail: edwinekayanuar@gmail.com

B4 Perancangan Konfigurasi Pengendalian Proses dengan RGA pada Sistem Pure-Capacitive-Two-Tank-in-Series dengan Pemanas di Tangki T-01

Yulius Deddy Hermawan^{1*}, Siti Diyar Kholisoh¹, Indah Permatasari¹, dan Amy Farury Ludwinia¹

^{1*} Program Studi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Jl. SWK 104 (Lingkar Utara), Condong Catur, Yogyakarta 55283

*E-mail: ydhermawan@upnyk.ac.id

B5 Penyetelan Parameter Pengendalian Proses dengan PRC pada Sistem Pure-Capacitive-Two-Tankin-Series dengan Pemanas di Tangki T-01

Yulius Deddy Hermawan¹*, Siti Diyar Kholisoh¹, Lili Suryani, dan Ramantasia Aktariastiwi Kusuma Putri

^{1*} Program Studi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Jl. SWK 104 (Lingkar Utara), Condong Catur, Yogyakarta 55283

*E-mail: ydhermawan@upnyk.ac.id

B6 Ekstraksi dan Uji Stabilitas Antosianin dari Kulit Buah Naga Super Merah (Hylocereus costaricensis)

Endang Kwartiningsih¹, Agatha Prastika K¹, Dian Lellis Triana¹

¹Program Studi S1 Teknik Kimia Jurusan Teknik Kimia, FT, Universitas Sebelas Maret

Jl. Ir. Sutami No. 36A, Jawa Tengah 57126

E-mail: end kwart@uns.ac.id / agathaprastika@ymail.com

B7 Studi Pengaruh Konsentrasi Glukosa dan Laju Aerasi Terhadap Produksi Asam Glukonat Oleh Aspergillus niger

Akbarningrum Fatmawati

Jurusan Teknik Kimia, Fakultas Teknik, Universitas Surabaya

*E-mail: akbarningrum@staff.ubaya.ac.id

B8 Analisa Ketebalan Steam Chest sebagai Fungsi Breakthrough Time pada Steam Injection Process Wibowo^{J*}, Lela Widagda^J, dan Dilla Fadhillah Hendri^J

¹Program Studi Teknik Perminyakan, FTM, UPN "Veteran" Yogyakarta

*E-mail: wibowo.ms@gmail.com

B9 Peningkatan Kuantitas dan Kualitas Produk UKM Wingko Babat di Kota Semarang dengan "Modified Oven"

Luqman Buchori*, Didi Dwi Anggoro, dan Dyah Hesti Wardhani

Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro

Jl. Prof. Sudharto, SH, Tembalang, Semarang, 50275, Telp/Fax: (024)7460058

*E-mail: lugman.buchori@che.undip.ac.id

B10 Produksi dan Aplikasi Lakase pada Pembuatan Pulp: Sebuah Tinjauan Hendro Risdianto

Balai Besar Pulp dan Kertas, Kementerian Perindustrian

Jl. Raya Dayeuhkolot No. 132, Bandung 40258

E-mail: hendrorisdianto@yahoo.com

C. Perpindahan Massa dan Panas

Judul, Penulis dan Alamat

C1 An innovative Approach for Modeling Ultrasonic-assisted Drying

Aditya Putranto^{1*}, Xiao Dong Chen²
¹Department of Chemical Engineering, Parahyangan Catholic University, Jalan Ciumbuleuit 94, Bandung, Indonesia

²School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu Province, PR China

*E-mail: adityaptr@yahoo.com

C2 Pengaruh Perubahan Suhu pada Properti Adsorpsi dan Desorpsi Thermosensitive NIPAM-co-**DMAAPS** Gel

Jovanio Bosco Chu Gomes Amaral, Desi Ratnasari, Prida Novarita Trisanti, Sumarno, Eva Oktavia Ningrum*.

*Program Studi Teknik Kimia, FTI, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111

*Email: eva-oktavia@chem-eng.its.ac.id

C3 Kecepatan Release Asam Salisilat dari Crosslinked Pectin Film: Pengaruh Konsentrasi CaCl, sebagai Crosslinker

Marlyn Vebrian Pattiwael^{1*}, Meytha Sarasvati², dan Sperisa Distantina³

^{1,2,3}Program Studi Teknik Kimia, FT, Universitas Sebelas Maret

Jl. Ir. Sutami 36 A Surakarta, Indonesia

*E-mail: marlynpattiwael@yahoo.com

C4 Numerical Study of Shell-And-Tube Heat Exchanger Performance with Various Baffle Spacing Sugit Triyono^{1*}, Teguh Hady Ariwibowo², Prima Dewi Permatasari²

¹Mahasiswa Program Studi Sistem Pembangkit Energi, Depatemen Teknik Mekanika dan Energi,

²Staff Pengajar Program Studi Sistem Pembangkit Energi, Depatemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya

Jl. Raya ITS, Sukolilo Surabaya 60111 Indonesia

*E-mail: Sugitasli@pg.student.pens.ac.id

C5 Numerical Study of Shell-And-Tube Heat Exchanger Characteristics in Laminar Flow with Single Segmental Baffle

Novan Ardhiyangga¹*, Teguh Hady Ariwibowo², dan Prima Dewi Permatasari²

^{1*}Mahasiswa Program Studi Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi,

^{2*}Staff Pengajar Program Studi Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya

Jl. Raya ITS, Sukolilo Surabaya 60111 Indonesia

*E-mail: novanpuhlimo@gmail.com

C6 Experimental Study of Heat Transfer Characteristics In The Hair-Pin Heat Exchanger Aulia Arif Shalihuddin^{1*}, Teguh Hady A.², dan Prima Dewi P.² 1*Mahasiswa Program Studi Sistem Pembangkit Energi, DTME, Politeknik Elektronika Negeri

Surabaya, Jl. Raya ITS, Sukolilo Surabaya 60111

Staff Pengajar Program Studi Sistem Pembangkit Energi, DTME, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Sukolilo Surabaya 60111

*E-mail: auliaarif666@gmail.com

C7 Ekstraksi Daun Kapuk Randu (Ceiba pentandra Gaertn) dengan Pelarut Etanol

Nur Apriliani^{1*}, Aziz Ardiansyah^{2*}, Siswanti³, dan Sri Sudarmi⁴

1,2,3,4Program Studi Teknik Kimia, FTI,UPN "Veteran" Yogyakarta

Jl. SWK 104 (Lingkar Utara), Condongcatur, Yogyakarta 55283

¹*Email: nurapriliaa@gmail.com

²*Email: azizardiansyah93@gmail.com

D. Termodinamika

Kode Judul, Penulis dan Alamat

D1 Imobilisasi Limbah Radioaktif Dari Produksi Radioisotop Molibdenum-99 (⁹⁹Mo) Menggunakan Bahan Matriks *Synroc* Titanat

Gunandjar¹*, Titik Sundari¹, dan Yuli Purwanto¹

^{1*}Pusat Pusat Teknologi Limbah Radioaktif-Badan Tenaga Nuklir Nasional (PTLR-BATAN), Kawasan Puspiptek Serpong Gedung 50 Tangerang Selatan, Banten, 15310

*E-mail: gunand-m@batan.go.id

E. Kinetika Reaksi dan Katalis

Kode Judul, Penulis dan Alamat

E1 Dealuminasi dan Karakterisasi Zeolite Y Sebagai Katalis Untuk Konversi Gliserol Menjadi Glycerol Monolaurate

Didi Dwi Anggoro^{1*}, Wahyu Bahari Setianto², Fadhil Rifqi P.¹, dan Antonio Giovanno¹

¹Jurusan Teknik Kimia, FT UNDIP, Kampus Tembalang, Semarang

²LAPTIA, BPPT, Puspiptek Serpong, Tangerang

*Email: anggorophd@gmail.com

E2 Preliminary Study of Formic Acid Synthesis From Biomass

Tedi Hudaya¹, Felicia Kristianti², and Tatang Hernas Soerawidjaja³*

^{1,2}Program Studi Teknik Kimia, FTI, UNPAR, Jalan Ciumbuleuit 94, Bandung

³Program Studi Teknik Kimia, FTI, ITB, Jl. Ganesha No.10, Bandung

*E-mail: thsoerawidjaja@gmail.com

E3 Evolutionary Perspective of Sulfur Dynamics in Tomohon and Implications on Microbial Corrosion (Perspektif Evolusi mengenai Dinamika Sulfur di Tomohon dan Implikasinya pada Korosi Mikrobial)

Frity Lisa Taroreh¹, Jubhar C. Mangimbulude², Ferry F. Karwur^{1,*3}

Biology Master Program, Satya Wacana Christian University

²Aquatic Resources Management Study Program, Faculty of Natural Sciences and Engineering Technology Halmahera University, Tobelo, North Halmahera

³Faculty of Health Sciences, Satya Wacana Christian University

*Correspondence: Master's Program of Biology, SWCU, Jl. Diponegoro 52-60 Salatiga 50714, Central Iava

*e-mail: fkarwur@yahoo.com

F. Bioteknologi

Kode Judul, Penulis dan Alamat

F1 Evaluasi Waktu Start Up pada Proses Peruraian Stillage secara Anaerobik Menggunakan Reaktor Fixed Bed dengan Zeolit sebagai Media Imobilisasi

Wivina Diah Ivontianti 1*, Wiratni Budhijanto 2, dan Siti Syamsiah 3

Jurusan Teknik Kimia Universitas Gadjah Mada Jalan Grafika No.02 Yogyakarta

*E-mail: wiratni@ugm.ac.id

F2 Pengolahan Limbah Sayur Kol Menjadi Pupuk Kompos dengan Metode Takakura Lulu Nurdini¹*, Riska Diyanti Amanah¹, Anindya Noor Utami¹

^{1*}Program Studi Teknik Kimia, Fakultas Teknik, Univeritas Jenderal Achmad Yani

Jl. Ters. Jenderal Sudirman PO BOX 148 Cimahi

*E-mail: <u>lulunurdini@gmail.com</u>

F3 Fase Deaktivasi Fermentasi Bioethanol dari Sorgum dengan *Beads* Biokatalis Ko-Immobilisasi *Yeast* dan Enzim Glukoamilase Menggunakan *Anaerobic Baffled Reactor* (ABR)

Pangesti Willistania¹, Pristiwati Iustitie Poetranto^{2*}, Mujtahid Kaavessina^{3*} dan Margono⁴ 1,2,3,4 Program Studi Sarjana Teknik Kimia, FT, Universitas Sebelas Maret Jl. Ir. Sutami 36A,

Surakarta 2716 Telp/fax:0271-632112

*E-mail: pristiwati ip@yahoo.com/mkaayessina@gmail.com

F4 Heavy Metals Biosorption Phenomena Of Cr, Fe, Zn, Cu, Ni, And Mn On The Biomass Of Mixed Bacteria Of Bacillus, Pseudomonas, Arthrobacter And Aeromonas

Zainus Salimin¹*, Endang Nuraeni²

^{1*}Pusat Teknologi Limbah Radioaktif, BATAN, Kawasan PUSPIPTEK Gd 50, Serpong, Tangerang Selatan

²Pusat Teknologi Limbah Radioaktif, BATAN, Kawasan PUSPIPTEK Gd 50, Serpong, Tangerang Selatan

*E-mail: zainus_s@batan.go.id

F5 Proses Start Up Produksi Bioetanol dari Tepung Sorghum Menggunakan Reaktor Anaerobik Berpenghalang

Rosadela Lucky Artha^{1*}, Ade Tia Suryani², Margono³, Mujtahid Kaavessina⁴, dan Endah Retno Dyartanti⁵

1,2,3,4,5 Program Studi Teknik Kimia, FT, UNS Jl. Ir. Sutami no. 36 A, Surakarta 27126 Telp/fax:0271-632112

*E-mail: rosadela lucky@yahoo.com

F6 Transformasi Nitrogen secara Biologis di Air Panas Sarongsong Kota Tomohon Frity Lisa Taroreh¹, Ferry Karwur ^{1,2}, Jubhar Mangimbulude ^{3*}

¹ Program Pascasarjana Magister Biologi, Universitas Kristen Satya Wacana

² Fakultas Ilmu Kesehatan, Universitas Kristen Satya Wacana

³Program Studi Manajemen Sumberdaya Perairan, Fakultas Ilmu Alam dan Rekyasa Teknologi, Universitas Halmahera, Tobelo, Halmahera Utara.

*Korespondensi: PPs Magister Biologi UKSW, Jl. Diponegoro no. 52-60 Salatiga 50714

*e-mail: christianjubhar@yahoo.com

F7 Model Kuasa untuk Hidrolisa Enzimatik Kulit Kelapa dengan Delignifikasi Asam Sulfat Rudy Agustriyanto*, Akbarningrum Fatmawati

Program Studi Teknik Kimia, FT, Universitas Surabaya, Surabaya

Jl. Raya Kalirungkut, Surabaya, 60293

*E-mail: rudy.agustriyanto@staff.ubaya.ac.id

G. Teknologi Pemisahan

Kode Judul, Penulis dan Alamat

G1 Pengujian Aktivitas Antioksidan Menggunakan Metode DPPH pada Daun Tanjung (Mimusops elengi L)

Dewi Tristantini*1, Alifah Ismawati², Bhayangkara Tegar Pradana³, Jason Gabriel Jonathan⁴.

^{1*}Program Studi Teknik Kimia, FT, Universitas Indonesia, Depok Jawa Barat 16424

²Program Studi Teknologi Bioproses, FT, Universitas Indonesia, Depok Jawa Barat 16424

³Program Studi Teknik Kimia, FT, Universitas Indonesia, Depok Jawa Barat 16424

⁴Program Studi Teknologi Bioproses, FT, Universitas Indonesia, Depok Jawa Barat 16424

Email: detris@che.ui.ac.id, alifah11isma@gmail.com

G2 Fouling dan Cleaning Membran Reverse Osmosis Tekanan Rendah untuk Aplikasi Daur Ulang Air Limbah Domestik

Retno Dwi Jayanti¹ dan I Nyoman Widiasa^{2*})

Program Studi Teknik Kimia, Fakultas Teknik, Universitas Diponegoro Jl. Prof H Soedarto Kampus UNDIP Tembalang 50275 Nomor Telepon/Fax (024)7460058/(024)76480675

E-mail: widiasa@undip.ac.id

G3 Pengaruh Penambahan Filler dan Suhu Pengeringan terhadap Kandungan Antioksidan pada Daun *Physalis angulata* yang Diperoleh dengan Ekstraksi Menggunakan Air Subkritik *Ratna Frida Susanti dan Desy Natalia*

Program Studi Teknik Kimia, FTI, Universitas Katolik Parahyangan, Jl. Ciumbuleuit No 94, Bandung *E-mail: santi@unpar.ac.id

G4 Aktivasi Zeolit Alam Lampung sebagai Adsorben Karbon Monoksida Asap Kebakaran Yuliusman

Departemen Teknik Kimia, FTUI, Univeristas Indonesia

Departemen Teknik Kimia, Fakultas Teknik, Universitas Indonesia, Depok 16424

E-mail: usman@che.ui.ac.id, yuliusman@yahoo.com

G5 Pengambilan Kembali Logam Litium dan Cobalt dari Baterai Li-Ion dengan Metode *Leaching* Asam Sitrat

Yuliusman

Departemen Teknik Kimia, Fakultas Teknik, Universitas Indonesia, Depok 16424

E-mail: usman@che.ui.ac.id, yuliusman@yahoo.com

G6 Sistem Desalinasi Membran Reverse Osmosis (RO) untuk Penyediaan Air Bersih Linda A. Yoshi¹, I Nyoman Widiasa ^{2*}

^{1,2*}Program Studi Teknik Kimia, FT, UNDIP, Jln. Prof. Soedarto, Tembalang, Semarang 50275 **E-mail*: widiasa@undip.ac.id

G7 Pengolahan Limbah Jasa Pencucian Kendaraan dengan Metode Koagulasi-Flokulasi Rusdi 1* , Wardalia 2

^{1,2} Jurusan Teknk Kimia, Fakultas Teknik, Universitas Sultan Ageng Tirtayasa *E-mail*: rusdi.rachman@ymail.com

H. Teknologi Partikel

Kode Judul, Penulis dan Alamat

I. Teknologi Pengolahan Limbah

Kode Judul, Penulis dan Alamat

I1 Fotoreduksi Logam Krom (VI) Menggunakan Fotokatalis Lapis Tipis TiO_2 -Mn Mesopori dengan Bantuan Lampu Tungsten (Hexavalent Chromium Photoreduction Using Mesophorous TiO_2 -Mn Thin Film Photocatalyst With A Tungsten Lamp)

Kapti Riyani^{1*}, Tien Setyaningtyas¹, Agus Soleh¹

¹Jurusan Kimia FMIPA Universitas Jenderal Soedirman

*E-mail: kapti.riyani@gmail.com

12 Pengolahan Sampah di Perguruan Tinggi dan Kontribusinya terhadap Penurunan Emisi Gas Rumah Kaca

Tuani Lidiawati S

Jurusan Teknik Kimia, FT, Pusat Studi Lingkungan Universitas Surabaya, Jl. Raya Kalirungkut, Surabaya

E-mail: tuani@staff.ubaya.ac.id

13 Characteristics Biomass for Raw Materials Pyrolysis Reactor

Ben Yudha Satria, Roy Firman Adventus Pasaribu, Hamid Asyraf Adani, Ari Susandy Sanjaya*)
Program Studi Teknik Kimia, Fakultas Teknik, Universitas Mulawarman.

Jalan Sambaliung No. 9 Kampus Gunung Kelua, Samarinda

*)Email: susandy.ari@gmail.com

I4 Degradasi Onggok Limbah Tapioka menjadi Gula Pereduksi Menggunakan Proses Sonikasi C. E. Lusiani. E. O. Ningrum. P. N. Trisanti. Sumarno*

Program Studi Teknik Kimia, FTI, Institut Teknologi Sepuluh Nopember (ITS), Surabaya

*E-mail: onramus@chem-eng.its.ac.id

I5 Synthesis of Nano Silica Originated from Rice Husks using Sol Gel Method with Methanol as Solvent

Daniel Yonathan, Hans Kristianto, dan Arenst Andreas*

^{1*}Program Studi Teknik Kimia, FTI, Universitas Katolik Parahyangan

Jl. Ciumbuleuit No.94, Bandung, 40141, Indonesia

*E-mail: arenst@unpar.ac.id

I6 Pengolahan Sampah Plastik dengan Metoda Pirolisis Menjadi Bahan Bakar Minyak

Endang K, Mukhtar G, Abed Nego, F X Angga Sugiyana

Jurusan Teknik Kimia, Politeknik Negeri Bandung, Bandung 40012

E-mail: anego585@gmail.com, anggaxaverius@gmail.com

I7 Activated Carbon from Jackfruit Peel Waste As Decolouring Agent of Screen Printing Waste Water

Sri Sunarsih, Sri Hastutiningrum, Tifani Diah Nisa,

Jurusan Teknik Lingkungan IST AKPRIND Yogyakarta, Jln Bima Sakti 3 Pengok Yogyakarta

I8 Studi Adsorpsi Sianida dari Tailings Pengolahan Emas dengan Metode Resin-In-Pulp Ninik Lintang E.W., Cut Shafira, Palguno Helyoso

Program Studi D-IV Teknik Kimia Produksi Bersih, Jurusan Teknik Kimia, Politeknik Negeri Bandung,

Program Studi D-III Teknik Kimia, Jurusan Teknik Kimia, Politeknik Negeri Bandung,

Jl Gegerkalong Hilir, Ds Ciwaruga, Bandung

E-mail: niniklintang@yahoo.com

19 Perbandingan Kinerja Flokulasi Bioflokulan dari Pati Talas (*Colocasia Esculenta L. Schoott*) Termodifikasi dengan Pati Singkong (*Manihot Utilissima*) Termodifikasi Menggunakan Metode Pencangkokan (*Grafting*)

Resqi Dwi Oktaviani, Novitasari, Mujtahid Kaavessina*

Program Studi Teknik Kimia, Fakultas Teknik, Universitas Sebelas Maret, Surakarta 57126

*Email: mkaavessina@gmail.com

I10 Adsorpsi Ion Logam Kromium (Cr (Vi)) Menggunakan Karbon Aktif dari Bahan Baku Kulit Salak

Selvy Utama, Hans Kristianto dan Arenst Andreas*

Program Studi Teknik Kimia, Universitas Katholik Parahyangan, Jl. Ciumbuleuit 94, Bandung

*Email: arenst@unpar.ac.id

I11 Evaluasi Waktu *Start Up* pada Proses Peruraian Limbah *Stillage* Secara Anaerobik Menggunakan Reaktor *Fluidized Bed* Kontinyu dengan Zeolit sebagai Media Imobilisasi

Kunthi Widhyasih, Wiratni Budhijanto*, Chandra W. Purnomo

Laboratorium Teknik Pangan dan Bioproses Departemen Teknik Kimia Fakultas Teknik, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281 Indonesia

*Email: wiratni@ugm.ac.id

112 Adsorpsi Ion Logam Tembaga (II) Menggunakan Karbon Aktif dari Bahan Baku Kulit Salak Febe Apecsiana, Hans Kristianto and Arenst Andreas*

Program Studi Teknik Kimia, Fakultas Teknologi Industri,

Universitas Katolik Parahyangan, Ciumbuleuit 94 Bandung 40141

*E-mail: arenst@unpar.ac.id

I13 Penurunan Kadar Krom (Cr) dalam Limbah Cair Industri Penyamakan Kulit dengan Metode Elektrokoagulasi Secara Batch

Luqman Sahlan R., Sarahesti Radinta, Siti Diyar Kholisoh, dan Titik Mahargiani

Program Studi Teknik Kimia, FTI, Universitas Pembangunan Nasional "Veteran" Yogyakarta

Jl. SWK 104 (Lingkar Utara), Condongcatur, Yogyakarta – 55283

E-mail: luqmansrd@gmail.com, radintasarahesti@yahoo.com, diyar.kholisoh@upnyk.ac.id

114 Penyisihan Minyak Dalam Emulsi Air Bilga Menggunakan Proses Elektrokoagulasi Soeprijanto^{1*}, Lily Pudjiastuti², dan R.O. Saut Gurning³

^{1,2}Program Studi Teknik Kimia, FTI, ITS, Keputih Sukolilo, Surabaya 60111

³Program Studi Teknik Sistim Perkapalan, FTK, ITS, Keputih Sukolilo, Surabaya 60111

*E-mail: s.soeprijanto@gmail.com; atau s.soeprijanto@chem-eng.its.ac.id

115 Synthesis of Nanosilica Originated from Fly Ash using Sol-Gel Method with Methanol as Solvent Daniel Alvin Chaidir, Hans Kristianto dan Arenst Andreas*

Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan

Jl. Ciumbuleuit 94, Bandung 40141 Telp./Fax: 022-2032700

*E-mail: arenst@unpar.ac.id

J. Energi Baru dan Terbarukan

Kode Judul, Penulis dan Alamat

J1 Preliminary Study of the Cyclization of Conjugated Unsaturated Fatty Acid Chain in Kemiri Sunan Oil

Felicia Elsa^{1*}, Tedi Hudaya², and Tatang Hernas³

¹Program Studi Teknik Kimia, FTI, UNPAR Jalan Ciumbuleuit 94, Bandung 40141

²Program Studi Teknik Kimia, FTI, UNPAR Jalan Ciumbuleuit 94, Bandung 40141

³Program Studi Teknik Kimia, FTI, ITB, Jl. Ganesha No.10, Bandung 40132

*email: <u>felicia.elsa@gmail.com</u>

J2 Membran Polimer Elektrolit Nanokomposit Berbasis PVdF-HFP (Poly Vinylidene Flouride co-Hexaflouropropylene) sebagai Separator Baterai Lithium Ion dengan Variasi Non Solvent Alviansyah Z. A. Putro, Nugroho F. Windyanto, dan Endah R. Dyartanti

Program Studi Teknik Kimia, FT, UNS, Jalan Ir. Sutami 36A Surakarta

E-mail: alvianzinka@yahoo.co.id; nug fw22@yahoo.com; endah rd@uns.ac.id

J3 Pengaruh Jenis Perekat Pada Briket dari Kulit Buah Bintaro Terhadap Waktu Bakar

Erlinda Ningsih¹, Yustia Wulandari Mirzayanti², Henny Silvia Himawan³, Helvi Marita Indriani⁴

^{1*}Program Studi Teknik Kimia, FTI, Institut Teknologi Adhi Tama Surabaya.

Jl. Arief Rahman Hakim No. 100 Surabaya 60117, Jurusan Teknik Kimia, FTI, ITATS

*E-mail: Erlindaningsih84@gmail.com

J4 Perbandingan Proses Esterifikasi dan Esterifikasi -Trans-esterifikasi dalam Pembuatan Biodisel dari Minyak Jelantah

Niken Pratiwi¹, Masriani¹, Indah Prihatiningtyas²

Program Studi Teknik Kimia, Fakultas Teknik Universitas Mulawarman Kampus Gunung Kelua,

Jl. Sambaliung No.9 Samarinda

E-mail: indah.unmul@gmail.com

J5 Optimization of Used Cooking Oil into Biodiesel with Sulfated Zirconia Zeolit Catalyst Paramita Dwi Sukmawati^I

Jurusan Teknik Lingkungan Institut Sains & Teknologi AKPRIND Yogyakarta Jl. Bima Sakti No.3 Pengok Yogyakarta 55222

E-mail: mita.teling@gmail.com

J6 Pemanfaatan Bittern sebagai Elektrolit Alternatif pada Sel Aki Bekas

Peggy Bunga Safitri^{1*}, Aprilia Ramona², Abdullah Effendi³, Danang Jaya⁴

^{1,2,3,&4}Program Studi Teknik Kimia, FTI, UPN "Veteran" Yogyakarta, Jl. SWK 104 (Lingkar Utara), Condongcatur, Yogyakarta-55283

*E-mail: <u>luph.allah@gmail.com</u>

J7 Kajian Pengaruh Pelumatan dan Penambahan Aktivator terhadap Produksi Biogas dari Sampah Sisa Makanan Restoran (Study The Effect of Grinding and Addition of Activator on Biogas Production from Restaurant Foodwaste)

Yuli Pratiwi¹*, Purnawan², dan Angge Dhevi Warisaura³

^{1*,2,3} Program Studi Teknik Lingkungan, FST, IST AKPRIND Yogyakarta, Jl.Bimasakti No.3 Pengok Yogyakarta 55222

*E-mail: yuli_pratiwi@akprind.ac.id

J9 The Effect of Catalyst Support on the Bimetallic Ni-Ag Hydrogenation Catalyst Activity

Tedi Hudaya¹, Nita Ardelia Jairus², and Tatang Hernas Soerawidjaja³*

^{1,2}Program Studi Teknik Kimia, FTI, UNPAR, Jalan Ciumbuleuit 94, Bandung

³Program Studi Teknik Kimia, FTI, ITB, Jl. Ganesha No.10, Bandung

*E-mail: thsoerawidjaja@gmail.com

J10 Rancang Bangun PLTMH Menggunakan Turbin Cross-Flow Berkapasitas 1 Kw untuk Daerah Terpencil dengan Sumber Air yang Terbatas

Joke Pratilastiarso¹, Mohamad Hamka²

- 1. Program Studi Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Sukolilo Surabaya 60111 Indonesia
- 2. Program Studi Sistem Pembangkit Energi, Departemen Teknik Mekanika dan Energi, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Sukolilo Surabaya 60111 Indonesia *E-mail*: joke@pens.ac.id, hamka@pg.student.pens.ac.id

J11 Pembuatan Biodiesel dari Minyak Kemiri Sunan dengan Proses Dua Tahap

Sri Wahyu Murni^{1*}, Geoshinta Kusumawardani² dan Thea Arifin³

^{1,2,3} Program Studi Teknik Kimia, FTI, UPN "Veteran" Yogyakarta, Jl SWK 104 Lingkar Utara Condongcatur Yogyakarta 55283

^{1*}E-mail: sriwahyumurni@gmail.com

J12 Pretreatment Bonggol Jagung dengan Alkali Peroksida dan Hidrolisis Enzim

H. Maria Inggrid, Reinaldo Wong, Herry Santoso

Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan Jalan Ciumbuleuit 94, Bandung 40141, Telp. (022) 2032655, Fax. (022) 2031110 *E-mail*: inggrid@unpar.ac.id

J13 Pemanfaatan Umbi Suweg (Amorphophallus sp) sebagai Bahan Baku Pembuatan Bioetanol melalui Proses Fermentasi dan Distilasi

Hargono¹*, Adimas Wahyu Santoso²*, Gleys Kasih Deborah²*)

¹⁾ Jurusan Teknik Kimia, Fakultas Teknik, Fakultas Teknik Universitas Diponegoro

²⁾ Sarjana Teknik, Jurusan Teknik Kimia, Fakultas Teknik Universitas Diponegoro

*E-mail: hargono tkundip@yahoo.co.id

J14 Tekno-Ekonomi Sistem Membran Terintegrasi untuk Pengolahan Air Baku Campuran Air Payau dan Efluen STP

I Nyoman Widiasa^{1*} dan Asteria A. Susanto¹

^{1*} Jurusan Teknik Kimia, Fakultas Teknik UNDIP, Jl. Prof Sudarto, SH, Tembalang, Semarang

¹ Jurusan Teknik Kimia, Fakultas Teknik UNDIP, Jl. Prof Sudarto, SH, Tembalang, Semarang

*E-mail: widiasa@undip.ac.id

K. Analisis Resiko

Kode Judul, Penulis dan Alamat

K1 Pemanfaatan LNG sebagai Bahan Bakar Kendaraan Umum di Yogyakarta: Tinjauan Aspek Keselamatan dalam Pengangkutan dan Penyimpanan

Didik Supriyadi*, Moh. Fahrurrozi¹, Indra Perdana¹

¹ Jurusan Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jalan Grafika No. 2,

Kampus UGM, D.I.Yogyakarta

*DidikSupriyadi21@gmail.com

L. Teknik Produk

Kode Judul, Penulis dan Alamat

L1 Pembuatan Tepung Gel Lidah Buaya dengan Alat Pengering Spray Dryer

Ronny Kurniawan, Salafudin, Bakti Prasetyo, Ilham Husnul Abid

Program Studi Teknik Kimia, FTI, itenas Bandung, Jl. PHH. Mustafa No 23 Bandung E-mail:ron itenas@yahoo.com

L2Polyesterification of Shellac as An Alternative Coating Material

Lestari Hetalesi Saputri^{1*}, Rochmadi² dan Budhijanto²

^{1*}Program Studi Teknik Kimia, Politeknik LPP, Yogyakarta

²Jurusan Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta

Email: lestari h@politeknik-lpp.ac.id

L3 Sintesis Nanosilika dari Sekam Padi Menggunakan Metode Sol Gel dengan Pelarut Etanol Arenst Andreas*, Hans Kristianto, Devi Fitriani Kurniawan

Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Ciumbuleuit 94 Bandung 40141

*E-mail: arenst@unpar.ac.id

L4 Pengaruh Variasi Ukuran Daun Stevia dan Perbandingan Umpan Pada Karakterisasi Produk Gula Cair Stevia

Jessica¹*, Andy Chandra²*, Ign. Suharto³*

1*, 2*, 3* Program Studi Teknik Kimia, FTI, Universitas Katolik Parahyangan Bandung,

Jalan Ciumbuleuit no. 94 Bandung 40141

E-mail: jessica.soetedjo@gmail.com^{1}), miancha@yahoo.co.id^{2*})

L5 Aplikasi Kitosan Limbah Udang sebagai Pengawet Ikan Patin (Pangasius sp.)

 Zainal Arifin^{1*}, Prayogi Nugroho¹

¹Jurusan Teknik Kimia, Politeknik Negeri Samarinda

Jl. Dr. Ciptomangunkusumo, Kampus Gunung Lipan, Samarinda, Kalimantan Timur 75131

*E-mail: iffien_solo@yahoo.com

L6 Kecepatan Release Asam Salisilat dari Crosslinked Carrageenan Film: Pengaruh Konsentrasi Glutaraldehid sebagai Crosslinker

Steffy Devi Intan Permatasari Putri^{1*}, Christine Melani², dan Sperisa Distantina³

Program Studi Sarjana Teknik Kimia Fakultas Teknik, Universitas Sebelas Maret

Jl. Ir. Sutami 36A Surakarta

*Email: steffydevi@gmail.com

L7 Pengaruh pH dan Temperatur pada Ekstraksi Antioksidan dan Zat Warna Buah Stroberi H. Maria Inggrid, Albertus Reynaldi Iskandar

Program Studi Teknik Kimia, FTI, UNPAR, Jalan Ciumbuleuit 94, Bandung

E-mail: inggrid@unpar.ac.id

L8 Teknologi Pembuatan Liquid Smoke Daun Kesambi sebagai Bahan Pengasapan Se'i Ikan Olahan Khas Nusa Tenggara Timur

Mamiek Mardyaningsih^{1*}, Aloysius Leki¹, Stella Sahetapi Engel²

- 1. Teknik Mesin Politeknik Negeri Kupang
- 2. Administrasi Bisnis Politeknik Negeri Kupang
- Jl. Adisucipto PO. Box 139 Penfui Kupang NTT

*E-mail:: mmardyaningsih@yahoo.com

L9 Pengaruh Penambahan Kacang Merah, Ampas Kedelai, dan Textured Vegetable Protein pada Kandungan Nutrisi dan Tekstur Daging Sapi Sintetik

Dewi Tristantini¹*dan Angela Susanti¹

^{1*}Program Studi Teknik Kimia, Fakultas Teknik, Universitas Indonesia, Depok, 16424, Indonesia

*E-mail: detris@che.ui.ac.id

L10 Outcome of Soybean Dregs and Cassava Addition towards Synthetic Chicken Meat Texture and Nutrition

Dewi Tristantini 1* Tiara Febriani 1 , and Monica Winata

^{1*}Program Studi Teknik Kimia, Fakultas Teknik, Universitas Indonesia, Depok, 16424, Indonesia

*E-mail: detris@che.ui.ac.id

L12 Pembuatan Mikrokapsul Phycocyanin Menggunakan Maltodekstrin sebagai Bahan Pelapis dengan Metode Spray Drying

Muhammad Nasyarudin Iqbal 1* dan Hadiyanto 2

1*,2 Program Studi Teknik Kimia, Fakultas Teknik, Universitas Diponegoro Jl. Prof H Soedarto Kampus UNDIP Tembalang, Semarang 50275

*E-mail: nasyarudin92@gmail.com

L13 Sintesa dan Karakterisasi Biokomposit Material dari Biodegradable Polimer Poly L-Lactic Acid (PLLA) dan Selulosa

Mayang Ayudhawara Subaghio¹, Meiliefiana ², Hikmatun Ni'mah^{3*}, Prida Novarita T.⁴, Sumarno⁵ Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia

*E-mail: hikmatun n@chem-eng.its.ac.id

Perbandingan Proses Esterifikasi dan Esterifikasi -Trans-esterifikasi dalam Pembuatan Biodisel dari Minyak Jelantah

Niken Pratiwi¹, Masriani¹, Indah Prihatiningtyas²

Program Studi Teknik Kimia, Fakultas Teknik Universitas Mulawarman Kampus Gunung Kelua, Jl. Sambaliung No.9 Samarinda

E-mail: indah.unmul@gmail.com

Abstract

In recent years, some researchers are exploring many new sources of energy, such as biofuels. Biodiesel attracted the attention of various researchers as an alternative fuel because it is non-toxic, biodegradable and renewable as well as contributing the minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions into the atmosphere. The use of waste cooking oil to produce biodiesel reduced the raw material cost. The acid-catalyzed process using waste cooking oil proved to be technically feasible with less complexity than the alkali-catalyzed process using waste cooking oil, thereby making it a competitive alternative to commercial biodiesel production by the alkali-catalyzed process. The main objective of this study was to compare the process of making biodiesel. Esterification process would be compared with esterification followed by a trans-esterification process. The results showed that biodiesel was produced by esterification followed by trans-esterification process and esterification process, they have met SNI for parameters such as density, acid number, pH, cloud point and flash point, but the parameters of the viscosity and water content did not meet standards. Biodiesel using esterification followed by trans-esterification) was better than esterification process due to the yield produced higher (62.667%) than the esterification process (48%)

Key Words: Biodisel, Waste cooking oil, Esterification, Esterification-transesterification

Pendahuluan

Perkembangan kebutuhan energi yang dinamis di tengah semakin terbatasnya cadangan energi fosil serta kepedulian terhadapkelestarian lingkungan hidup, menyebabkan perhatian terhadap energi terbarukan semakin meningkat, terutama terhadap sumber-sumber energi terbarukan. Pengembangan bahan bakar nabati untuk menggantikan bahan bakar fosil terus dilakukan. Biofuel merupakan bahan bakar yang berasal dari biomasa dan diharapkan dapat menggantikan premium, solar, maupun kerosin atau minyak tanah.

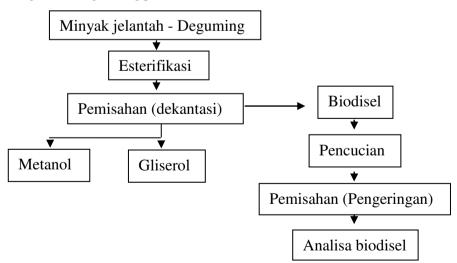
Biodiesel merupakan mono alkil ester asam lemak yang besal dari minyak sayuran dan lemak hewan. Biodisel dibuat dari reaksi kimia antara minyak sayur atan lemak dengan alcohol, dengan atau tanpa dibantu katalis. Katalis digunakan untuk meningkatkan laju reaksi transesterifikasi dengan reaksi ke kanan (Ramadhas, 2009). Biodisel merupakan salah satu biofuel cair yang merupakan bahan bakar alternatif pengganti solar karena memiliki karakterisik serupa dengan solar. Sebagai bahan bakar, biodiesel memiliki beberapa kelebihan seperti merupakan turunan dari sumber daya alam domestik yang dapat diperbarui, mudah terurai oleh organisme hidup, dapat mengurangi emisi gas buang. Biodiesel dapat diproduksi dari bahan yang mengandung asam lemak, sehingga berbagai minyak nabati, lemak hewan dan limbah pengolahan minyak nabati dapat digunakan sebagai bahan baku untuk produksi biodiesel. Pemilihan bahan baku memperhatikan beberapa variabel seperti ketersediaannya, harga atau biaya, dukungan pemerintah dan kinerjanya sebagai bahan bakar. Penggunaan biodiesel secara masal sebagai bahan bakar alternatif masih terkendala oleh mahalnya biaya produksi, Menurut Behzadi (2007), 70% biaya produksi biodiesel berasal dari biaya bahan baku (Setyawardhani dkk, 2009). Indonesia merupakan negara agraris yang kaya akan berbagai tanaman penghasil minyak nabati, namun minyak nabati tersebut masih digunakan untuk memenuhi kebutuhan pangan. Para peneliti mulai mencari serta mengembangkan biodiesel yang dihasilkan dari minyak nabati namun tidak mengganggu stabilitas pangan.

Minyak goreng bekas (jelantah) adalah minyak goreng yang sudah digunakan beberapa kali pemakaian oleh konsumen. Minyak jelantah memiliki warna tidak menarik dan berbau tengik, minyak jelantah juga mempunyai potensi besar dalam mambahayakan kesehatan tubuh. Minyak jelantah mengandung radikal bebas yang setiap saat siap untuk mengoksidasi organ tubuh secara perlahan. Terlalu sering mengkonsumsi minyak jelantah dapat meningkatkan potensi kanker didalam tubuh (Andarwulan, 2006). Minyak jelantah kaya akan asam lemak bebas dan tergolong *non edible fat* yang dapat dikembangkan sebagai bahan baku biodiesel tanpa mengganggu stabilitas dan

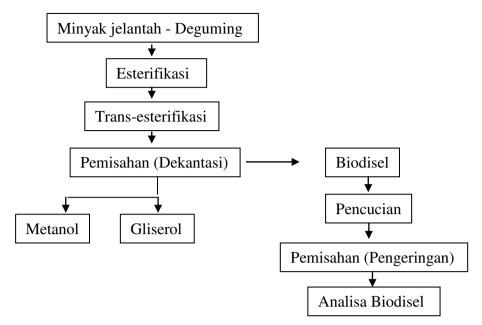
ketahanan pangan, selain itu pengolahan biodiesel dari minyak jelantah juga merupakan cara yang efektif untuk menurunkan harga jual biodiesel karena murahnya biaya bahan baku.

Minyak goreng mengalami perubahan kimia akibat oksidasi dan hidrolisis pada saat digunakan, sehingga dapat menyebabkan kerusakan pada minyak goreng tersebut. Melalui proses-proses tersebut beberapa trigliserida akan terurai menjadi senyawa-senyawa lain, salah satunya *Free Fatty Acid* (FFA) atau asam lemak bebas (Ketaren, 1996). Kandungan asam lemak bebas yang terkandung dalam minyak jelantah tersebut dapat diesterifikasi dengan metanol sehingga menghasilkan biodiesel. Sedangkan kandungan trigliseridanya dapat pula ditransesterifikasi dengan metanol yang juga menghasilkan biodiesel dan gliserol. Dengan kedua proses tersebut maka minyak jelantah dapat bernilai tinggi (Suirta, 2007). Biodiesel dapat disintesis melalui esterifikasi asam lemak bebas atau transesterifikasi trigliserida dari minyak nabati dengan metanol sehingga dihasilkan metil ester (Elisabeth, dkk, 2001).

Katalis sering digunakan dalam proses pembuatan biodiesel. Penggunaan katalis alkali menghasilkan kuantitas tinggi dan biodiesel yang dihasilkan memiliki kemurnian tinggi dalam waktu reaksi yang lebih singkat (Antolin *et al*, 2002). Namun, proses ini tidak cocok untuk bahan baku dengan asam lemak bebas yang tinggi (FFA) konten. Oleh karena itu, proses trans-esterifikasi dua langkah (esterifikasi asam diikuti oleh transesterifikasi alkali) dikembangkan untuk menghilangkan asam lemak bebas yang tinggi (FFA) konten dan untuk meningkatkan hasil biodiesel (Patil *et al*, 2012). Minyak jelantah merupakan minyak goreng yang telah digunakan beberapa kali, dikarenakan proses tersebut beberapa trigliserida terurai menjadi senyawa-senyawa lain salah satunya asam lemak bebas, oleh karena itu minyak jelantah memiliki kandungan asam lemak bebas (FFA) yang tinggi. Pada penelitian ini akan dilakukan pembuatan biodiesel dari minyak jelantah dengan proses esterifikasi dan proses esterifikasi yang dilanjutkan dengan proses trans-esterifikasi. Tujuan dari penelitian ini adalah untuk membandingkan kualitas biodiesel dengan perbedaan proses dalam pembuatan biodiesel.


Metode Penelitian

Alat dan Bahan


Penelitian ini dilakukan dalam skala laboratorium dan dilaksanakan di laboratorium Teknologi Kimia Fakultas Teknik Universitas Mulawarman. Penelitian ini dilakukan pada tanggal 11 November sampai 18 Desember 2015. Bahan yang digunakan pada penelitian ini adalah minyak jelantah yang diperoleh dari penjual gorengan dan warung makan di sekitar Kampus Universitas Mulawarman, NaOH (0,1 M), H₂SO₄, H₃PO₄, asam asetat, aquades, indikator pp. Alat yang digunakan pada penelitian ini adalah labu leher empat, kondensor, *reflux*, statif dan klem, *hotplate*, *magnetic stirrer*, *thermometer*, *bulb*, pipet volume, *erlenmeyer*, gelas beker, labu ukur, gelas ukur, buret.

Proses Produksi Biodises dari Minyak Jelantah

Dalam penelitian ini, akan dilakukan perbandingan proses produksi biodiesel dengan satu tahap (esterifikasi) dengan proses produksi biodiesel dengan dua tahap (esterifikasi dilanjutkan dengan trans-esterifikasi). Adapun Gambar 1 dan 2 adalah diagram masing-masing proses.

Gambar 1. Proses produksi satu tahap (esterifikasi)

Gambar 2. Proses produksi dua tahap (esterifikasi dilanjutkan trans-esterifikasi)

Proses De-Gumming

Proses degumming dilakukan untuk memisahkan minyak dari kotoran-kotoran yang berupa gum, protein, fosfolipid, dan lain. Minyak jelantah sebanyak 300 ml dipanaskan pada suhu 70°C, kemudian ditambahkan asam phospat 0.5 % dari berat minyak sambil terus diaduk dengan menggunakan *magnetic stirrer* salama 30 menit. Kemudian minyak tersebut dimasukkan ke dalam corong pisah, didiamkan selama 24 jam selanjutnya dipisahkan.

Proses Esterifikasi

Proses esterifikasi dilakukan dengan cara menambahkan asam sulfat dengan kadar 98% seberat 0.5% dari berat minyak jelantah dan metanol 99% sebanyak 2 : 1 dari berat minyak jelantah. Pengadukan menggunakan *magnetic stirrer* dilakukan selama 70 menit pada suhu 70°C.

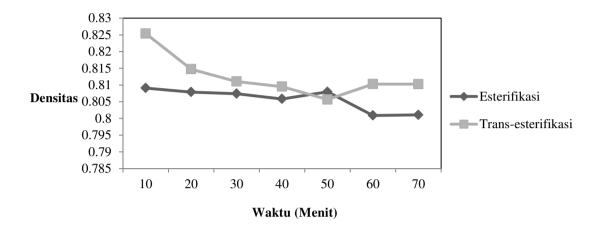
Proses Transesterifikasi

Proses ini bertujuan untuk mengubah asam-asam lemak dari *trigliserida* dalam bentuk *ester* dengan cara mereaksikan hasil dari proses esterifikasi dengan metanol 99% sebanyak 2:1 dari volume minyak jelantah dan menambahkan katalis NaOH sebanyak 1% dari volume minyak jelantah untuk mempercepat reaksi. Kemudian dilakukan pemanasan pada suhu 70°C selama 70 menit dan disertai pengadukan dengan menggunakan *magneticstirrer*.

Proses Pencucian

Biodiesel yang dihasilkan biasanya masih tercampur dengan gliserol dan sisa-sisa metanol dan katalis. Untuk itu, perlu dilakukan proses pencucian agar didapatkan hasil biodiesel yang lebih murni. Proses pencucian biodiesel dilakukan dengan beberapa tahap yaitu pada tahap pencucian pertama biodiesel dimasukkan kedalam corong pisah kemudian ditambahkan 5ml larutan asam asetat kemudian dikocok agar terjadi netralisasi, dan ditambahkan aquades kemudian dihomogenkan. Setelah itu biodiesel didiamkann selama 24 jam sehingga terbentuk dua lapisan yaitu biodiesel dan air pencuci. Biodiesel yang telah dicuci dipisahkan dari air pencucinya. Kemudian proses pencucian untuk tahap selanjutnya dilakukan dengan catra yang sama tetapi tanpa penambahan asam. Proses pencucian ini dilakukan secara berulang-ulang sampai pH biodiesel menjadi 6-8 (Darmawan dan Ferry, 2013)

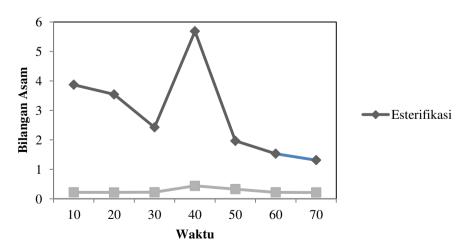
Proses Pengeringan


Pengeringan dilakukan untuk menghilangkan air pada biodiesel. Pada proses ini, biodiesel yang telah dicuci dipanaskan pada suhu 100^{0} C sampai kandungan air dalam biodiesel hilang.

Hasil dan Pembahasan

A. Perbandingan Densitas Pada Tahap Esterifikasi dan Esterifikasi-Transesterifikasi

Pada penelitian ini dilakukan pengambilan sample pada saaat proses esterifikasi dan trans-esterifikasi berlangsung yaitu selama 10 menit sekali, pengambilan sampel dilakukan sampai mendapatkan nilai densitas yang konstan dan tidak mengalami perubahan yang signifikan. Gambar 3 menunjukkan perbandingan densitas yang dihasilkan dari perbedaan proses pembuatan biodiesel.



Gambar 3.Perbandingan Densitas Pada Tahap Esterifikasi dan Esterifikasi-Transesterifikasi

Pada gambar 3 terlihat bahwa densitas produk konstan mulai menit ke 60, ketika densitas atau viskositas produk konstan, maka dapat diperkirakan bahwa produk biodiesel dan ekstraksi minyak telah sepenuhnya terbentuk (Duma, 2012). Selain itu, Gambar 3 menunjukkan bahwa densitas pada tahap esterifikasi yang dilanjutkan dengan transesterifikasi lebih besar dibandingkan densitas pada tahap esterifikasi. Hal ini dikarenakan pada tahap transesterifikasi menggunakan katalis basa yakni NaOH, sedangkan pada tahap esterifikasi hanya menggunakan katalis asam yakni H₂SO₄. Semakin banyak jumlah katalis basa yang digunakan pada pembuatan biodiesel, maka semakin semakin besar pula densitas dari produk biodiesel yang dihasilkan. Jumlah katalis basa yang lebih banyak mendorong terjadinya reaksi penyabunan. Hal ini dapat menimbulkan zat-zat sisa atau pengotor dari reaksi yang tidak terkonversi menjadi metil ester akan menyebabkan densitas metil ester semakin besar.

B. Perbandingan Bilangan Asam Pada Tahap Esterifikasi dan Esterifikasi-Transesterifikasi

Gambar 4 menunjukkan perbandingan bilangan asam pada tahap esterifikasi dan tahap esterifikasi yang dilanjutkan dengan transesterifikasi.

Gambar 4.Perbandingan Bilangan Asam Pada Tahap Esterifikasi dan Esterifikasi-Transesterifiksasi

Bilangan asam adalah miligram KOH yang dibutuhkan untuk menetralkan grup karboksil bebas dari setiap gram sampel. Semakin rendah bilangan asam biodiesel, semakin baik mutu biodiesel karena keasaman biodiesel dapat

menyebabkan korosi dan kerusakan pada mesin diesel. Pada gambar 4 dapat dilihat bahwa bilangan asam yang dihasilkan pada kedua tahap ini memiliki nilai yang berbeda-beda. Dari gambar tersebut dapat dilihat bahwa pada tahap esterifikasi cenderung memiliki nilai bilangan asam yang lebih tinggi sedangkan pada tahap setelah trans-esterifikasi cenderung memiliki nilai bilangan asam yang lebih rendah. Hal ini disebabkan karena pada proses 1tahap (esterifikasi) hanya menggunakan katalis asam, sedangkan pada 2 tahap (esterifikasi yang dilanjutkan dengan trans-esterifikasi), minyak jelantah sebelumnya melewati tahap esterifikasi terlebih dahulu dengan menggunakan H_2SO_4 yang merupakan katalis yang bersifat asam dilanjutkan dengan trans-esterifikasi merupakan tahapan yang menggunakan NaOH sebagai katalis , NaOH memiliki sifat basa, sehingga pada tahap ini nilai bilangan asam yang dihasilkan cenderung turun.

C. Karakteristik Biodisel

Perbandingan karakteristik biodiesel yang dihasilkan dari berbagai proses dapatdilihat pada Tabel 1

Tabel 1. Perbandingan Karakteristik Biodiesel dari Esterifikasi dan Esterifikasi-transesterifikasi.

	Uji Kualitas Biodiesel	Satuan	Hasil Penelitian		
No			Esterifikasi	Esterifikasi-	Menurut SNI
				Transesterifikasi	
1	Berat Jenis	kg/m ³	867.71	883.62	850-890
2	Viskositas	mm^2/s	40.224	40.834	min 2.0 / max 4.5
3	Kadar Air	%	0.184	0.076	0.05
4	Bilangan Asam	mg KaoH/kg	0.54	0.22	Max 0.8
5	pH		6	6.5	6-8
6	Cloud Point	0 C	12	13	max 18
7	Flash Point	0 C	237	226	min 100
8	Yield	%	48	62,667	

Dari Tabel 1 menunjukkan bahwa semua uji kualitas yang dilakukan pada kedua tahapan yang dilakukan yakni dengan 1tahap (esterifikasi) dan 2 tahap (esterifikasi-transesterifikasi) sebagian besar memenuhi SNI terkecuali uji kualitas viskositas dan kadar air. Viskositas pada tahap esterifikasi sebesar 40.224 mm²/s dan pada tahap esterifikasi-transesterifikasi sebesar 40.834 mm²/s, dimana menurut SNI viskositas kinematik antara 2.0 mm²/s hingga 4.5 mm²/s. Viskositas biodiesel tinggi karena adanya ikatan hidrogen intermolekular dalam asam di luar gugus karboksil. Viskositas merupakan sifat biodiesel yang paling penting karena viskositas mempengaruhi kerja system pembakaran bertekanan. Semakin rendah viskositas maka biodiesel tersebut semakin mudah untuk dipompa dan menghasilkan pola semprotan yang lebih baik (Islam dan Beg, 2004). Sedangkan viskositas biodiesel yang lebih tinggi pada kombinasi yang lain dipengaruhi oleh kandungan trigeliserida yang tidak bereaksi dengan metanol, komposisi asam lemak penyusun metil ester, serta senyawa antara seperti monogliserida dan digliserida yang mempunyai polaritas dan bobot molekul yang cukup tinggi. Selain itu, kontaminasi gliserin juga memengaruhi nilai viskositas biodiesel (Bajpai dan Tyagi, 2006).

Kadar air pada hasil penelitian ini tidak memenuhi standar. Pada 1 tahap (esterifikasi), kadar air pada biodiesel sebesar 0.184% dan pada 2 tahap (esterifikasi-transesterifikasi) sebesar 0.076% dimana pada SNI kadar air maksimal sebesar 0.05%. Hal ini dikarenakan pada proses pencucian menggunakan metode *bubble* yang menggunakan aquades sebagai pencucinya. Walaupun biodiesel setelah dicuci kemudian dikeringkan dengan melakukan pemanasan untuk mengurangi kadar air, namun proses ini tidak maksimal dalam mengurangi kandungan air dalam biodiesel.

Kesimpulan

Dari penelitian yang telah dilakukan menunjukkan bahwa pembuatan biodiesel dengan menggunakan proses 2 tahap (esterifikasi dilanjutkan dengan trans-esterifikasi) dan dengan proses 1 tahap (esterifikasi) menghasilkan biodiesel dengan nilai yang memenuhi SNI untuk parameter seperti: berat jenis, bilangan asam, pH, *cloud* point dan *flash* point, namun parameter viskositas dan kadar air tidak memenuhi SNI. Dari penelitian ini dapat disimpulkan bahwa pembuatan biodiesel dengan menggunakan proses 2 tahap (esterifikasi) dilanjutkan dengan trans-esterifikasi) lebih baik dibandingkan dengan proses 1 tahap (esterifikasi). Hal ini dikarenakan yield yang dihasilkan dengan proses 2 tahap lebih tinggi yaitu sebesar 62,667% dibandingkan dengan proses 1 tahap sebesar 48%.

Daftar Pustaka

Andarwulan. Cara-cara Daur Ulang Minyak Goreng Bekas Pakai (Jelantah). ITB. Bandung. 2006.

- Bajpai, D. dan Tyagi, V.K. Biodiesel: Source, Production, Composition, Properties and its Benefits. Joul of Oleo Sci. 2006; 10: 487-502.
- D.A. Seytawardhani, Sperisa Distantina, Minyana Dewi Utami, Nuryah Dewi. Hidrolisis Multistage dan Acid pretreatment Untuk Pembuatan Biodisel dari minyak Biji Kare. Simposium Nasional RAPI VIII. 2009: 38 43.
- Darmawan dan Ferry Indra. Proses Produksi Biodiesel dari Minyak Jelantah dengan Metode Pencucian *Dry-Wash* Sistem. Universitas Negeri Surabaya 2013; 1 (2): 80-87
- Duma, Agam. Studi Proses Produksi Biodiesel dari Biji Karet (Hevea brasiliensis) dengan Metode (Trans)esterifikasi in situ. Thesis. Universitas Diponegoro. Semarang. 2012.
- Elisabeth dan Haryati. Biodiesel Sawit untuk Bahan Bakar Alternatif Ramah Lingkungan. Warta Penelitian dan Pengembangan Pertanian. 2001.
- G. Antolin, F. V. Tinaut, Y. Briceno, V. Castano, C. Perez and A. I. Ramirez. Optimization of Biodiesel Pro-duction by Sunflower Oil Transesterification, Biore-source Technology. 2002; 83 (2): 111-114.
- Islam, M.N., and Beg, M.R.A. The Fuel Properties of Pyrolysis Liquid Derived from Urban Solid Wastes in Bangladesh. Bioresources Technology. 2004; 92:181-186.
- Ketaren. Pengantar Teknologi Minyak dan Lemak Pangan. UI Press Jakarta. 1986.
- Prafulla D. Patil, Veera Gnaneswar Gude, Harvind K. Reddy, Tapaswy Muppaneni, Shuguang Deng . Biodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes. Journal of Environmental Protection. 2012; 3:107-113.
- Ramadhas, AS. Biodiesel Production Technologies and Substrates. Handbook of Plant-Based Biofuels. New York: CRC Press Taylor & Francis Group. 2009: 183.
- Suirta, Indah. Preparasi Biodiesel dari Minyak Jelantah Kelapa Sawit. Journal of Chemistry. Universitas Udayana. Bali. 2007

Jawaban

Lembar Tanya Jawab

Moderator : Mahreni (UPN "Veteran" Yogyakarta) Notulen : Handrian (UPN "Veteran" Yogyakarta)

1. Penanya : Mahreni (UPN "Veteran" Yogyakarta)

Pertanyaan : 1. Apakah Biodiesel ini masih crude?

2. Bagaimana sistem pemurnian?

3. Realita sisanya masuk ke gliserol atau biodiesel?

4. Signifikan atau tidak terhadap yield pada e step esterifikasi?

Jawaban : 1. Biodiesel tidak dalam crude

2. sudah dilakukan pemurnian dengan dekantasi, destilasi dan pencucian.

3. Reaktan sisa di biodiesel tetapi selanjutnya dilakukan dengan pemisahan

4. Dengan 2 tahap proses menghasilkan yield ± 2 kali yield dengan 1 proses

2. Penanya : Oki (UPN "Veteran" Yogyakarta)

Pertanyaan : 1. Minyak jelantah itu FFA nya berapa?

2. Pertambahan Suhu dan konsentrasi, katalis apakah menambah kecepatan reaksi?

3. Berapa persen katalis yang dipakai atas dasar apa penentuan jumlah katalis?

: 1. Tidak dilakukan analisa FFA pada bahan baku. Menurut referensi FFA minyak jelantah tinggi.

2. Suhu dapat menambah kecepatan reaksi, sedang konsentrasi katalis memiliki batasan tertentu.

3. Na₂SO₄ (0,5% dari berat minyak), NaOH (1% dari berat minya)

4. Jumlah penentuan katalis berdasarkan referensi.

